Linear Algebra 1: HW#5

Denys Bulavka & Irena Penev Winter 2023/2024

due Friday, December 1, 2023, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use LATEX.) Other formats will **not** be accepted. Please write your **name** on top of the first page of your HW.

Problem 1 (30 points). Let $n \ge 2$ be an integer. Prove that for any permutation $\pi \in S_n$, we have that

$$sgn(\pi) = (-1)^{k_{even}},$$

where k_{even} is the number of even cycles in the disjoint cycle decomposition of π .¹

Problem 2 (20 points). Prove parts (b) and (d) of Proposition 2.2.4 from the Lecture Notes.

Hint: Imitate the proofs of parts (a) and (c).

Problem 3 (50 points). Let (G, \cdot) be a finite group,² and let H be a subgroup of G. As usual, for $a, b \in G$, we write ab instead of $a \cdot b$. The identity element of G is denoted by e, and the inverse of an element $a \in G$ is denoted by a^{-1} . For all $a \in G$, define

$$aH := \{ah \mid h \in H\}.$$

For any finite set X, we denote by |X| the cardinality (i.e. the number of elements) of X.

¹An even cycle is a cycle that contains an even number of elements, and an odd cycle is a cycle that contain an odd number of elements. For example, the permutation (1)(27)(39)(4568) in S_9 has three even cycles (and one odd cycle).

²This means that |G| is finite, i.e. G has only finitely many elements.

- (a) [5 points] Prove that for all $a \in G$, we have that $a \in aH$ (and in particular, $aH \neq \emptyset$).
- (b) [15 points] Prove that for all $a, b \in H$, either aH = bH or $aH \cap bH = \emptyset$.
- (c) [10 points] Prove that there exist some $a_1, \ldots, a_k \in G$ such that

 (a_1H,\ldots,a_kH)

is a partition of G, that is, such that $G = a_1 H \cup \cdots \cup a_k H$ and such that $a_1 H, \ldots, a_k H$ are pairwise disjoint.

(d) [15 points] Prove that for all $a \in G$, we have that |aH| = |H|, that is, aH and H have the same number of elements.

Hint: Create a bijection from H to aH (and prove that it really is a bijection).

(e) [5 points] Using the previous parts, prove that |H| | |G|, that is, that |G| is divisible by |H|.

Remark: In each part, you may rely on the previous parts, even if you did not prove those previous parts (or you proved them incorrectly).