Linear Algebra 1: HW\#5

Denys Bulavka \& Irena Penev
Winter 2023/2024

due Friday, December 1, 2023, at noon (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$.) Other formats will not be accepted. Please write your name on top of the first page of your HW.

Problem 1 (30 points). Let $n \geq 2$ be an integer. Prove that for any permutation $\pi \in S_{n}$, we have that

$$
\operatorname{sgn}(\pi)=(-1)^{k_{\text {even }}},
$$

where $k_{\text {even }}$ is the number of even cycles in the disjoint cycle decomposition of $\pi .{ }^{1}$

Problem 2 (20 points). Prove parts (b) and (d) of Proposition 2.2.4 from the Lecture Notes.

Hint: Imitate the proofs of parts (a) and (c).

Problem 3 (50 points). Let (G, \cdot) be a finite group, ${ }^{2}$ and let H be a subgroup of G. As usual, for $a, b \in G$, we write ab instead of $a \cdot b$. The identity element of G is denoted by e, and the inverse of an element $a \in G$ is denoted by a^{-1}. For all $a \in G$, define

$$
a H:=\{a h \mid h \in H\} .
$$

For any finite set X, we denote by $|X|$ the cardinality (i.e. the number of elements) of X.

[^0](a) [5 points] Prove that for all $a \in G$, we have that $a \in a H$ (and in particular, $a H \neq \emptyset)$.
(b) [15 points] Prove that for all $a, b \in H$, either $a H=b H$ or $a H \cap b H=\emptyset$.
(c) [10 points] Prove that there exist some $a_{1}, \ldots, a_{k} \in G$ such that
$$
\left(a_{1} H, \ldots, a_{k} H\right)
$$
is a partition of G, that is, such that $G=a_{1} H \cup \cdots \cup a_{k} H$ and such that $a_{1} H, \ldots, a_{k} H$ are pairwise disjoint.
(d) 15 points] Prove that for all $a \in G$, we have that $|a H|=|H|$, that is, $a H$ and H have the same number of elements.

Hint: Create a bijection from H to aH (and prove that it really is a bijection).
(e) $[5$ points] Using the previous parts, prove that $|H|||G|$, that is, that $| G \mid$ is divisible by $|H|$.

Remark: In each part, you may rely on the previous parts, even if you did not prove those previous parts (or you proved them incorrectly).

[^0]: ${ }^{1}$ An even cycle is a cycle that contains an even number of elements, and an odd cycle is a cycle that contain an odd number of elements. For example, the permutation $(1)(27)(39)(4568)$ in S_{9} has three even cycles (and one odd cycle).
 ${ }^{2}$ This means that $|G|$ is finite, i.e. G has only finitely many elements.

