Linear Algebra 1: HW\#4

Denys Bulavka \& Irena Penev
Winter 2023/2024

due Friday, November 17, 2023, at noon (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.) Other formats will not be accepted. Please write your name on top of the first page of your HW.

Problem 1 (20 points). Use induction to prove Proposition 1.10.1 from the Lecture Notes. For convenience, this proposition is stated below.

Proposition 1.10.1 Let \mathbb{F} be a field, ${ }^{1}$ and let $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ be a linear function. Then for all vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathbb{F}^{m}$ and all scalars $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$, we have that

$$
f\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{k} \alpha_{i} f\left(\mathbf{v}_{i}\right),
$$

or, written in another way, that

$$
f\left(\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{k} \mathbf{v}_{k}\right)=\alpha_{1} f\left(\mathbf{v}_{1}\right)+\cdots+\alpha_{k} f\left(\mathbf{v}_{k}\right)
$$

Problem 2 (20 points). Let \mathbb{F} be a field, and let $A, B \in \mathbb{F}^{n \times n}$. Assume that A is invertible and that $A B=I_{n}$. Prove that $A^{-1}=B$.

Remark: Here, you are asked to prove the part of Proposition 1.11.3 from the Lecture Notes that was left as an exercise.

Problem 3 (20 points). Consider the following two matrices, with entries understood to be in \mathbb{R}.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 2 \\
-1 & -2
\end{array}\right]
$$

For each of these two matrices, either express it as a product of elementary matrices, ${ }^{2}$ or explain why this is not possible.

[^0]Problem 4 (20 points). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear functions whose standard matrices are

$$
A_{f}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3 \\
3 & 4
\end{array}\right] \quad \text { and } \quad A_{g}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 2 & 0
\end{array}\right]
$$

respectively.
(a) Compute the standard matrix of $f \circ g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Determine whether $f \circ g$ is an isomorphism, and if so, compute its standard matrix the standard matrix of $(f \circ g)^{-1}$.
(b) Compute the standard matrix of $g \circ f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Determine whether $g \circ f$ is an isomorphism, and if so, compute its standard matrix the standard matrix of $(g \circ f)^{-1}$.

Problem 5 (20 points). Prove or disprove the following statement: "For all matrices $A, B \in \mathbb{R}^{2 \times 2}$, if the matrix equation $X A=B$ has a unique solution, then that solution is an invertible matrix."

Remark: First, state clearly whether the statement is true or false. If it is true, then prove it. If it is false, then construct a counterexample (and prove that your counterexample really is a counterexample).

[^0]: ${ }^{1}$ For now, you may assume that \mathbb{F} is $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or \mathbb{Z}_{p} (for some prime number p).
 ${ }^{2}$ Note: There may be more than one correct answer.

