Linear Algebra 1: HW#2

Denys Bulavka & Irena Penev Winter 2023/2024

due Friday, October 27, 2023, at noon (Prague time)

Submit your HW through the **Postal Owl** as a **PDF attachment**. Make sure your submission is **printable**: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use LATEX.) Other formats will **not** be accepted. Please write your **name** on top of the first page of your HW.

Remark: All the problems below should be solved using **induction**. Solutions that do not use induction will receive no credit.

Problem 1 (25 points). Let $A \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$. Assume that the matrix-vector equation $A\mathbf{x} = \mathbf{b}$ is consistent, and let \mathbf{x}_0 be some solution of the equation $A\mathbf{x} = \mathbf{b}$. Prove that the solution set of the equation $A\mathbf{x} = \mathbf{b}$ is precisely the set $S := {\mathbf{y} + \mathbf{x}_0 \mid \mathbf{y} \in \mathbb{R}^m, A\mathbf{y} = \mathbf{0}}.$ ¹

Remark#1: Actually, this is true for general fields \mathbb{F} , not just for \mathbb{R} (and in fact, the proof is the same for general fields \mathbb{F} as for \mathbb{R}). However, for the sake of simplicity, you are only asked to prove this for \mathbb{R} .

Remark#2/Hint: Essentially, you are asked to prove that, if the matrix-vector equation $A\mathbf{x} = \mathbf{b}$ is consistent, and \mathbf{x}_0 is an arbitrarily chosen solution of $A\mathbf{x} = \mathbf{b}$, then the solution set of $A\mathbf{x} = \mathbf{b}$ is obtained by "shifting" the solution set of the homogeneous matrix-vector equation $A\mathbf{x} = \mathbf{0}$ by \mathbf{x}_0 . Note that you must prove two things:

- 1. if $\mathbf{y} \in \mathbb{R}^m$ is a solution of the homogeneous matrix-vector equation $A\mathbf{x} = \mathbf{0}$, then $\mathbf{y} + \mathbf{x}_0$ is a solution of $A\mathbf{x} = \mathbf{b}$;
- 2. any solution of the matrix-vector equation $A\mathbf{x} = \mathbf{b}$ can be expressed in the form $\mathbf{y} + \mathbf{x}_0$, for some solution \mathbf{y} of the homogeneous matrix-vector equation $A\mathbf{x} = \mathbf{0}$.

¹Here, **0** is the zero vector in \mathbb{R}^n .

Problem 2 (25 points). Solve the linear system below, where k is some fixed constant. (The coefficients are assumed to be in \mathbb{R} .)

x_1	+	$2x_2$	_	$3x_3$	+	$2x_4$	=	-4
$2x_1$	+	$5x_2$			+	$5x_4$	=	-3
$2x_1$	+	$4x_2$	+	$(k^2 - 5k)x_3$	+	$(k+2)x_4$	=	k - 11

Remark: Your solutions will depend on k. In fact, the **number** of solutions will also depend on k. You will need to figure out for which (if any) k the system has no solutions, for which (if any) it has a unique solution, and for which (if any) it has infinitely many solutions. If the system is consistent, make sure you specify the solutions!

Problem 3 (25 points). Let a and b be real constants. For what values of the real constant c is the vector $\begin{bmatrix} 1 \\ c \\ c^2 \end{bmatrix}$ a linear combination of the vectors $\begin{bmatrix} 1 \\ a \\ a^2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ b \\ b^2 \end{bmatrix}$? Make sure you prove that your answer is correct.

Problem 4 (25 points). Consider the following vectors in \mathbb{Z}_3^4 :

$$\mathbf{a}_{1} = \begin{bmatrix} 2\\2\\1\\1 \end{bmatrix}, \quad \mathbf{a}_{2} = \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix}, \quad \mathbf{a}_{3} = \begin{bmatrix} 0\\1\\2\\1 \end{bmatrix}, \quad \mathbf{a}_{4} = \begin{bmatrix} 2\\0\\0\\2 \end{bmatrix},$$
$$\mathbf{b} = \begin{bmatrix} 2\\1\\2\\1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 2\\1\\2\\0 \end{bmatrix}, \quad \mathbf{d} = \begin{bmatrix} 0\\2\\1\\2 \end{bmatrix}, \quad \mathbf{e} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}.$$

For each of the vectors $\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$, determine if it can be expressed as a linear combination of the vectors $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ (that is, if it belongs to $Span(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$), and if so, express it as such a linear combination, and explain whether your answer is unique.

Hint: Imitate the solutions of Examples 1.5.5 and 1.5.6 from the Lecture Notes.