# Linear Algebra 1: HW\#2 

Denys Bulavka \& Irena Penev<br>Winter 2023/2024

due Friday, October 27, 2023, at noon (Prague time)

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$.) Other formats will not be accepted. Please write your name on top of the first page of your HW.

Remark: All the problems below should be solved using induction. Solutions that do not use induction will receive no credit.

Problem 1 (25 points). Let $A \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^{n}$. Assume that the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ is consistent, and let $\mathbf{x}_{0}$ be some solution of the equation $A \mathbf{x}=\mathbf{b}$. Prove that the solution set of the equation $A \mathbf{x}=\mathbf{b}$ is precisely the set $S:=\left\{\mathbf{y}+\mathbf{x}_{0} \mid \mathbf{y} \in \mathbb{R}^{m}, A \mathbf{y}=\mathbf{0}\right\} .{ }^{1}$

Remark\#1: Actually, this is true for general fields $\mathbb{F}$, not just for $\mathbb{R}$ (and in fact, the proof is the same for general fields $\mathbb{F}$ as for $\mathbb{R}$ ). However, for the sake of simplicity, you are only asked to prove this for $\mathbb{R}$.

Remark\#2/Hint: Essentially, you are asked to prove that, if the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ is consistent, and $\mathbf{x}_{0}$ is an arbitrarily chosen solution of $A \mathbf{x}=\mathbf{b}$, then the solution set of $A \mathbf{x}=\mathbf{b}$ is obtained by "shifting" the solution set of the homogeneous matrix-vector equation $A \mathbf{x}=\mathbf{0}$ by $\mathbf{x}_{0}$. Note that you must prove two things:

1. if $\mathbf{y} \in \mathbb{R}^{m}$ is a solution of the homogeneous matrix-vector equation $A \mathbf{x}=\mathbf{0}$, then $\mathbf{y}+\mathbf{x}_{0}$ is a solution of $A \mathbf{x}=\mathbf{b}$;
2. any solution of the matrix-vector equation $A \mathbf{x}=\mathbf{b}$ can be expressed in the form $\mathbf{y}+\mathbf{x}_{0}$, for some solution $\mathbf{y}$ of the homogeneous matrix-vector equation $A \mathbf{x}=\mathbf{0}$.
[^0]Problem 2 (25 points). Solve the linear system below, where $k$ is some fixed constant. (The coefficients are assumed to be in $\mathbb{R}$.)

$$
\left.\begin{array}{rlrlrlr}
x_{1} & + & 2 x_{2} & - & 3 x_{3} & + & 2 x_{4}
\end{array}\right)
$$

Remark: Your solutions will depend on $k$. In fact, the number of solutions will also depend on $k$. You will need to figure out for which (if any) $k$ the system has no solutions, for which (if any) it has a unique solution, and for which (if any) it has infinitely many solutions. If the system is consistent, make sure you specify the solutions!

Problem 3 (25 points). Let $a$ and $b$ be real constants. For what values of the real constant $c$ is the vector $\left[\begin{array}{c}1 \\ c \\ c^{2}\end{array}\right]$ a linear combination of the vectors $\left[\begin{array}{c}1 \\ a \\ a^{2}\end{array}\right]$ and $\left[\begin{array}{c}1 \\ b \\ b^{2}\end{array}\right]$ ? Make sure you prove that your answer is correct.

Problem 4 ( 25 points). Consider the following vectors in $\mathbb{Z}_{3}^{4}$ :

$$
\begin{aligned}
& \mathbf{a}_{1}=\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
1
\end{array}\right], \quad \mathbf{a}_{4}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right], \\
& \mathbf{b}=\left[\begin{array}{l}
2 \\
1 \\
2 \\
1
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
2 \\
1 \\
2 \\
0
\end{array}\right], \quad \mathbf{d}=\left[\begin{array}{l}
0 \\
2 \\
1 \\
2
\end{array}\right], \quad \mathbf{e}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

For each of the vectors $\mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}$, determine if it can be expressed as a linear combination of the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}$ (that is, if it belongs to $\operatorname{Span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right)$ ), and if so, express it as such a linear combination, and explain whether your answer is unique.

Hint: Imitate the solutions of Examples 1.5.5 and 1.5.6 from the Lecture Notes.


[^0]:    ${ }^{1}$ Here, $\mathbf{0}$ is the zero vector in $\mathbb{R}^{n}$.

