Linear Algebra 1: HW\#1

Denys Bulavka \& Irena Penev
Winter 2023/2024

due Friday, October 13, 2023, at noon (Prague time)

Abstract

Submit your HW through the Postal Owl as a PDF attachment. Make sure your submission is printable: it should be A4 or letter size, and written in dark ink/pencil (blue, black...) on a light (white, beige...) background. (Of course, you may also type, especially if you know how to use $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.) Other formats will not be accepted. Please write your name on top of the first page of your HW.

Remark: All the problems below should be solved using induction. Solutions that do not use induction will receive no credit.

Problem 1 (25 points). Compute the last two digits of the number 2035^{2045} (and prove that your answer is correct).

Problem 2 (25 points). Prove that the number $2^{n+1}+3^{2 n-1}$ is divisible by 7 for all positive integers n.

Problem 3 (25 points). Prove that for all real numbers a_{1}, \ldots, a_{n} such that $0 \leq a_{1}, \ldots, a_{n}<1$, we have that

$$
\left(1-a_{1}\right)\left(1-a_{2}\right) \ldots\left(1-a_{n}\right) \geq 1-a_{1}-a_{2}-\cdots-a_{n} .
$$

Problem 4 (25 points). Prove that every positive integer has a binary representation. More precisely, prove that for any positive integer n, there exists a sequence a_{0}, \ldots, a_{k} of 0 's and 1 's, with $a_{k}=1$, such that

$$
n=\sum_{i=0}^{k} a_{i} \cdot 2^{i}
$$

(so, $\overline{a_{k} a_{k-1} \ldots a_{0}}$ is the binary representation of n). You may use the fact that for any positive integer n, there exists a non-negative integer ℓ such that $2^{\ell} \leq n<2^{\ell+1}$.

