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1 Systems of linear equations

A linear equation in the variables x1,...,%,, is an equation that can be
written in the form

aix1+ -+ amrm = b7

where b and the coefficients a1, ..., a, are elements of some “field.” We have
not studied fields yet, but here are some examples of fields (these are the
fields that we will use in our examples):

1. the field of real numbers R;
2. the field of complex numbers C;
3. the field Z,, where p is a prime number.

Fields always come equipped with two operations: addition and multiplication.
Importantly, the numbers aq, ..., an, b must all come from the same field.
For example, the equation

1 —3(xg —x1) = Trz—4,

with coefficients understood to be in R, is a linear equation because it can
be algebraically rearranged to have the following form:

4(131 — 3332 — 7333 = —4,

which is obviously a linear equation.
On the other hand, equations

x‘{f—l—mg = 17 and T1—+/Toa = 5

: 3
are not linear because of x7 and /3.
A system of linear equations, or a linear system, is a collection of one
of more linear equations involving the same variables, say z1, ..., %, (and



with coefficients coming from the same field). For example, the following is
a linear system (here, the coefficients are assumed to be in R):!

2ry +  Txo — qmy = —V/3
—3x9 + 17x3 — 3xy4 = 2
r1 + To — 2x3 + Txy = %

A solution of a linear system in variables x1, ..., 2, is a list s1,..., 8 of
numbers (from the same field as the coefficients of the system) such that make
each equation becomes a true statement when sq,...,s,, are substituted for
T1,...,Tm, respectively.

Example 1.1. Consider the linear system

r1 + 239 — xr3 = 9
209 + 3x3 = 16
1 + a2 — x3 = 4

with coefficients in R. Then
r1 = 1
Tro = 5
r3 = 2
s a solution of the system above.
Example 1.2. Consider the linear system

ry, + x9o = 0
201 + xo = 1

with coefficients in Zs. Then

g = 1
Tro =

is a solution of the system above.

The set of solutions or solution set of a linear system is the set of all
solutions of that system. Our goal is to describe a procedure for finding the
solution set of any linear system.

A linear system may have no solutions, one solution, or more than one
solution. A system that has at least one solution is called consistent; a
system that has no solutions is inconsistent.

!Typographically, we normally arrange equations in our system so that the terms
involving the same variable are in the same column.



Consider, for instance, a system of two linear equations in two variables,
with coefficients in R:

a11r1 + apri = b
asxry + axpry = b

Each of the two equations defines a line in the plane. There are three
possibilities for these two lines:

1. the two lines may intersect in one point (in this case, the system has a
unique solution, and in particular, it is consistent);

o anTy + apre = by

Zy

an Ty + agnty = by

2. the two lines may be distinct, parallel lines (in this case, the system
has no solutions, i.e. it is inconsistent);

T a1y + a1axs = by

a9 Ty + ATy = by

ot

3. the two lines may be identical (in this case, the system has infinitely
many solutions, and in particular, the system is consistent).?

anxy + aare = by
911 + a0 = by

2Note that the two lines may be identical even if the two equations are different. For
instance, x1 + x2 = 1 and 2x1 + 2z2 = 2 define the same line.



On the other hand, suppose we have a system of two linear equations in
three variables (with coefficients in R).

anry + appr; + aizrs = b
anxy + axr; + agrs = b

Each of those equations defines a plane in the three-dimensional Euclidean
space. Those two planes may intersect in line (in which case the system has
infinitely many solutions, and in particular, the system is consistent); or the
two planes may be distinct and parallel (in which case, the system has no
solutions, i.e. it is inconsistent); or the two planes may be identical (in which
case the system has infinitely many solutions, and in particular, the system
is consistent).

2 Matrices

A matriz is a rectangular array of numbers. An n x m matriz (read “n by
m matrix”) is a matrix with n rows and m columns. Consider, for example,
the following matrices.

3 1 3 3 2
A:[igi] B = 2 5 Cc = 1 -1 -5
10 -2 2 3

Ais a 2 x 3 matrix, B is a 3 x 2 matrix, and C is a 3 x 3 matrix. A square
matriz is one that has the same number of rows and columns. So, C'is a
square matrix, but A and B are not square matrices.

2.1 The augmented matrix and the coefficient matrix of a
linear system

The information from a linear system can be recorded in a matrix called
the augmented matriz as follows. Suppose we are given a system of n linear
equations in m variables, as follows.

ai1x1 + apry + ... + aimTm = b
a1 r1 + axry + ... + agpT,m = b
an1T1 + ap2r2 + ...+ AT, = by

This system can be fully “encoded” in an n x (m + 1) matrix, called its
augmented matriz, as follows:

ai; a2 ... aum by
|

asr a2 ... aom, | bz
o

;o

an1 An2 - .. anmlbn



The dotted vertical line is optional, but visually, it helps separate the coeffi-
cients to the left of the equality sign from the numbers to the right of the
equality sign.

Example 2.1. Find the augmented matriz of following linear system (with
coefficients in R):

3r1 + 220 4+ bxgz = 7
3372— 1‘3:0

Solution.

O]

Example 2.2. Find the augmented matrix of the following linear system
(with coefficients in Zs):

201 +x3+2 = 22
T2 +r3 = 21

Solution. We first algebraically rearrange the system above to get it into

standard form:3
201 + 229 + x3 = 1

x1 + 22 + z3 = 0

We can now read the augmented matrix of the system:

2 2 1,1
1110

3 Elementary row operations

Two linear systems (with the same variables) are equivalent if they gave
exactly the same solution set. Now, suppose we are given a system of linear

3Remember: We are working in Zjz! We manipulated the first equation as follows.

1. First, we added 2z2 to both sides of the equation to obtain 2z; 4+ 2x2 + 3 + 2 = 0.
e We are using the fact that z2 + 2z2 = (1 4 2)z2 = 0z2 = 0.

2. Then, we added 1 to both sides of the equation to obtain 2z; 4+ 2z2 + x3 = 1.
e We are using the fact that 2+ 1 = 0.

We manipulated the second equation by adding 1 to both sides to obtain x1 + 22 + 23 = 0.
(We used the fact that 221 + 22 = (24 1)z2 = 0z2 =0.)



equations.

a11r1 + apry + ... + aimTm = b
anxi + axnrs + ... + awnTm = b
ani®1 + aprys + ... + GumTm = by

We would like to manipulate this system in a way that allows us to “read
off” the solution set of the system. There are three basic ways that we can
manipulate the system in a way that does not change the solution set (i.e. in
a way that produces an equivalent linear system). These are the following.

1. Swap two equations.

e For example, we can swap the first and third equation in the
system on the left to obtain the one on the right.

1 + 3x9 203 = -1 Ty + x9 + 2x3 = 2
Loy + 223 = 0 —  in + 223 = 0
T + x99 + 223 = 2 r1 + 3x9 — 223 = -1

2. Multiply one equation by a non-zero scalar.?

e For example, we can multiply the second equation by 2:

1 + x99 + 2x3 = 2 1 + x99 + 2x3 = 2
L3l + 223 = 0 — a1 + dzz3 = 0
Ty + 3x9 — 223 = -1 Ty + 3x9 — 223 = -1

3. Add a scalar multiple of some equation to another equation.’

e For example, we can add (—1) times the second equation to the
third equation:

rT + x9 4+ 2x3 = 2 Ty + x9 + 2x3 = 2
X + 4dxz3 = 0 — €1 + 4dxs = 0
r1 + 3xrs — 2x3 = -1 3rs — 6xz3 = -1

Instead of manipulating systems of linear equations in this way, we can
manipulate augmented matrices. There are three types of “elementary row
operations,” as follows.

1. Swap two rows.

4The scalar is supposed to be from the same field as the coefficients of the linear system.
5The scalar is supposed to be from the same field as the coefficients of the linear system.



e For example, we can swap the first and third row in the matrix
on the left to obtain the matrix on the right.

13 —2,-1 11 2 2
1o 2 0 g fis 1o 2 0
11 21 2 13 —21-1

2. Multiply one row by a non-zero scalar.’

e For instance, we can multiply the second row by 2.

112 2 11 2 2
1o 2 0 fra 221 10 4! 0
13 —21-1 13 —21-1

3. Add a scalar multiple of some row to another row.”

e For example, we can add (—1) times the second row to the third

Trow:
11 2 2 11 2 2
10 40 fla=flg—fiz 10 4! 0
13 —21-1 03 —61—1

If one matrix can be obtained from another via some (possibly null) sequence
of elementary row operations, then the two matrices are row equivalent. If
matrices A and B are row equivalent, then we write A ~ B. It is easy to see
that row equivalence is an equivalence class (on the set of matrices of the
same size, with entries from the same field), that is, that the following hold:

e A~ A
e if A~ B, then B~ A
e if A~ Band B~ C, then A~ C.

Clearly, if two matrices are row equivalent, then they encode equivalent linear
Systems.

4 Row reduction

A zero row of a matrix is a row in which all entries are zero. A non-zero row
of a matrix is a row that has at least one non-zero entry. The leading entry
of a non-zero row of a matrix is the left-most non-zero entry of that row.

A matrix is in row echelon form (or simply echelon form), abbreviated
REF, if it satisfies the following two conditions:

5The scalar is supposed to be from the same field as the entries of the matrix.
"The scalar is supposed to be from the same field as the entries of the matrix.



1. all non-zero rows are above any zero rows;

2. each leading entry of a row is in a column strictly to the right of the
leading entry of the row above it.®

If, in addition, the matrix satisfies the following two conditions, then it is
in reduced row echelon form (or simply reduced echelon form), abbreviated
RREF:

3. the leading entry in each non-zero row is 1;
4. each leading 1 is the only non-zero entry in its column.

Schematically, a matrix in row echelon form looks like this (here, B
represents a non-zero number, and * represents any number):

oo oo oo
oo oo o
OO OO O ¥
cooco <o BB *
co o B *x ¥
O OO ¥ * ¥
OO O ¥ ¥ ¥
oo B ¥ ¥ %
O O % * Kk ¥
O O % * Kk ¥

Schematically, a matrix in reduced echelon form looks like this (* represents
any number):

(sl en B en e B el @]
S o= O OO
O % X X ¥

S OO O O
OO OO O *
OO OO = O
[N ool =]
O DO O ¥ *x ¥
O O O ¥ *x ¥
S O ¥ X ¥ ¥

Theorem 4.1. Every matriz (with entries in some field F) is row equivalent
to a unique matriz in reduced row echelon form.

Proof. Omitted. O

Notation: For a matrix A, we denote by RREF(A) the unique matrix
in reduced row echelon form that is row equivalent to A. As we shall see, if
a matrix is in reduced row echelon form, then it is particularly easy to “read
off” the solution set of the linear system that it encodes (as an augmented
matrix).

We begin with a definition. A pivot column of a matrix in reduced echelon
form is any column that contains a leading 1 of some row; a pivot position
of a matrix in reduced row echelon form is the position of a leading 1. The

8S0, all entries in a column below a leading entry are zeros.



matrix below is in reduced echelon form. Its pivot positions are boxed. The
pivot columns (four of them) are the ones with the boxed entries.

co o o %
ooooHo
oooHoo
oo o % % %
O O ¥ ¥ ¥
O ¥ ¥ ¥ ¥
O ¥ ¥ ¥ ¥

oooooH
ooHooo

OO O O O O

0 0 0 0

The pivot columns of any matrix A are the columns that correspond
to the pivot columns of RREF(A). Similarly, the pivot positions of A are
the positions of A that correspond to the pivot positions of RREF(A). For
example, if A is any matrix that is row equivalent to the matrix shown right
above, then the pivot columns of A are the second, fourth, fifth, and eighth
column of A. The pivot positions of such a matrix A are the ones that
correspond to the boxed 1’s above.

Remark: While each matrix A is row equivalent to exactly one matrix
in reduced row echelon form, A may be row equivalent to many (possibly,
infinitely many) matrices in row echelon form. However, all such matrices
(i.e. all matrices in row echelon form that A is row equivalent to) have the
same “shape,” in the sense that, when the matrix is represented with symbols
B, x, and 0 (as explaned in the definition of a matrix in row echelon form),
we get the same picture.

4.1 The row reduction algorithm

We now describe an algorithm that transforms any matrix into a row-
equivalent matrix that is in row echelon form. The algorithm has two
parts: the “forward phase” and the “backward phase.” The forward phase
transforms the matrix into one in row echelon form. The backward phase
transforms a matrix in row echelon form into one in reduced echelon form.
The forward phase of the row reduction algorithm is also called “Gaussian
elimination.” The entire row reduction algorithm (with both the forward
and the backward phase) is also called the “Gauss-Jordan elimination.” The
algorithm is as follows.

Forward phase:

1. Begin with the leftmost nonzero column. This is a pivot column. The
pivot position is at the top.

2. Select a nonzero entry in the pivot column as a pivot. If necessary,
interchange rows to move this entry into the pivot position.



3. Use row addition operations to create zeros in all positions below the
pivot.

4. Cover (or ignore) the row containing the pivot position and cover all
rows, if any, above it. Apply steps 1-3 to the submatrix that remains.
Repeat the process until there are no more nonzero rows to modify.

Backward phase:

5. Beginning with the rightmost pivot and working upward and to the
left, create zeros above each pivot. If a pivot is not 1, make it 1 by a
scaling operation.

A couple of implementations (examples) of the row reduction algorithm
are shown below. In each case, we first apply the forward phase, and then
the backward phase. In the forward phase, we use a horizontal dotted line
as a visual aid: it separates the rows that have already been processed
(those are the ones above the dotted line) from the ones that have not yet
been processed (those are the ones below the dotted line). Numbers in red
designate the pivot column we have identified (as per step 1 or step 5) and
are currently processing.

Example 4.2. Apply the row reduction algorithm to the matriz A below
(with entries understood to be in R) in order to transform it into a matriz in
reduced row echelon form.

0 3 -6 6 4 -5
A = 3 =7 8 =5 8 9
3 -9 12 -9 6 15

Solution. We first apply the forward phase of the algorithm in order to
transform the matrix into one in row echelon form, as follows.

[0 3 -6 6 4 —5
A = 3 =7 8 =5 8 9
3 =9 12 -9 6 15 |

[3 =9 12 -9 6 15

R s 3 -7 8 -5 8 9
0 3 -6 6 4 —5
(3 -9 12 -9 6 15

I N R S R R T
(0 3 -6 6 4 -5
3 -9 12 -9 6 15

R3—R3—2R

SRR g 9 4 4 2 —6




The forward part of our row reduction algorithm is now complete: our matrix
is in row echelon form. It remains to complete the backward part, in order
to transform the matrix into one in reduced row echelon form.

3 -9 12 -9 6 15
A ~ 0 2 -4 4 2 -6
0o o o0 01 4

by the above
(forward part)

Ry—R1—6R3 3 -9 12 -9 0 -9
B2 Ra—2Rs —4 4 0 —14
0 0 0 01 4

o
[\

3 -9 12 -9 0 -9

R 5 Fe 0 1 -2 20 -7
0 0 0 01 4
(30 -6 9 0 —72

e I R B —7
00 001 4]
(1 0 -2 3 0 —247

R sh 01 -2 20 -7
00 001 4]

The backward part of row reduction is now complete: our matrix is in reduced
row echelon form. Thus,

10 -230 —24
RREF(A) = |0 1 -2 2 0 -7
00 001 4

O

Example 4.3. Apply the row reduction algorithm to the matriz B below
(with entries understood to be in Zs3) in order to transform it into a matriz
in reduced row echelon form.

0110 2
21011
B = 21111
1 0 2 21

Solution. We first apply the forward phase of the algorithm in order to

11



transform the matrix into one in row echelon form, as follows.

01 1 0 2

21 0 11

B o 21 1 11
|10 2 2 1|

(1 0 2 2 17

Ri<R4 21 0 11
21 1 11
00110 2]

o, L0022 1]
Reomiimy | 0 1 2 0 2
01 0 0 2

(01 10 2]

I (1 0 2 2 17
miompem | 012 0 2
00 1 0O

100 20 0]

(1 0 2 2 17

Ri—Ra+Rs 01 2 0 2
00100
10000 0]

The forward part of our row reduction algorithm is now complete: our matrix
is in row echelon form. It remains to complete the backward part, in order
to transform the matrix into one in reduced row echelon form.

1 0 2 2 1
B N 01 2 0 2 by the above
001 00 (forward part)
0000 0]
R (1 0 0 2 17
Ry—Ry+Rj 01 0 0 2
- 00100
0000 0]

The backward part of row reduction is now complete: our matrix is in reduced

12



row echelon form. Thus,

RREF(B) =

o O O
O O = O
o = O O
O O O N
O O N

5 Solving linear systems

To find the solution set of a linear system, we proceed as follows. First, we
form the augmented matrix of our linear system, and using row reduction, we
find the reduced row echelon form of that matrix. Then, we “translate” this
matrix (in reduced row echelon form) into the linear system that it encodes.
The linear system that we obtain is equivalent to the one that we started
with, that is, the two systems have the same solution set. We now read off
the solution set as follows.

1. If the last column of the augmented matrix (the one behind the dotted
vertical line) is a pivot column, then the system is inconsistent, i.e. it
has no solutions.

e For example, suppose that by row reduction, we obtained the
following matrix (say, with coefficients in R).

This matrix encodes the following linear system:

I — r3 = 0
xo + bdrg = 0

0 =1

0 =0

Because of the equation “0 = 1,” the system is inconsistent (i.e.
it has no solutions).

2. If the last column of the augmented matrix (the one behind the dotted
vertical line) is not a pivot column, but all the other columns are pivot
columns, then the system has a unique solution.

13



e For example, suppose that by row reduction, we obtained the
following matrix (say, with coefficients in R).

This matrix encodes the following linear system:

T = -5

3
0 =

I
o wo

This system is consistent and has a unique solution, which we can
immediately read off, as follows.

rT = -5
ro = 0
r3 = 3

3. If the last column of the augmented matrix (the one behind the dotted
vertical line) is not a pivot column, and at least one of the other
columns is also not a pivot column, then the system has more than
one solution, which we read off as follows. The variables corresponding
the non-pivot columns (we call these variables free variables) may
take any value; these values (parameters) are denotes by letters such
as r, s,t. The variables corresponding to the pivot columns are not free,
and we express them in terms of our parameters. This form of solution
is called the parametric form of the solution.

e For example, suppose that by row reduction, we obtained the
following matrix (say, with coefficients in R).

120 56, 0
001 -1 7!-3
000 00" 0

This matrix encodes the following linear system:

1 + 2x + bxy + 6bx5 = 0
r3 — x4 + Txs = -3
0 = 0

The system is consistent and has more than one solution. The
variables variables xg9, x4, x5 are free (because the pivot columns

14



of the augmented matrix are columns 2,4,5). The remaining
variables are not free. We now read off the solutions as follows:

ry = —2r—5Hs—6t

Tro9g = T

T3 = s—Tt—3

T4 = S

rs = t where r,s,t € R

Remark: Do not forget to specify which field your parameters
come from! Here, we have “r,s,t € R” because the coefficients of
our system were in R.

Example 5.1. Find the solution set of the following system of linear equa-
tions (with coefficients in R).

3ty — 6xz3 + 6x4 + 4z = -5
3rv1 — Tx9 + 8x3 — bdry + 8xy = 9
3r1 — 9x9 + 1223 — 9z4 + 65 = 15

Solution. The augmented matrix of this linear system is the matrix A below.
0 3 -6 6 4,5
A = 3 -7 8 -5 8 : 9
3 =9 12 -9 6' 15
But this is precisely the matrix from Example 4.2. The reduced row echelon
form of this matrix is

10 -23 0 —24
RREF(A) = [0 1 -2 2 0! —7
00 00 1! 4
RREF(A) encodes the linear system below.
T — 2x3 + 314 = =24
To — 2x3 + 2x4 = —7
T5 = 4

This system is consistent and has two free variables (namely, z3 and x4). We
read off the solutions as follows:

r; = 28—3t—24

To = 28—2t—7

r3 = S

g = t

r5s = 4 where s,t € R

15



Example 5.2. Find the solution set of the following system of linear equa-
tions (with coefficients in Zs).

xro + X3 2
2x1 4+ w9 + x4 =1
2r17 + x2 + x3 + wxy = 1

T + 223 + 2z4 = 1

Solution. The augmented matrix of this linear system is the matrix B below.

_= NN O
O = =
N = O =

But this is precisely the matrix from Example 4.3. The reduced row echelon
form of this matrix is

100 2,1
01 0 0'2
RREF(B) = | o 1 !0
000 0'0
RREF(B) encodes the linear system below.
T + 224 = 1
T = 2
I3 = 0
0 0

This system is consistent and has one free variable (namely, z4). We read off
the solutions as follows:

rg = t+1

To = 2

r3 = 0

ry = t where t € Zg

Remark: To get x1, we computed z1 = —2x4+1 =24+ 1 =1+ 1, where
we used the fact that —2 =1 (mod 3). O

5.1 Specifying the number of solutions

An inconsistent linear system has zero solutions. A consistent system may
have a unique solution (i.e. exactly one solution), or it may have more than
one solution. A consistent system has more than one solution if, at the end
of our calculation, we get at least one free variable. Each free variable can

16



take an arbitrary value from the field in question. So, if our coefficients are
in R or C, and the system is consistent with at least one free variable, then
the system has infinitely many solutions. If the coefficients are in Z, for
some prime number p, and our linear system is consistent with exactly k free
variables, then the number of solutions is precisely p*.

For instance, the system from Example 5.1 has infinitely many solutions.
On the other hand, the system from Example 5.2 has three solutions (one
for each of the three possible values of t).
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