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Preface

This manuscript is based on a set of lecture notes that I prepared and
used for teaching Combinatorics and Graph Theory 1 & 2 at the Faculty
of Mathematics and Physics, Charles University, during the academic years
2020/21 and 2021/22. The first eight chapters cover the material from the
first semester (Combinatorics and Graph Theory 1), and the remaining eleven
chapters cover the material from the second semester (Combinatorics and
Graph Theory 2). The main prerequisite for this two-semester sequence is
the successful completion of the Discrete Mathematics course (in particular,
familiarity with basic graph theory is assumed). Moreover, some chapters
assume familiarity with Mathematical Analysis and Linear Algebra. Proofs
that appear in this manuscript were taken (often with modification) from a
number of texts, listed in the bibliography. However, any errors that remain
are mine alone. It is my hope that this manuscript will be of use to the
students taking these two courses in the future, as well as to the instructors
teaching them.

September 2022 Irena Penev
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Chapter 1. Asymptotic notation. Estimates of factorials and binomial
coefficients 1

Chapter 1

Asymptotic notation.
Estimates of factorials and
binomial coefficients

1.1 Asymptotic notation

We often need to make statements such as that, for example, the function n2

is “greater” than the function 1000n, and “roughly the same” as the function
n2 + n

√
n. Let us try to formalize this.

Given functions f, g : N → R (in practice, we generally assume that f, g
are positive-valued), notation

f(n) = O(g(n))

means that there exist constants n0 ∈ N and C ∈ R such that for all n ∈ N,
if n ≥ n0, then

|f(n)| ≤ Cg(n).

This is illustrated in Figure 1.1.

Example 1.1.1.

1. 10n2 + 5 = O(n2);

2. lnn+ 5 = O(log n);

3. lnn+ 5 = O(n);

4. n
√
n = O(n2).
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g(n)

Cg(n)

f (n)

n0

Figure 1.1: f(n) = O(g(n)).

There are several other often-used kinds of notation, summarized below.

Notation Definition

f(n) = O(g(n)) ∃n0 ∈ N, C ∈ R s.t. ∀n ∈ N,
if n ≥ n0 then |f(n)| ≤ Cg(n)

f(n) = o(g(n)) lim
n→∞

f(n)
g(n) = 0

f(n) = Ω(g(n)) g(n) = O(f(n))

f(n) = Θ(g(n)) f(n) = O(g(n)) and f(n) = Ω(g(n))

f(n) ∼ g(n) lim
n→∞

f(n)
g(n) = 1

Note that f(n) = Θ(g(n)) is not the same as f(n) ∼ g(n). For instance,
2n2 = Θ(n2), but 2n2 ̸∼ n2.

Example 1.1.2.

1. 12n2 + n = O(n2)

2. n = o(n2)

3. 1
12n

3 = Ω(n2)
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4. 1
12n

2 = Θ(n2)

5. 5n2 + n ∼ 5n2 + log n

Further f(n) = g(n) +O(h(n)) means that f(n)− g(n) = O(h(n)). For
example, n4 + 3n2 = n4 + O(n2) because 3n2 = O(n2). We use similar
notation for the symbols o, Ω, and Θ from the table above.

Here is some more commonly used notation.

Notation Meaning

O(1) constant (or bounded above by a constant)

O(log n) logarithmic (or sublogarithmic)

O(n) linear (or sublinear)

O(n2) quadratic (or subquadratic)

O(n3) cubic (or subcubic)

nO(1) polynomial (or subpolynomial)

2O(n) exponential (or subexponential)

1.2 Estimating factorials

For a positive integer n, we define n! (read “n factorial”) to be

n! := n · (n− 1) · (n− 2) · · · · · 2 · 1.

Furthermore, as a convention, we set 0! = 1.
n! is the number of ways that n distinct objects can be arranged in a

sequence: there are n choices for the first term of the sequence, n− 1 choices
for the second, n− 2 for the third, etc. For instance, there are 3! = 6 ways
to arrange the elements of the set {a, b, c} in a sequence, namely:

(1) a, b, c

(2) a, c, b

(3) b, a, c

(4) b, c, a

(5) c, a, b

(6) c, b, a

For small values of n, computing n! is quite straightforward:

� 0! = 1

� 1! = 1

� 2! = 2 · 1 = 2

� 3! = 3 · 2 · 1 = 6
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� 4! = 4 · 3 · 2 · 1 = 24

� 5! = 5 · 4 · 3 · 2 · 1 = 120

� 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720

� 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040

� 8! = 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 40320

� 9! = 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 362880

However, as we see from the list above, n! is a very fast increasing function,
and computing it for even moderately large n is impractical. Nevertheless,
in applications, it is often useful to know roughly how big n! is, that is, how
it compares to various other functions of n. Obviously,1

n! ≤ nn

for all non-negative integers n. In this section, we will obtain two better
estimates for n!, as follows:

(i) nn/2 ≤ n! ≤ (n+1
2 )n for all non-negative integers n;

(ii) e(ne )
n ≤ n! ≤ en(ne )

n for all positive integers n.

For non-negative real numbers x and y, the arithmetic mean of x and y
is x+y

2 , and the geometric mean of x and y is
√
xy. To prove (i), we will use

the inequality of arithmetic and geometric means (below).

Inequality of arithmetic and geometric means. All non-negative real
numbers x and y satisfy √

xy ≤ x+y
2 .

Proof. For non-negative real numbers x and y, we have the following sequence
of equivalences:

(
√
x−√

y)2 ≥ 0

⇐⇒ x− 2
√
xy + y ≥ 0

⇐⇒ x+ y ≥ 2
√
xy

⇐⇒ x+y
2 ≥ √

xy.

Since the first inequality above is obviously true, so is the last one.

1Recall that for all real numbers r, we have that r0 = 1. In particular, 00 = 1.



Chapter 1. Asymptotic notation. Estimates of factorials and binomial
coefficients 5

We are now ready to prove (i).

Theorem 1.2.1. For all non-negative integers n, the following holds:

nn/2 ≤ n! ≤ (n+1
2 )n

Proof. For n = 0 and n = 1, the statement is obviously true. So, fix an
integer n ≥ 2.

We first prove the upper bound, as follows:

n! =

√(
n · (n− 1) · · · · · 2 · 1

)(
1 · 2 · · · · · (n− 1) · n

)

=

√(
n · 1

)(
(n− 1) · 2

)
. . .
(
2 · (n− 1)

)(
1 · n

)
=

(√
n · 1

)(√
(n− 1) · 2

)
. . .
(√

2 · (n− 1)
)(√

1 · n
)

(∗)
≤ n+1

2 · (n−1)+2
2 · · · · · 2+(n−1)

2 · 1+n
2

= (n+1
2 )n,

where (*) follows from the inequality of arithmetic and geometric means.
It remains to prove the lower bound. First, we claim that for all i ∈

{1, . . . , n}, we have that

i(n+ 1− i) ≥ n.

Indeed, if i = 1 or i = n, then i(n + 1 − i) = n. On the other hand, for
i ∈ {2, . . . , n−1}, we have that min{i, n+1− i} ≥ 2 and max{i, n+1− i} ≥
i+(n+1−i)

2 ≥ n
2 , and consequently,

i(n+ 1− i) = min{i, n+ 1− i} ·max{i, n+ 1− i} ≥ 2 · n
2 = n,
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as we had claimed. We now compute:

n! =

√(
1 · 2 · · · · · (n− 1) · n

)(
n · (n− 1) · · · · · 2 · 1

)

=

√(
1 · n

)(
2 · (n− 1)

)
· · · · ·

(
(n− 1) · 2

)(
n · 1

)

=

√√√√ n∏
i=1

(
i · (n+ 1− i)︸ ︷︷ ︸

≥n

)

≥
√
nn

= nn/2,

which is what we needed.

It remains to prove (ii). We begin with the following proposition.

Proposition 1.2.2. For all real numbers x, the following inequality holds:

1 + x ≤ ex.

Proof. Let f : R → R be given by f(x) = ex − x− 1. Then f ′(x) = ex − 1,
and we have the following table:

x

f ′(x)

f(x)

(−∞, 0)

0

(0,+∞)

−∞ +∞

0− +

↘ ↗min

So, f(x) reaches a global minimum at x = 0. Since f(0) = 0, it follows that
f(x) ≥ 0 for all x ∈ R, and the result follows.

We will also need the well-known fact that

(1 + 1
n)

n ≤ e
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for all positive integers n.2

We are now ready to prove (ii).

Theorem 1.2.3. For all positive integers n, the following holds:

e(ne )
n ≤ n! ≤ en(ne )

n.

Proof. We proceed by induction on n. The claim is clearly true for n = 1.
Now, fix a positive integer n, and assume inductively that e(ne )

n ≤ n! ≤
en(ne )

n. We must show that e(n+1
e )n+1 ≤ (n+ 1)! ≤ e(n+ 1)(n+1

e )n+1.
We first establish the upper bound, that is, we prove that (n + 1)! ≤

e(n+ 1)(n+1
e )n+1. We first compute:

(n+ 1)! = (n+ 1) · n!

≤ (n+ 1) · en(ne )
n by the induction

hypothesis

=
(
e(n+ 1)(n+1

e )n+1
)
· ( n

n+1)
n+1e.

It now remains to prove that ( n
n+1)

n+1e ≤ 1, for then we will obtain precisely
the inequality that we need. We prove this as follows:

( n
n+1)

n+1e = (1− 1
n+1)

n+1e

≤ (e−
1

n+1 )n+1e by Proposition 1.2.2,
for x = − 1

n+1

= 1.

It remains to establish the lower bound, i.e. to prove that e(n+1
e )n+1 ≤

(n+ 1)!. For this, we compute:

e(n+1
e )n+1 = (n+ 1)(ne )

n · (1 + 1
n)

n

≤ (n+ 1)(ne )
n · e because (1 + 1

n)
n ≤ e

≤ (n+ 1) · n! by the induction
hypothesis

= (n+ 1)!,

which is what we needed.
2As you saw in Analysis, the sequence {(1+ 1

n
)n}∞n=1 is strictly increasing and bounded

above, and so by the Monotone Sequence Theorem, it converges. The constant e is defined
as the limit of this sequence, i.e. e := lim

n→∞
(1 + 1

n
)n, and the inequality follows.
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We complete this section by giving the following formula (without proof).

Stirling’s formula. lim
n→∞

√
2πn (n

e
)n

n! = 1.

Using the notation that we introduced in section 1.1, Stirling’s formula
states that

n! ∼
√
2πn

(
n
e

)n
.

So, for very large values of n, the function f(n) =
√
2πn (ne )

n is a good
approximation for n!.

1.3 Estimating binomial coefficients

For integers n and k such that n ≥ k ≥ 0, we define the number
(
n
k

)
, read

“n choose k,” as follows:

(
n
k

)
= n(n−1)...(n−k+1)

k·(k−1)·····1 =
k−1∏
i=0

n−i
k−i .

Note that this implies that (
n
k

)
= n!

k!(n−k)! ,

and consequently, (
n
k

)
=

(
n

n−k

)
.(

n
k

)
is the number of k-element subsets of an n-element set.3 For example,

the number of 3-element subsets of the 5-element set {a, b, c, d, e} is
(
5
3

)
= 10;

those subsets are:

(1) {a, b, c}

(2) {a, b, d}

(3) {a, b, e}

(4) {a, c, d}

(5) {a, c, e}

(6) {a, d, e}

(7) {b, c, d}

(8) {b, c, e}

(9) {b, d, e}

(10) {c, d, e}

We note that for all non-negative integers n, we have that
(
n
0

)
= 1. In

particular,
(
0
0

)
= 1.

Numbers
(
n
k

)
are called binomial coefficients. You are already familiar

with the Binomial theorem (stated below).

3Indeed, there are n(n − 1) . . . (n − k + 1) sequences of k different elements of an
n-element set: there are n ways to select the first element, n− 1 ways to select the second
element, . . . , and n− k + 1 ways to select the k-th element. Since every k-element set can
be ordered in k! ways, there are exactly n(n−1)...(n−k+1)

k!
=

(
n
k

)
many k-element subsets of

an n-element set.
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Binomial theorem. For all integers n ≥ 0, and all real numbers x and y,
the following holds:

(x+ y)n =
n∑

k=0

(
n
k

)
xn−kyk

=
(
n
0

)
xn +

(
n
1

)
xn−1y + · · ·+

(
n

n−1

)
xyn−1 +

(
n
n

)
yn.

Similarly to factorials, binomial coefficients are easy to compute for small
values of n and k. However, even for moderately large n and k, computing(
n
k

)
becomes impractical. So, as in the case of factorials, we would like

to obtain some useful estimates (convenient upper and lower bounds) for
binomial coefficients.

1.3.1 Estimating the binomial coefficient
(
n
k

)
Our goal is to prove the following theorem.

Theorem 1.3.1. For all integers n and k such that n ≥ k ≥ 1, the following
holds:

(nk )
k ≤

(
n
k

)
≤ ( enk )k.

Theorem 1.3.1 readily follows from Propositions 1.3.2 and 1.3.3 (below).
Proposition 1.3.2 establishes the lower bound from Theorem 1.3.1, and
Proposition 1.3.3 establishes the upper bound.4

Proposition 1.3.2. For all integers n and k such that n ≥ k ≥ 1, we have
that

(nk )
k ≤

(
n
k

)
Proof. Fix integers n, k such that n ≥ k ≥ 1. We observe that for all
i ∈ {0, . . . , k − 1}, we have that n−i

k−i ≥
n
k ,

5 and so

(
n
k

)
=

k−1∏
i=0

n−i
k−i ≥

k−1∏
i=0

n
k = (nk )

k,

which is what we needed.

4In fact, the inequality from Proposition 1.3.3 is stronger than the upper bound from
Theorem 1.3.1.

5Indeed, this is equivalent to (n− i)k ≥ n(k− i), which is in turn equivalent to ni ≥ ki,
which is true since n ≥ k and i ≥ 0.
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Proposition 1.3.3. For all integers n and k such that n ≥ k ≥ 1, we have
that:

k∑
i=0

(
n
i

)
≤ ( enk )k.

Proof. Fix integers n and k such that n ≥ k ≥ 1.

Claim. For all real numbers x such that 0 < x ≤ 1, we have that

k∑
i=0

(
n
i

)
≤ (1+x)n

xk .

Proof of the Claim. Fix a real number x such that 0 < x ≤ 1. By the
Binomial theorem, we have that

(1 + x)n =
n∑

i=0

(
n
i

)
xi

≥
k∑

i=0

(
n
i

)
xi since n ≥ k and x > 0.

Dividing by xk, we then obtain

(1+x)n

xk ≥
k∑

i=0

(
n
i

)
1

xk−i

≥
k∑

i=0

(
n
i

)
because 0 < x ≤ 1.

This proves the Claim. ♦

We now apply the Claim to x := k
n , and we obtain

k∑
i=0

(
n
i

)
≤ (1 + k

n)
n(nk )

k by the Claim for x = k
n

≤ (ek/n)n(nk )
k by Proposition 1.2.2 for x = k

n

= ( enk )k,

which is what we needed.
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1.3.2 Estimating the binomial coefficient
(
2n
n

)
Note that for all integers n and k such that n ≥ k ≥ 1, we have that(

n
k

)
=

(
n

k−1

)
· n−k+1

k .

This implies that6 for even n, we have that(
n
0

)
<

(
n
1

)
< . . . <

(
n

n/2

)
> . . . >

(
n

n−1

)
>

(
n
n

)
,

whereas for odd n, we have that(
n
0

)
<

(
n
1

)
< . . . <

(
n

⌊n/2⌋
)

=
(

n
⌈n/2⌉

)
> . . . >

(
n

n−1

)
>
(
n
n

)
.

In particular,
(

n
⌊n/2⌋

)
=
(

n
⌈n/2⌉

)
is maximum among the binomial coefficients(

n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
. For this reason, it is of particular interest to find good

estimates for the behavior of binomial coefficients of the form
(

n
⌊n/2⌋

)
.

Theorem 1.3.4. For all integers m ≥ 1, we have that

22m

2
√
m

≤
(
2m
m

)
≤ 22m√

2m

Proof. Fix an integer m ≥ 1, and set

P := 1·3·5·····(2m−1)
2·4·6·····(2m) .

Then
P = 1·3·5·····(2m−1)

2·4·6·····(2m)

= 1·3·5·····(2m−1)
2·4·6·····(2m) · 2·4·····(2m)

2·4·····(2m)

= (2m)!
22m(m!)2

= 1
22m

(
2m
m

)
.

It now suffices to show that

1
2
√
m

≤ P ≤ 1√
2m

,

for the result then follows immediately.

6Check this!
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We first establish the upper bound for P . For this, we observe that

1 ≥ (1− 1
22
)(1− 1

42
) . . . (1− 1

(2m)2
)

= 22−1
22

· 42−1
42

· · · · · (2m)2−1
(2m)2

= 1·3
22

· 3·5
42

· · · · · (2m−1)(2m+1)
(2m)2

= (2m+ 1)P 2,

and consequently, P 2 ≤ 1
2m+1 . This, in turn, implies that

P ≤ 1√
2m+1

≤ 1√
2m

,

which is what we needed.
It remains to establish our lower bound for P . The proof is similar as for

the upper bound. We observe that

1 ≥ (1− 1
32
)(1− 1

52
) . . . (1− 1

(2m−1)2
)

= 32−1
32

· 52−1
52

· · · · · (2m−1)2−1
(2m−1)2

= 2·4
32

· 4·6
52

· · · · · (2m−2)(2m)
(2m−1)2

= 1
2(2m)P 2 .

This implies that
P ≥ 1

2
√
m
,

which is what we needed. This completes the argument.

Finally, we note that using Stirling’s formula (which we stated without
proof), we can obtain an even better approximation of

(
2m
m

)
, as follows:

lim
m→∞

((
22m√
πm

)
/
(
2m
m

))
= 1.

Using the notation from section 1.1, this formula becomes(
2m

m

)
∼ 22m√

πm
.

So, for very large values of m, the function g(m) = 22m√
πm

is a good approxi-

mation for
(
2m
m

)
.
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1.4 An application: random walks

Recall from Analysis that the series
∞∑

m=1

1
m is called the harmonic series, and

that it diverges to infinity, i.e.

∞∑
m=1

1
m = ∞.

Let us now consider an application of our estimate for binomial coefficients.
We consider the integer number line (Z). We begin our walk at the origin
(i.e. 0), and at each step we move at random either one step to the left (−1)
or one step to the right (+1).

0 1 2 3−1−2−3 4−4

One example of such a walk might be

0, 1, 2, 3, 2, 3, 2, 1, 0,−1,−2,−1,−2,−1, 0, 1, . . .

We would like to estimate the number of times that we return to the origin
in such a walk. Obviously, we can only return to the origin after an even
number of steps.7 There are 22m random walks of length 2m, and exactly(
2m
m

)
of those walks end at the origin.8 So, the probability of returning to

the origin after exactly 2m steps is(
2m
m

)
22m

.

This means that in an infinite random walk, the expected number of returns
to the origin is

∞∑
m=1

(
2m
m

)
22m

.

By Theorem 1.3.4, we have that

∞∑
m=1

(2mm )
22m

≥
∞∑

m=1

1
2
√
m

(∗)
= ∞,

7After an odd number of steps, our position is an odd integer!
8Indeed, we must go left exactly m times, and right exactly m times. Out of 2m moves,

we have
(
2m
m

)
ways of selecting the m leftward moves (the other m moves are rightward).
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where for (*) we used the fact that

∞∑
m=1

1
2
√
m

= 1
2

∞∑
m=1

1√
m

≥ 1
2

∞∑
m=1

1
m = ∞.

Thus, we can expect that in an infinite one-dimensional random walk starting
at the origin, we will return to the origin an infinite number of times.
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Chapter 2

Generating functions

2.1 Partial fraction decomposition

We begin with an example, and then we explain the general principle. It is
easy to check that

1
x2(x−1)

= − 1
x − 1

x2 + 1
x−1 .

Verifying that the equality above is correct is quite easy; but how do we
compute the expression on the right, given the expression on the left? We
proceed as follows. The numerator is of strictly smaller degree than the
denominator,1 and the denominator is expressed as a product of linear terms.
So, we write

1
x2(x−1)

= A
x + B

x2 + C
x−1 .

By multiplying both sides by x2(x− 1), we obtain

1 = (A+ C)x2 + (−A+B)x−B.

The left-hand-side and the right-hand-side are identical as polynomials, and
so they have exactly the same coefficients. So, we get the following system
of linear equations:

A+ C = 0, −A+B = 0, −B = 1.

By solving the system, we obtain

A = −1, B = −1, C = 1,

1This is important! If the degree of the numerator is greater or equal to the degree of
the denominator, then this will not work.
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and we deduce that

1
x2(x−1)

= − 1
x − 1

x2 + 1
x−1 .

Now, let us try to generalize the example above. Suppose p(x) and q(x)
are polynomials with complex coefficients2 such that deg p(x) < deg q(x).
Next, suppose that q(x) can be factored as

q(x) = c(x− α1)
β1 . . . (x− αt)

βt ,

where c is a non-zero complex number, α1, . . . , αt are pairwise distinct
complex numbers, and β1, . . . , βt are positive integers.3 In this case,4 there
exist complex numbers A1,1, . . . , A1,β1 , . . . , At,1, . . . , At,βt such that

p(x)
q(x) =

A1,1

x−α1
+ · · ·+ A1,β1

(x−α1)β1
+ · · ·+ At,1

x−αt
+ · · ·+ At,βt

(x−αt)βt
.

We find the numbers A1,1, . . . , A1,β1 , . . . , At,1, . . . , At,βt by multiplying both
sides by q(x), then writing the resulting polynomials on both sides in the
standard form,5 and finally, setting corresponding coefficients equal to each
other. This yields a system of linear equations, and we obtain the coefficients
A1,1, . . . , A1,β1 , . . . , At,1, . . . , At,βt by solving this system.

For example, for the rational expression x5−7x+1
7(x−2)3(x+1)2(x+2)4

, we would get

the equation

x5−7x+1
7(x−2)3(x+1)2(x+2)4

= A
x−2 + B

(x−2)2
+ C

(x−2)3
+ D

x+1 + E
(x+1)2

+ F
x+2 + G

(x+2)2
+ H

(x+2)3
+ I

(x+2)4
,

though computing A, . . . , I by hand would take quite some time.
Let us now consider a computationally easier example:

3x2 + 4

x3(x+ 1)2
.

2In examples that we consider, we will work only with real numbers. However, the
method works exactly the same way for complex numbers.

3Note that in the example from the beginning of the section, we have c = 1, t = 2,
α1 = 0, α2 = 1, β1 = 2, and β2 = 1.

4We omit the proof, but you can try to convince yourself that this is true.
5That is to say, in the form anx

n + an−1x
n−1 + · · · + a1x + a0, where an, . . . , a0 are

complex numbers.
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The polynomial in the numerator is of strictly smaller degree than the
polynomial in the denominator, and so there exist numbers A,B,C,D,E
such that

3x2+4
x3(x+1)2

= A
x + B

x2 + C
x3 + D

x+1 + E
(x+1)2

.

After multiplying both sides by x3(x+ 1)2, we get

3x2 + 4 = Ax2(x+ 1)2 +Bx(x+ 1)2 + C(x+ 1)2 +Dx3(x+ 1) + Ex3,

and after writing the polynomial on the right-hand-side in standard form,
we get

3x2 + 4 = (A+D)x4 + (2A+B +D + E)x3+
+(A+ 2B + C)x2 + (B + 2C)x+ C.

The polynomial on the left-hand-side and the one on the right-hand-side have
the same coefficients, which yields the following system of linear equations:

A + D = 0

2A + B + D + E = 0

A + 2B + C = 3

B + 2C = 0

C = 4

By solving the system, we obtain

A = 15, B = −8, C = 4, D = −15, E = −7.

So, we have that

3x2+4
x3(x+1)2

= 15
x − 8

x2 + 4
x3 − 15

x+1 − 7
(x+1)2

.

As pointed out earlier in the section, we can perform the procedure
described above only on rational expressions of the form p(x)

q(x) , where p(x)

has strictly smaller degree than q(x). If deg p(x) ≥ deg q(x), then we first
perform polynomial division, and then we perform our procedure on the
remainder. For instance,

3x4−3x3+1
x2(x−1)

(∗)
= 3x+ 1

x2(x−1)

(∗∗)
= 3x− 1

x − 1
x2 + 1

x−1 ,

where (*) is obtained by dividing polynomials, and (**) is from the calculation
performed at the beginning of the section.
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2.2 The Taylor series: a review

Let f : A ⊆ R → R, let a ∈ A, and assume that A contains (as a subset)
some open neighborhood of a.6 Assume furthermore that f is infinitely
differentiable at a.7 Then the Taylor series of f centered at a is the series

T f,a(x) =
∞∑
n=0

f (n)(a)
n! (x− a)n.

The Taylor series T f,0(x) (here, we have a = 0) is called the Maclaurin series.
For a real number α and a non-negative integer k, we define(

α
k

)
:= α(α−1)...(α−k+1)

k! .

In particular,
(
α
0

)
= 1.

Here are the Maclaurin series of some familiar functions:

(i) T exp(x),0(x) = 1 + x+ x2

2! + · · ·+ xn

n! + . . . ;

(ii) T sinx,0(x) = x− x3

3! +
x5

5! − · · ·+ (−1)n−1 x2n−1

(2n−1)! + . . . ;

(iii) T cosx,0(x) = 1− x2

2! +
x4

4! − · · ·+ (−1)n x2n

(2n)! + . . . ;

(iv) T ln(1+x),0(x) = x− x2

2 + x3

3 − · · ·+ (−1)n−1 xn

n + . . . ;

(v) T (1+x)α,0(x) =
(
α
0

)
+
(
α
1

)
x +

(
α
2

)
x2 + · · · +

(
α
n

)
xn + . . . , where α is a

fixed real number;

(vi) T
1

1−x
,0(x) = 1 + x+ x2 + · · ·+ xn + . . . .

Let us verify (v). Fix a real number α. It is easy to verify by induction8

that for all positive integers k, we have that

dk

dxk (1 + x)α = α(α− 1) . . . (α− k + 1)(1 + x)α−k,

and consequently,

dk

dxk
(1+x)α

∣∣∣
x=0

k! = α(α−1)...(α−k+1)
k! =

(
α
k

)
,

6So, there exists some δ > 0 such that (a− δ, a+ δ) ⊆ A.
7f is infinitely differentiable at a if the n-th derivative f (n)(a) exists for all n ≥ 0. (In

particular, f is differentiable, and therefore continuous, at a.) By definition, f (0) = f .
8Check this!
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where as usual, dk

dxk (1 + x)α denotes the k-th derivative of the function

(1 + x)α,9 and dk

dxk (1 + x)α
∣∣∣
x=0

is the k-th derivative of (1 + x)α evaluated at

x = 0. So, (v) holds.
We remark that these series do not necessarily converge for all values of

x. Furthermore, in general, it is possible that T f,a(x) converges, but does
not converge to f(x). Nonetheless, we do have the following:

(1) exp(x) = 1 + x+ x2

2! + · · ·+ xn

n! + . . . for all x ∈ R;

(2) sinx = x− x3

3! +
x5

5! − · · ·+ (−1)n−1 x2n−1

(2n−1)! + . . . for all x ∈ R;

(3) cosx = 1− x2

2! +
x4

4! − · · ·+ (−1)n x2n

(2n)! + . . . for all x ∈ R;

(4) ln(1 + x) = x− x2

2 + x3

3 − · · ·+ (−1)n−1 xn

n + . . . for all x ∈ (−1, 1];

(5) (1 + x)α =
(
α
0

)
+
(
α
1

)
x+

(
α
2

)
x2 + · · ·+

(
α
n

)
xn + . . . for x ∈ (−1, 1), where

α is a fixed real number;

(6) 1
1−x = 1 + x+ x2 + · · ·+ xn + . . . for x ∈ (−1, 1).

For a non-zero constant a, a positive integer t, and a sufficiently small value
of x, we can substitute axt for x in the above equations. So, for example, by
substituting 2x3 for x in (6), we get that

1
1−2x3 = 1 + 2x3 + 4x6 + · · ·+ 2nx3n + . . .

(as long as x is sufficiently small). When working with generating functions
(see the section 2.3 below), we will not worry about exactly how small x
needs to be to make our equations work; we simply need that they work for
values of x in some (no matter how small) open neighborhood of zero. We
also note that (6) follows from (5) for α = −1, with −x substituted for x;

9The zeroth derivative of a function is simply the function itself.
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indeed,
1

1−x = (1− (−x))−1

=
∞∑
n=0

(−1
n

)
(−x)n by (5)

=
∞∑
n=0

(−1)(−2)...(−1−n+1)
n! (−x)n

=
∞∑
n=0

(−1)nn!
n! (−1)nxn

=
∞∑
n=0

xn,

which is precisely (6).
Finally, we remark that the identity from (5) is sometimes called the

“Generalized Binomial Theorem.” Note that if α is a non-negative integer,
then

(
α
k

)
= 0 for all integers k > α, and we get that

(1 + x)α =
(
α
0

)
+
(
α
1

)
x+ · · ·+

(
α
α

)
xα,

which is what we also get from the usual (finite) Binomial Theorem. However,
if α is negative or not an integer, then the series from (5) is indeed infinite.

2.3 Generating functions

2.3.1 A motivating example

We motivate our study of generating function with the following question:
How many ways are there to pay 21 Kč, assuming we have six 1 Kč coins,
five 2 Kč coins, and four 5 Kč coins?10 Here, we are looking for the number
of solutions to the equation i1 + i2 + i5 = 21, with i1 ∈ {0, 1, 2, 3, 4, 5, 6},
i2 ∈ {0, 2, 4, 6, 8, 10}, and i5 ∈ {0, 5, 10, 15, 20}. Indeed, i1 is the amount
paid with 1 Kč coins, i2 is the amount paid with 2 Kč coins, and i5 is the
amount paid with 5 Kč coins. Now, we note that the number of solutions is
precisely the coefficient in front of x21 in the following polynomial:

p(x) = (1 + x+ x2 + x3 + x4 + x5 + x6)× (1 + x2 + x4 + x6 + x8 + x10)
×(1 + x5 + x10 + x15 + x20)

10Here, we assume that all coins of the same value are the same. So, if we happened to
use three 1 Kč coins, we do not care which particular three we chose.
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Indeed, we obtain x21 by selecting some xi1 from the first term of the product,
some xi2 from the second, and some xi5 from the third, in such a way that
i1 + i2 + i5 = 21. The number of ways of selecting i1, i2, i5 is precisely
the coefficient in front of x21 in the polynomial p(x). By using computer
software,11 we see that this coefficient is 9. So, there are 9 ways to make
our payment. More generally, for each non-negative integer n, let an be
the number of ways to pay nKč using our coins; then an is precisely the
coefficient in front of xn in the polynomial p(x), i.e.

p(x) =
∞∑
n=0

anx
n.

We call p(x) the “generating function” of the sequence {an}∞n=0. In this
particular case, p(x) is a polynomial,12 but in general, it is a (potentially
infinite) series. (A formal definition of a generating function is given in
section 2.3.2 below).

It might seem that the use of polynomials in the example above does not
simplify the problem. Indeed, if you compute by hand, it is easier to simply
enumerate all the solutions. However, polynomials are more convenient if
we wish to use a computer. More importantly, we can use a similar idea to
solve more complicated problems.

2.3.2 Generating functions as power series

Suppose {an}∞n=0 is some infinite sequence of real numbers.13 The generating
function of this sequence is the power series

∞∑
n=0

anx
n.

For example, the generating function of the constant sequence 1, 1, 1, 1, 1, . . .
is

1 + x+ x2 + x3 + . . . =
∞∑
n=0

xn

We recognize the above sequence as the Maclaurin series of the function 1
1−x .

So, the generating function of 1, 1, 1, 1, 1, . . . is 1
1−x .

11Or by hand, if you are in the mood to compute.
12This is because we only have 36 Kč, and so an = 0 for all integers n ≥ 37.
13Actually, this also works for complex numbers. However, we shall restrict ourselves to

examples with real numbers.
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2.3.3 Generating functions and recursively defined sequences

For a positive integer k, a homogeneous linear difference equation of degree
k is an equation of the form

yn+k = ak−1yn+k−1 + ak−2yn+k−2 + · · ·+ a1yn+1 + a0yn,

where ak−1, . . . , a0 are fixed constants. Often, sequences are defined recur-
sively, by specifying the values of the first k terms, and by a homogeneous
linear difference equation of degree k.

For example, the famous Fibonacci sequence {Fn}∞n=0 is defined recursively
as follows:

� F0 = 0, F1 = 1;

� Fn+2 = Fn + Fn+1 for all integers n ≥ 0.

(Numbers Fn are called the Fibonacci numbers.) So, we defined the Fibonacci
sequence using a second degree homogeneous linear difference equation.

Often, we are given a recursively defined sequence, and we would like
to find a closed formula for the n-th term of the sequence. For example,
suppose we are given a sequence {an}∞n=0, defined recursively as follows:

� a0 = 1

� an+1 = 2an for all integers n ≥ 0.

This sequence is defined via a first degree homogeneous linear difference
equation. A closed formula for the general term of the sequence {an}∞n=0 is

an = 2n for all integers n ≥ 0.

This example was easy (we could simply guess the formula, and verify by
induction that it works). But often, this is not so easy. For instance, it is not
at all obvious what the closed formula for Fn, the the n-th Fibonacci number,
should be. As we shall see, such a formula can be found using generating
functions.

In theory, generating functions can be used to find the closed formula of
the general term of a sequence defined via any homogeneous linear difference
equation. However, in practice, if our difference equation is of high degree,
this may be difficult or impossible to do due to problems with factoring
polynomials of high degree.14 Here, we show how this can be done for

14The quadratic equation allows us to easily factor second degree polynomials. There
are also formulas for factoring third and fourth degree polynomials. However, there is no
general formula for factoring fifth (and higher) degree polynomials.
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sequences defined via second degree homogeneous linear difference equations.
We begin with the Fibonacci sequence.

Example 2.3.1. Find a closed formula for Fn (n ≥ 0), where Fn is the n-th
Fibonacci number.

Solution. We consider the generating function f(x) =
∑∞

n=0 Fnx
n for the

sequence {Fn}∞n=0. We now manipulate this function as follows:

f(x) =
∞∑
n=0

Fnx
n

= F0 + F1x+ x2
∞∑
n=0

Fn+2x
n

= x+ x2
∞∑
n=0

(Fn + Fn+1)x
n

= x+ (x2
∞∑
n=0

Fnx
n) + (x2

∞∑
n=0

Fn+1x
n)

= x+ (x2
∞∑
n=0

Fnx
n) + (x

∞∑
n=0

Fn+1x
n+1)

= x+ (x2
∞∑
n=0

Fnx
n) + (x

∞∑
n=0

Fnx
n) because F0 = 0

= x+ x2f(x) + xf(x).

So, we have obtained the equation

f(x) = x+ x2f(x) + xf(x),

which, in turn, yields
f(x) = − x

x2+x−1
.
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We now compute:

f(x) = − x
x2+x−1

= − x

(x−−1−
√

5
2

)(x−−1+
√
5

2
)

via the quadratic

equation

= −
1+

√
5

2
√
5

x−−1−
√

5
2

−
−1+

√
5

2
√
5

x−−1+
√
5

2

via partial

fractions

= − 1√
5

( 1+
√
5

2

x−−1−
√

5
2

+
−1+

√
5

2

x−−1+
√
5

2

)
= − 1√

5

(
1

1+x 2
1+

√
5

− 1
1+x 2

1−
√
5

)
= − 1√

5

(
1

1−x 1−
√
5

2

− 1

1−x 1+
√
5

2

)
= 1√

5

(
(−

∞∑
n=0

(1−
√
5

2 )nxn) + (
∞∑
n=0

(1+
√
5

2 )nxn)
)

via Maclaurin

expansion

=
∞∑
n=0

(1+
√
5)n−(1−

√
5)n

2n
√
5

xn.

Recall that f(x) =
∞∑
n=0

Fnx
n. So, for all non-negative integers n, we have

that

Fn = (1+
√
5)n−(1−

√
5)n

2n
√
5

.

We can easily check that the answer is correct by induction. Indeed,

(1+
√
5)0−(1−

√
5)0

20
√
5

= 0 = F0

(1+
√
5)1−(1−

√
5)1

21
√
5

= 1 = F1

and so the formula is correct for n = 0 and n = 1. For the induction step,
we fix an integer n ≥ 0, and we assume that

Fn = (1+
√
5)n−(1−

√
5)n

2n
√
5

and Fn+1 =
(1+

√
5)n+1−(1−

√
5)n+1

2n+1
√
5

.
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Then

Fn+2 = Fn + Fn+1

= (1+
√
5)n−(1−

√
5)n

2n
√
5

+ (1+
√
5)n+1−(1−

√
5)n+1

2n+1
√
5

= 1√
5

(
(1+

√
5

2 )n(1 + 1+
√
5

2 )− (1−
√
5

2 )n(1 + 1−
√
5

2 )
)

= 1√
5

(
(1+

√
5

2 )n 3+
√
5

2 − (1−
√
5

2 )n 3−
√
5

2

)
= 1√

5

(
(1+

√
5

2 )n(1+
√
5

2 )2 − (1−
√
5

2 )n(1−
√
5

2 )2
)

= 1√
5

(
(1+

√
5

2 )n+2 − (1−
√
5

2 )n+2
)

= (1+
√
5)n+2−(1−

√
5)n+2

2n+2
√
5

,

and so the formula is correct for n+ 2.

The golden ratio is the number

ϕ = 1+
√
5

2 .

Our solution to Example 2.3.1 implies that the n-th Fibonacci number (n ≥ 0)
satisfies15

Fn = ϕn−(1−ϕ)n√
5

= ϕn−(−ϕ)−n
√
5

.

Example 2.3.2. Let {a0}∞n=0 be a sequence defined recursively as follows:

� a0 = 0 and a1 = 1;

� an+2 = −an + 2an+1 for all integers n ≥ 0.

Find a closed formula for an (n ≥ 0).

Solution. We consider the generating function a(x) =
∑∞

n=0 anx
n for the

15Check this!
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sequence {an}∞n=0, and we compute:

a(x) =
∞∑
n=0

anx
n

= a0 + a1x+ x2
∞∑
n=0

an+2x
n

= x+ x2
∞∑
n=0

(−an + 2an+1)x
n

= x−
(
x2

∞∑
n=0

anx
n
)
+
(
2x

∞∑
n=0

an+1x
n+1
)

= x−
(
x2

∞∑
n=0

anx
n
)
+
(
2x

∞∑
n=0

anx
n
)

because a0 = 0

= x− x2a(x) + 2xa(x)

Thus, we have obtained the equation

a(x) = x− x2a(x) + 2xa(x),

which yields
a(x) = x

(x−1)2
.
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We now compute:

a(x) = x
(x−1)2

= − 1
1−x + 1

(1−x)2
via partial

fractions

= −
( ∞∑

n=0
xn
)
+
( ∞∑

n=0

(−2
n

)
(−x)n

)
via Maclaurin

expansion

= −
( ∞∑

n=0
xn
)
+
( ∞∑

n=0

(−2)(−3)...(−2−n+1)
n! (−x)n

)

= −
( ∞∑

n=0
xn
)
+
( ∞∑

n=0

(−1)n(n+1)!
n! (−1)nxn

)

= −
( ∞∑

n=0
xn
)
+
( ∞∑

n=0
(n+ 1)xn

)

=
∞∑
n=0

nxn
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Since a(x) =
∞∑
n=0

an, we deduce that an = n for all integers n ≥ 0.16

We can easily check that our formula is correct by induction. Indeed,
a0 = 0 and a1 = 1 by construction, and so the formula is correct for n = 0
and n = 1. For the induction step, we fix an integer n ≥ 0, we assume
inductively that an = n and an+1 = n+ 1, and we observe that

an+2 = −an + 2an+1

= −n+ 2(n+ 1)

= n+ 2,

and so the formula is correct for n+ 2. This completes the induction.

Sometimes, generating functions can be used to find a closed formula for
the general term of a recursively defined sequence, even if the recurrence is
not given by a homogeneous linear difference equation. We now look at one
such example.

Example 2.3.3. Let {an}∞n=0 be a sequence defined recursively as follows:

16Alternatively, we could have proceeded as follows:

a(x) = x
(x−1)2

= x 1
(1−x)2

= x
∞∑

n=0

(−2
n

)
(−x)n via Maclaurin expansion

= x
∞∑

n=0

(−2)(−3)...(−2−n+1)
n!

(−x)n

= x
∞∑

n=0

(−1)n(n+1)!
n!

(−1)nxn

= x
∞∑

n=0

(n+ 1)xn

=
∞∑

n=0

(n+ 1)xn+1

=
∞∑

n=0

nxn,

and so an = n for all integers n ≥ 0.
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� a0 = 1;

� an+1 = 7an + 6n+1 for all integers n ≥ 0.

Find a closed formula for an.

Solution. We consider the generating function a(x) =
∑∞

n=0 anx
n for the

sequence {an}∞n=0. We manipulate this function as follows:

a(x) =
∞∑
n=0

anx
n

= a0 +
∞∑
n=0

an+1x
n+1

= 1 +
∞∑
n=0

(7an + 6n+1)xn+1

= 1 + 7x
( ∞∑

n=0
anx

n
)
+
( ∞∑

n=1
6nxn

)

= 7x
( ∞∑

n=0
anx

n
)
+
( ∞∑

n=0
6nxn

)
= 7xa(x) + 1

1−6x .

So, we have obtained the equation

a(x) = 7xa(x) + 1
1−6x ,

which implies that
a(x) = 1

(7x−1)(6x−1) .

We now compute

a(x) = 1
(7x−1)(6x−1)

= 7
1−7x − 6

1−6x via partial fractions

= (7
∞∑
n=0

7nxn)− (6
∞∑
n=0

6nxn)

=
∞∑
n=0

(7n+1 − 6n+1)xn.
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Recall that a(x) =
∞∑
n=0

anx
n. So, we get that

an = 7n+1 − 6n+1

for all integers n ≥ 0.
We can check that this formula is correct by induction. Clearly,

70+1 − 60+1 = 1 = a0,

and so the formula is correct for n = 0. Now, fix a non-negative integer n,
and assume that an = 7n+1 − 6n+1. Then

an+1 = 7an + 6n+1

= 7(7n+1 − 6n+1) + 6n+1

= 7n+2 − 7 · 6n+1 + 6n+1

= 7n+2 − 6n+2.

This completes the induction.

2.4 Basic operations with generating functions

We now consider some ways of combining generating functions. Suppose
{an}∞n=0 and {bn}∞n=0 are sequences of real (or complex) numbers, and suppose

a(x) =
∞∑
n=0

anx
n and b(x) =

∞∑
n=0

bnx
n are the corresponding generating

functions. Further, suppose α is a real (or complex) constant. Then we have
the following.

1. The generating function of the sequence {an + bn}∞n=0 is a(x) + b(x).

2. The generating function of the sequence {an − bn}∞n=0 is a(x)− b(x).

3. The generating function of the sequence {αan}∞n=0 is αa(x).

4. For an integer k ≥ 1, the generating function of the sequence

0, . . . , 0︸ ︷︷ ︸
k

, a0, a1, a2, . . .

is xka(x).
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5. For an integer k ≥ 1, the generating function of the sequence {an+k}∞n=0,

i.e. the sequence ak, ak+1, ak+2, . . . , is
1
xk

(
a(x)−

k−1∑
i=0

aix
i
)
.17

6. The generating function of the sequence {αnan}∞n=0 is c(x) = a(αx).18

7. For an integer k ≥ 1, the generating function of the sequence

a0, 0, . . . , 0︸ ︷︷ ︸
k

, a1, 0, . . . , 0︸ ︷︷ ︸
k

, a2, 0, . . . , 0︸ ︷︷ ︸
k

, a3, . . .

is a(xk+1).19

8. The generating function of the sequence {(n + 1)an+1}∞n=0, i.e. the
sequence a1, 2a2, 3a3, 4a4, . . . , is a′(x). The generating function for
the sequence 0, a0,

1
2a1,

1
3a2,

1
4a3, . . . is

∫ x
0 a(t)dt. (We differentiate and

integrate power series term-by-term.)

9. The function c(x) = a(x)b(x) is the generating function of the sequence

{cn}∞n=0, where cn =
n∑

i=0
aibn−i for each integer n ≥ 0.20

Example 2.4.1. Let {an}∞n=0 be a sequence, and let a(x) be its generating
function. Find the generating function of the sequence a0, 0, a2, 0, a4, . . . in
terms of the function a(x).

Solution. We observe that a0, 0, a2, 0, a4, . . . is the sum of the following two
sequences: {an

2 }∞n=0 and { (−1)nan
2 }∞n=0. The generating function of {an

2 }∞n=0

is 1
2a(x), and the generating function of { (−1)nan

2 }∞n=0 is 1
2a(−x). So, the

generating function of a0, 0, a2, 0, a4, . . . is a(x)+a(−x)
2 .

Example 2.4.2. Find (the closed form of) the generating function of the
sequence 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, . . . , i.e. the sequence {2⌊n/2⌋}∞n=0.

17For example, the generating function of the sequence a3, a4, a5, . . . is

1

x3

(
a(x)− (a0 + a1x+ a2x

2)
)
.

18For instance, since
∞∑

n=0

xn = 1
1−x

is the generating function of 1, 1, 1, 1, 1, . . . , we see

that 1
1−2x

is the generating function of 1, 2, 4, 8, 16, . . . .
19For instance, the generating function of the sequence a0, 0, 0, a1, 0, 0, a2, 0, 0, a3, . . . is

a(x3).
20So, c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0, etc.
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Solution. Recall that the generating function of the sequence 1, 2, 4, 8, 16, . . .
is 1

1−2x . The generating function of 1, 0, 2, 0, 4, 0, 8, 0, . . . is 1
1−2x2 , and the

generating function of 0, 1, 0, 2, 0, 4, 0, 8, 0, . . . is x
1−2x2 . So, the generating

function of 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, . . . is the sum of these two functions, i.e.
1+x

1−2x2 .

Example 2.4.3. Find (the closed form of) the generating function of the
sequence 12, 22, 32, 42, . . . , i.e. the sequence {(n+ 1)2}∞n=0.

Solution. The generating function of the sequence 1, 1, 1, 1, . . . is 1
1−x . By

differentiating, we see that d
dx(

1
1−x) =

1
(1−x)2

is the generating function of

the sequence 1, 2, 3, 4, . . . , i.e. the sequence {n+ 1}∞n=0. By differentiating
again, we see that d

dx(
1

(1−x)2
) = 2

(1−x)3
is the generating sequence of the

sequence 1 · 2, 2 · 3, 3 · 4, 4 · 5, . . . , i.e. the sequence {(n+ 1)(n+ 2)}∞n=0. Now,
(n + 1)2 = (n + 1)(n + 2) − (n + 1) for all integers n ≥ 0, and we have
computed the generating functions for the sequences {(n + 1)(n + 2)}∞n=0

and {n+ 1}∞n=0. So, the generating function of {(n+ 1)}∞n=0 is

a(x) = 2
(1−x)3

− 1
(1−x)2

.

2.5 An application of generating functions: count-
ing binary trees

In this section, we consider binary trees of the sort that are often used in
data structures. For our purposes, we can define binary trees recursively as
follows: a binary tree is either empty (i.e. contains no nodes), or consists
of a designated node r (called the root), plus an ordered pair (TL, TR) of
binary trees, where TL and TR (called the left subtree and the right subtree,
respectively) have disjoint sets of nodes and do not contain the node r (see
Figure 2.1). The empty binary tree has zero nodes, and if a binary tree T
consists of a root r and an ordered pair (TL, TR) of binary trees, then the
number of nodes of T is 1 + nL + nR, where nL is the number of nodes of
TL, and nR is the number of nodes of TR.

For each integer n ≥ 0, let bn be the number of binary trees on n nodes,

and let b(x) =
∞∑
n=0

bnx
n be the generating function of the sequence {bn}∞n=0.

It is easy to check that b0 = 1, b1 = 1, b2 = 2, and b3 = 5 (see Figure 2.2).
Now, let us find a recursive formula for bn (n ≥ 1). The number of binary
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r

rL

rLL rLR

rR

rRR

TL TR

TLL TLR TRR

Figure 2.1: A binary tree on six nodes. Note that TRL (the left subtree of
the right subtree) is empty.

r r r r r

rL

rLL

rL

rLR

rL rR rR

rRL

rR

rRR

Figure 2.2: All the binary trees on three nodes.
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trees on n ≥ 1 nodes is equal to the number of ordered pairs (TL, TR) of
binary trees such that TL and TR together have n− 1 nodes. Thus, for all
integers n ≥ 1, we have that

bn = b0bn−1 + b1bn−2 + · · ·+ bn−1b0 =
n−1∑
k=0

bkbn−k−1.

Since b0 = 1, this implies that

b(x) = 1 + xb(x)2.

Using the quadratic formula,21 we get that either

b(x) = 1−
√
1−4x
2x or b(x) = 1+

√
1−4x
2x .

We must now determine which of these two formulas is the correct one.
Since b0 = 1, we have that lim

x→0+
b(x) = 1. Since

lim
x→0+

1−
√
1−4x
2x = lim

x→0+

(
1−

√
1−4x
2x · 1+

√
1−4x

1+
√
1−4x

)
= lim

x→0+

1−(1−4x)

2x(1+
√
1−4x)

= lim
x→0+

2
1+

√
1−4x

= 1,

whereas
lim

x→0+

1+
√
1−4x
2x = ∞,

we deduce that22

b(x) = 1−
√
1−4x
2x .

21Here, we treat b(x) as the variable and x as a constant.
22Since we have x in the denominator, b(0) is not defined, and in particular, b(x) does

not have a Maclaurin series. However, as we shall see, the constant term in the Maclaurin
expansion of 1−

√
1− 4x is zero, and so we can simply divide the resulting series by 2x

and thus obtain another series, which is precisely the generating function (expressed as a
power series) of the sequence {bn}∞n=0.
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By the Generalized Binomial Theorem, we have that

√
1− 4x =

∞∑
n=0

(
1/2
n

)
(−4x)n

=
∞∑
n=0

(−4)n
(
1/2
n

)
xn

= 1 +
∞∑
n=1

(−4)n
(
1/2
n

)
xn because (−4)0

(−1/2
0

)
x0 = 1

= 1 + x
∞∑
n=0

(−4)n+1
(
1/2
n+1

)
xn

and consequently,

1−
√
1− 4x = −x

∞∑
n=0

(−4)n+1
(
1/2
n+1

)
xn.

It follows that

b(x) = 1−
√
1−4x
2x =

∞∑
n=0

(−1
2)(−4)n+1

(
1/2
n+1

)
xn.

Thus, for all non-negative integers n, we have that

bn = (−1
2)(−4)n+1

(
1/2
n+1

)
.

Let us now try to obtain a nicer formula for bn. For an integer n ≥ 0, we
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compute:

bn = (−1
2)(−4)n+1

(
1/2
n+1

)
= (−1

2)(−4)n+1 (
1
2
)( 1

2
−1)( 1

2
−2)...( 1

2
−n)

(n+1)!

= (−1
2)(−4)n+1 (

1
2
)(− 1

2
)(− 3

2
)...(− 2n−1

2
)

(n+1)!

= (−1
2)(−4)n+1(−1)n(12)

n+1 1·3·····(2n−1)
(n+1)!

= 2n · 1·3·····(2n−1)
(n+1)!

= 2·4·····(2n)
n! · 1·3·····(2n−1)

(n+1)!

= (2n)!
n!(n+1)!

= 1
n+1

(
2n
n

)
.

So, we have obtained that, for all integers n ≥ 0, the number of binary trees
on n nodes is

bn = 1
n+1

(
2n
n

)
.

We remark that the numbers 1
n+1

(
2n
n

)
above have a special name: they are

called Catalan numbers.

2.6 An application of generating functions: ran-
dom walks

We consider the following infinite random walk on the integer line Z: we
begin our walk at 1, and at each step, we move at random either two units
to the right (+2) or one unit to the left (−1). We would like to determine
the probability that we reach the origin at some point in our walk.

We proceed as follows. For each integer n ≥ 0, let Pn be the probability
that we reach the origin after at most n steps. Obviously, {Pn}∞n=0 is a
non-decreasing sequence, and it is bounded above by 1. So, by the Monotone
Sequence Theorem, it converges. Let

P := lim
n→∞

Pn.

Then P is the probability that we need to compute.
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Now, for each integer n ≥ 0, let an be the number of n-step walks in
which we reach the origin for the first time after precisely n steps.23 Since
the total number of n-step walks is 2n, we see that

Pn =
n∑

i=0

ai
2i

for all non-negative integers n, and consequently,

P =
∞∑
n=0

an
2n .

Let a(x) =
∞∑
n=0

anx
n be the generating function for the sequence {an}∞n=0.

Note that
P = a

(
1
2

)
.

For our solution, it will be useful to consider random walks that start at
points other than 1 (but proceed according to the same rules: at each step,
we move at random either two units to the right or one unit to the left). For
an integer n ≥ 0, let bn be the number of n-step random walks (following
our rules) starting at 2 and ending at the origin, without reaching the origin
at any point during the walk (except at the very end). In such a walk, we
cannot reach the origin without first reaching 1, and then reaching the origin
from there. So, if we are to reach the origin for the first time after precisely
n steps, starting at 2, then there must be some k ∈ {1, . . . , n− 1} such that
we reach 1 for the first time after precisely k steps,24 and then starting at 1,
we reach the origin for the first time after n− k steps.25 For each choice of
k ∈ {1, . . . , n− 1}, there are akan−k such walks, and so

bn =
n−1∑
k=1

akan−k

=
n∑

k=0

akan−k because a0 = 0.

23So, at the end of our n-step walk, we are at the origin, and furthermore, we were not
at the origin after k steps for any non-negative integer k < n.

24There are precisely ak many k-step walks that have this property: the number of ways
to reach 1 from 2 for the first time after k steps is the same as the number of ways to
reach the origin from 1 for the first time after k steps.

25There are precisely an−k many (n− k)-step walks that have this property.
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Now, if b(x) =
∞∑
n=0

bnx
n is the generating function for the sequence {bn}∞n=0,

then we get that
b(x) = a(x)2.

Next, we consider random walks starting at 3, and moving according to
our rules. For each integer n ≥ 0, let cn be the number of n-step random
walks (following our rules) starting at 3 and ending at the origin, without
reaching the origin at any point during the walk (except at the very end).
We now argue similarly to the above. In such a walk, we cannot reach the
origin before first reaching 2, and then reaching the origin from there. So, if
we are to reach the origin for the first time after precisely n steps, starting at
3, then there must be some k ∈ {1, . . . , n− 1} such that we reach 2 for the
first time after precisely k steps,26 and then starting at 2, we reach the origin
for the first time after n− k steps.27 For each choice of k ∈ {1, . . . , n− 1},
there are akbn−k such walks, and so

bn =
n−1∑
k=1

akbn−k

=
n∑

k=0

akbn−k because a0 = 0 and b0 = 0.

Now, if c(x) =
∞∑
n=0

cnx
n is the generating function for the sequence {cn}∞n=0,

then we get that c(x) = a(x)b(x). We already saw that b(x) = a(x)2, and so
it follows that

c(x) = a(x)3.

We now observe the following. Obviously, a0 = 0 and a1 = 1. Next, if
we start at 1, then for an integer n ≥ 2, there are precisely cn−1 ways to
reach the origin for the first time after precisely n steps: we must first move
two units to the right,28 and then reach the origin from 3 for the first time
after precisely n− 1 steps. Thus, an = cn−1 for all integers n ≥ 2. We now

26There are precisely ak many k-step walks that have this property.
27There are precisely bn−k many (n− k)-step walks that have this property.
28Indeed, if we moved one unit to the left instead, then we would reach the origin after

precisely one step, and so (since n ≥ 2) we would not reach the origin for the first time
after n steps.
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compute:

a(x) = a0 + a1x+
∞∑
n=2

anx
n

= x+ x
∞∑
n=2

anx
n−1 because a0 = 0 and a1 = 1

= x+ x
∞∑
n=2

cn−1x
n−1 because an = cn−1 for n ≥ 2

= x+ x
∞∑
n=1

cnx
n

= x+ x
∞∑
n=0

cnx
n because c0 = 0 (obvious)

= x+ xc(x).

We have now obtained the equation a(x) = x + xc(x), and we know from
before that c(x) = a(x)3. So, we have that

a(x) = x+ xa(x)3.

At this point, we could in principle use the cubic equation to compute a(x),29

and then compute P = a(12) by plugging in x = 1
2 into the function a.

However, there is a quicker and easier way. Since P = a(12), we have that

P = 1
2 + 1

2P
3.

The equation above has three solutions: 1, −1+
√
5

2 , and −1−
√
5

2 .30 Obviously,

P ≥ 0, and so P ̸= −1−
√
5

2 . To simplify notation, we set

Φ := −1+
√
5

2 .

(Note that Φ = ϕ−1, where ϕ = 1+
√
5

2 is the golden ratio.) We now have that
either P = 1 or P = Φ.

29But note that we would get three solutions, and we would have to figure out which
one is the correct one.

30The equation P = 1
2
+ 1

2
P 3 is equivalent to the equation P 3 − 2P +1 = 0. Obviously, 1

is a root of the latter equation. We find the other two roots by first factoring P 3−2P +1 =
(P − 1)(P 2 + P − 1), and then using the quadratic equation to find the other two roots.
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Let us show that P ̸= 1, i.e. that a(12) ̸= 1. First, a(x) =
∞∑
n=0

anx
n has

non-negative coefficients and converges for x = 1
2 . So, the function a is

continuous and increasing on the interval [0, 12 ].
31 Obviously, a(0) = a0 = 0.

Suppose that a(12) = 1. Since 0 < Φ < 1, and since a is continuous on [0, 12 ],
the Intermediate Value Theorem guarantees that there exists some x0 ∈ (0, 12)
such that a(x0) = Φ. Since Φ is a root of the equation P = 1

2 + 1
2P

3, we
have that

Φ = 1
2 + 1

2Φ
3.

On the other hand, we know that a(x0) = x0 + x0a(x0)
3, and so

Φ = x0 + x0Φ
3.

It follows that
1
2 + 1

2Φ
3 = x0 + x0Φ

3,

which implies that
(x0 − 1

2)(Φ
3 + 1) = 0,

which is false since x0 ̸= 1
2 and Φ3 ̸= −1. This proves that P ̸= 1, and it

follows that P = Φ, i.e. that

P = −1+
√
5

2 .

31This is a little bit informal (and we omit the details), but it should be intuitively
obvious.
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Chapter 3

Finite projective planes

3.1 Finite projective planes: definition and basic
properties

For a set X, the power set of X, denoted by P(X), is the set of all subsets
of X. For example, if X = {1, 2, 3}, then

P(X) =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

Obviously, for any set X, we have that ∅ ∈ P(X) and X ∈ P(X). Further-
more, if X is finite, then |P(X)| = 2|X|.

A set system is an ordered pair (X,S) such that X is a set (called the
ground set) and S ⊆ P(X).

A finite projective plane is a set system (X,P) such that X is a finite,
and the following three properties are satisfied:

(P0) there exists a 4-element subset Q ⊆ X such that every P ∈ P satisfies
|P ∩Q| ≤ 2;

(P1) all distinct P1, P2 ∈ P satisfy |P1 ∩ P2| = 1;

(P2) for all distinct x1, x2 ∈ X, there exists a unique P ∈ P such that
x1, x2 ∈ P .

If (X,P) is a finite projective plane, then members of X are called points,
and members of P are called lines. For a point x ∈ X and a line P ∈ P
such that x ∈ P , we say that the line P is incident with the point x, or that
P contains x, or that P passes through x. For distinct points a, b ∈ X, we
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Figure 3.1: The Fano plane.

1 2 3 4 5 6 7

a b c d e f g

Figure 3.2: The incidence graph of the Fano plane.

denote by ab the unique line in P that contains a and b (the existence and
uniqueness of such a line follow from (P2)).

Finite projective planes (defined above) and the usual Euclidean planes
(i.e. planes that you studied in high school) have some obvious similarities,
but also some obvious differences. In a Euclidean plane, two distinct lines
may intersect in at most one point, but distinct, parallel lines have an empty
intersection. In finite projective planes, there are no “parallel lines”: by (P1),
two distinct lines always intersect in exactly one point, called their point
of intersection or intersection point. Property (P2) from the definition of a
finite projective plane is the same as for the Euclidean plane.

Example 3.1.1. Let X = {1, 2, 3, 4, 5, 6, 7} and P = {a, b, c, d, e, f, g}, where

� a = {1, 2, 3},

� b = {3, 4, 5},

� c = {5, 6, 1},

� d = {5, 7, 2},

� e = {1, 7, 4},

� f = {3, 7, 6},

� g = {2, 4, 6}.
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Then (X,P) is a finite projective plane,1 called the Fano plane (see Fig-
ure 3.1).

Note that in Figure 3.1, the seven lines of the Fano plane are represented
by six line segments and one circle. However, formally, each line of the Fano
plane is simply a set of three points. Drawings such as the one in Figure 3.1
can sometimes be useful for guiding our intuition. However, formal proofs
should never rely on such pictures; instead, they should rely solely on the
definition of a finite projective plane or on results (propositions, lemmas,
theorems) proven about them.2

To each finite projective plane (X,P), we associate an “incidence graph”
defined as follows. The incidence graph of a finite projective plane (X,P)
is a bipartite graph with bipartition (X,P),3 in which x ∈ X and P ∈ P
are adjacent if and only if x ∈ P . The incidence graph of the Fano plane is
represented in Figure 3.2.

Note that each line of the Fano plane contains the same number of points.
As our next proposition shows, this is not an accident.

Proposition 3.1.2. Let (X,P) be a finite projective plane. Then all lines
in P have the same number of points.

Proof. Fix P1, P2 ∈ P. We must show that |P1| = |P2|.

Claim. There exists a point z ∈ X such that z /∈ P1 ∪ P2.

Proof of the Claim. First, using (P0) from the definition of a finite projective
plane, we fix a 4-element subset Q ⊆ X such that for all P ∈ P, we have
that |Q ∩ P | ≤ 2. If Q ̸⊆ P1 ∪ P2, then we take any z ∈ Q \ (P1 ∪ P2), and
we are done. So, assume that Q ⊆ P1 ∪ P2.

Since |Q| = 4 and |Q∩P1|, |Q∩P2| ≤ 2, we now deduce that Q∩P1 and
Q ∩ P2 are disjoint and contain exactly two points each. Set Q ∩ P1 = {a, b}
and Q ∩ P2 = {c, d}. We now consider the lines Pac := ac and Pbd := bd.4

1It is easy to check that (P1) and (P2) are satisfied. For (P0), we can take, for instance,
Q = {1, 3, 5, 7}.

2The proofs of those results must, ultimately, rely only on the definition of a finite
projective plane.

3So, in our incidence graph, X and P are stable (i.e. independent) sets. (A stable set,
also called an independent set, in a graph G is any set of pairwise non-adjacent vertices of
G.)

4Recall that, by (P2), there exists a unique line in P that contains both a and c, and
according to our notation, this line is denoted ac. For convenience, we set Pac = ac. Similar
remarks hold for b, d.



Chapter 3. Finite projective planes 44

Since no line in P contains more than two points of Q, and since a, c ∈ Q∩Pac,
we see that Q∩Pac = {a, c}. Similarly, Q∩Pbd = {b, d}. Since P1, P2, Pac, Pbd

have pairwise distinct intersections with the set Q, we see that the lines
P1, P2, Pac, Pbd are pairwise distinct.

Now, by (P1), we have that |Pac ∩ Pbd| = 1; set Pac ∩ Pbd = {z} (see the
picture below).

a b

c d

P1

P2

PacPbd

z

Since Pac ∩Q and Pbd ∩Q are disjoint, we see that z /∈ Q. If z ∈ P1, then
a, z ∈ P1 ∩ Pac, which is impossible because a, z are distinct points,5 P1, Pac

are distinct lines, and by (P1), any two distinct lines intersect in exactly one
point. Thus, z /∈ P1, and similarly, z /∈ P2. This proves the Claim. ♦

Let z be as in the Claim. We now define a function φ : P1 → P2, as
follows. For all x ∈ P1, let φ(x) be the unique point in the intersection of
the lines xz and P2 (see the picture below); by (P1) and (P2), our function
φ is well-defined.6

5We know that a ̸= z because a ∈ Q and z /∈ Q.
6Let us check that this in detail. First, since z /∈ P1, we know that for all x ∈ P1, we

have that x ̸= z, and so by (P2), there is exactly one line (which we denoted by xz) that
passes through x and z; furthermore, since z /∈ P2, we have that xz and P2 are distinct
lines, and so (P1) guarantees that xz and P2 intersect in exactly one point, and we call
this point φ(x). Thus, φ is well-defined. (We remark that it is possible that P1 = P2; in
this case, the function φ is simply the identity function on P1 = P2, that is, φ(x) = x for
all x ∈ P1.)
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z x ϕ(x)

P1 P2

Let us check that φ : P1 → P2 is surjective (i.e. onto). Fix y ∈ P2, and let x
be the point of intersection of the lines P1 and yz.7 Then y is the point of
intersection of lines xz and P2, and it follows that y = φ(x). So, φ : P1 → P2

is surjective. This implies that |P1| ≥ |P2|. By symmetry, we also have that
|P2| ≥ |P1|, and we deduce that |P1| = |P2|.

The order of a finite projective plane (X,P) is the number |P | − 1, where
P is any line in P .8 By Proposition 3.1.2, this is well-defined. Note that the
Fano plane has order two. Furthermore, the following proposition states that
the order of any finite projective plane is at least two.

Proposition 3.1.3. The order of any finite projective plane is at least two.

Proof. Let (X,P) be a finite projective plane. It suffices to show that some
line in P passes through at least three points. Using (P0) from the definition
of a finite projective plane, we fix a 4-element subset Q ⊆ X such that for
all P ∈ P, we have that |Q ∩ P | ≤ 2. Set Q = {a, b, c, d}. Consider the
lines Pab := ab and Pcd := cd. Since Q intersects each line in P in at most
two points, we see that Q ∩ Pab = {a, b} and Q ∩ Pcd = {c, d}; in particular,
Pab ̸= Pcd. By (P1), Pab and Pcd intersect in exactly one point, call it z.
Since Q ∩ Pab and Q ∩ Pcd are disjoint, we see that z /∈ Q. But now Pab

contains at least three points, namely a, b, z.

Theorem 3.1.4. Let (X,P) be a finite projective plane of order n.9 Then
all the following hold:

(a) for each point x ∈ X, exactly n+ 1 lines in P pass through x;

(b) |X| = n2 + n+ 1;

(c) |P| = n2 + n+ 1.
7Check that x exists and is unique!
8So, if (X,P) is a finite projective plane of order n, then each line in P contains exactly

n+ 1 points.
9By Proposition 3.1.3, we have that n ≥ 2.
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Proof of (a) and (b). We begin by proving an auxiliary claim.

Claim. For every point x ∈ X, there exists a line P ∈ P such
that x /∈ P .

Proof of the Claim. Fix a point x ∈ X. Using (P0) from the definition of
a finite projective plane, we fix a 4-element subset Q ⊆ X such that for all
P ∈ P , we have that |Q∩P | ≤ 2. Clearly, |Q\{x}| ≥ 3. Let a, b, c ∈ Q\{x}
be pairwise distinct. It now suffices to show that x belongs to at most one
of ab and ac. Suppose otherwise, i.e. suppose that x belongs both to ab and
to ac. Then the lines ab and ac have at least two points (namely, a and x)
in common, and so by (P2), we have that ab = ac. But now the line ab = ac
contains at least three points (namely, a, b, c) of Q, a contradiction. This
proves the Claim. ♦

We now prove (a). Fix a point x ∈ X. By the Claim, there exists a line
P ∈ P such that x /∈ P . Since (X,P) is of order n, we know that |P | = n+1;
set P = {x0, x1, . . . , xn}. By (P2), the lines xx0, xx1, . . . , xxn are pairwise
distinct,10 and they all contain x. So, there are at least n+ 1 lines passing
through x. On the other hand, by (P1), any line passing though x intersects
the line P in one of the points x0, x1, . . . , xn, and is therefore (by (P2)) equal
to one of xx0, . . . , xx1, xxn. Thus, exactly n+ 1 lines pass through x. This
proves (a).

We now prove (b). Fix any line P ∈ P. Since (X,P) is of order n, we
know that |P | = n+ 1; set P = {x0, x1, . . . , xn}. Since every line in P has
n+ 1 points, the Claim guarantees that |X| ≥ n+ 2; consequently, P ⫋ X.
Fix any a ∈ X \ P . For each i ∈ {0, 1, . . . , n}, we set Pi := axi (see the
picture below).

a

x0

x1

xn

P0

P1

Pn

P

10Indeed, suppose that for some distinct i, j ∈ {0, 1, . . . , n}, we had xxi = xxj . Now the
line xxi = xxj contains both xi and xj . On the other hand, the line P contains both xi

and xj . By (P2), there is exactly one line that contains both xi and xj , and we deduce
that P = xxi = xxj . But this implies that x ∈ P , contrary to the choice of P .
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By (P2), lines P0, P1, . . . , Pn are pairwise distinct,11 and so by (P1), any
two of them have exactly one point in common. Since a lies on each of
P0, P1, . . . , Pn, we see that Pi ∩ Pj = {a} for all distinct i, j ∈ {0, 1, . . . , n};
consequently, P0 \{a}, P1 \{a}, . . . , Pn \{a} are pairwise disjoint. Now, since
(X,P) is of order n, we know that P0, P1, . . . , Pn each have n+1 points, and
we deduce that

|P0 ∪ P1 ∪ · · · ∪ Pn| = |{a}|+ |P0 \ {a}|+ |P1 \ {a}|+ · · ·+ |Pn \ {a}|

= 1 + (n+ 1)n

= n2 + n+ 1.

It now remains to show that X = P0 ∪P1 ∪ · · · ∪Pn; in fact, we only need to
show that X ⊆ P0 ∪P1 ∪ · · · ∪Pn, for the reverse inclusion is immediate. Fix
a point x ∈ X; we must show that x belongs to at least one of P0, P1, . . . , Pn.
We may assume that x ̸= a, for otherwise we are done. The line R := xa is
distinct from P (because a ∈ R, but a /∈ P ), and so by (P1), |P ∩ R| = 1.
Since P = {x0, x1, . . . , xn}, it follows that there exists some i ∈ {0, 1, . . . , n}
such that P ∩R = {xi}. Now lines Pi and R have at least two points (namely,
a and xi) in common, and so by (P2), we have that R = Pi. Since x ∈ R,
we deduce that x ∈ Pi. This completes the argument.

We postpone the proof of Theorem 3.1.4(c) to the end of section 3.2.

3.2 Duality

In this section, we show (roughly speaking) that by swapping the roles of
points and lines of a finite projective plane, we obtain another finite projective
plane (called the “dual” of the original finite projective plane).

Let us be more precise. For a set system (X,S), we define the dual of
(X,S) to be the ordered pair (Y, T ), where Y = S and

T =
{
{S ∈ S | x ∈ S} | x ∈ X

}
.

Example 3.2.1. Let X = {1, 2, 3} and S = {A,B}, where A = {1, 2}
and B = {1, 3}. Then the dual of (X,S) is (Y, T ), where Y = {A,B} and

T =
{
{A,B}, {A}, {B}

}
.12

11This is analogous to the argument from footnote 10.
12Indeed {S ∈ S | 1 ∈ S} = {A,B}, {S ∈ S | 2 ∈ S} = {A}, and {S ∈ S | 3 ∈ S} = {B}.
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Theorem 3.2.2 (below) states that the dual of a finite projective plane is
again a finite projective plane. Before giving a formal proof, let us try to
give some intuition behind this. If (X,P) is a finite projective plane, and
(Y,R) is its dual, then the lines of (X,P) become points of (Y,R) (indeed,
by definition, Y = P). Furthermore, points of (X,P) correspond to the
lines of (Y,R) in a natural way: a point x ∈ X corresponds to the line
Rx := {P ∈ P | x ∈ P} ∈ R. The incidence graphs of (X,P) and (Y,R)
are isomoprhic (i.e. identical up to a relabeling of the vertices), except that
points turn into lines and vice versa.

Theorem 3.2.2. The dual of a finite projective plane is again a finite
projective plane.

Proof. Let (X,P) be a finite projective plane, and let (Y,R) be its dual. To
simplify notation, for all x ∈ X, we set Rx := {P ∈ P | x ∈ P}. We now have
that Y = P and R = {Rx | x ∈ X}. Obviously, for all x ∈ X, we have that
Rx ⊆ P = Y , and consequently Rx ∈ P(Y ); thus, R ⊆ P(Y ), i.e. (Y,R) is
a set system. Furthermore, since X is finite, and since Y = P ⊆ P(X), we
have that Y is finite. It now remains to show that (Y,R) satisfies (P0), (P1),
and (P2).

We first prove that (Y,R) satisfies (P0). Since (X,P) is a finite projective
plane, (P0) guarantees that there exists a 4-element set Q ⊆ X such that
for all P ∈ P, we have that |Q ∩ P | ≤ 2. Set Q = {a, b, c, d}. Further,
set P1 = ab, P2 = bc, P3 = cd, and P4 = da. Since |Q ∩ P | ≤ 2 for all
P ∈ P , we now deduce that Q∩P1 = {a, b}, Q∩P2 = {b, c}, Q∩P3 = {c, d},
and Q ∩ P4 = {d, a}; in particular, every point of Q belongs to exactly two
of P1, P2, P3, P4. Now, set Q∗ = {P1, P2, P3, P4}; we must show that no
element of R contains more than two elements of Q∗. Suppose otherwise.
Then there exist some x ∈ X and pairwise distinct i, j, k ∈ {1, 2, 3} such
that Pi, Pj , Pk ∈ Rx; consequently, x ∈ Pi ∩ Pj ∩ Pk. Since each point in Q
belongs to exactly two of P1, P2, P3, P4, whereas x belongs to at least three of
them, we see that x /∈ Q. On the other hand, for any three of P1, P2, P3, P4,
some two of them have a point of Q in common. So, some two of Pi, Pj , Pk,
have at least two points in common (namely, one point of Q, plus the point
x) and are therefore (by (P2) applied to (X,P)) identical, a contradiction.
This proves that (Y,R) satisfies (P0).

We next show that (Y,R) satisfies (P1). Fix distinct R1, R2 ∈ R; we
must show that |R1 ∩R2| = 1. By the construction of R, there exist some
x1, x2 ∈ X such that R1 = Rx1 and R2 = Rx2 ; since R1 ̸= R2, we have
that x1 ̸= x2. Now, R1 ∩ R2 = {P ∈ P | x1, x2 ∈ P}. By (P2) for (X,P),
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there is exactly one P ∈ P such that x1, x2 ∈ P ; so, R1 ∩R2 = {P}, and in
particular, |R1 ∩R2| = 1. Thus, (Y,R) satisfies (P1).

It remains to show that (Y,R) satisfies (P2). Fix distinct P1, P2 ∈ Y (=
P); we must show that there is exactly one member of R that contains both
P1 and P2. By (P1) for (X,P), we know that |P1∩P2| = 1; set P1∩P2 = {x0}.
So, Rx0 is the only member of R that contains both P1 and P2. Thus, (Y,R)
satisfies (P2).

Notation: The dual of a finite projective plane (X,P) is sometimes
denoted by (X,P)∗.

We complete this section by proving Theorem 3.1.4(c), as follows. Let
(X,P) be a finite projective plane of order n; we must show that |P| =
n2 + n+ 1. By Theorem 3.2.2, (Y,R) := (X,P)∗ is also a finite projective
plane. By Theorem 3.1.4(a), we have that for all x ∈ X, there are exactly
n+ 1 lines P ∈ P that contain x. It then follows from the construction that
all R ∈ R satisfy |R| = n+ 1.13 So, the finite projective plane (Y,R) is of
order n. By Theorem 3.1.4(b), we now have that |Y | = n2 + n + 1. But
Y = P, and so |P| = n2 + n+ 1, which is what we needed to show.

3.3 Finite projective planes and Latin squares

For a positive integer n, an n× n Latin square is an n× n array (or matrix)
whose entries are numbers 1, . . . , n, and in which each number 1, . . . , n occurs
exactly once in each row and in each column. Two 3× 3 Latin squares are
represented in Figure 3.3. When we write that [ai,j ]n×n is a Latin square, we
mean that this Latin square is of size n×n, and that for all i, j ∈ {1, . . . , n},
the (i, j)-th entry (i.e. the entry in the i-th row and j-th column) of the
Latin square is ai,j . Now, two n×n Latin squares, say [ai,j ]n×n and [bi,j ]n×n,
are orthogonal if each entry of the matrix matrix obtained by superimposing
A on B, i.e. of the matrix [(ai,j , bi,j)]n×n, is different. Since an n× n matrix
has n2 entries, and the Cartesian product {1, . . . , n}× {1, . . . , n} has exactly
n2 elements, we see that two n× n Latin squares are orthogonal if and only
if each element of {1, . . . , n} × {1, . . . , n} appears exactly once in the matrix
obtained by superimposing the two n× n Latin squares. For instance, the
Latin squares from Figure 3.3 are orthogonal, as we can see from Figure 3.4.

13Let us check this. First, for all x ∈ X, we set Rx = {P ∈ P | x ∈ P}, as in the proof
of Theorem 3.2.2. Since every point in X belongs to precisely n+ 1 lines in P, we see that
for all x ∈ X, we have that |Rx| = n + 1. Since R = {Rx | x ∈ X}, we deduce that all
members of R have precisely n+ 1 elements.
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1 2 3

2 3 1

3 1 2

1 2 3

3 1 2

2 3 1

Figure 3.3: Two 3× 3 Latin squares.

(1, 1) (2, 2) (3, 3)

(2, 3) (3, 1) (1, 2)

(3, 2) (1, 3) (2, 1)

Figure 3.4: The matrix obtained by superimposing the left (red) 3× 3 Latin
square from Figure 3.3 onto the right (blue) one.

For a positive integer n, a Latin square A = [ai,j ]n×n and a permutation
π of the set {1, . . . , n}, we set π(A) = [π(ai,j)]n×n; obviously, π(A) is a Latin
square. For example, if

1 3 2

3 2 1

2 1 3

A =

and if π =

(
1 2 3
1 3 2

)
, then

1 2 3

2 3 1

3 1 2

π(A) = .

Proposition 3.3.1. Let A = [ai,j ]n×n and B = [bi,j ]n×n be orthogonal n×n
Latin squares, and let πA, πB be permutations of the set {1, . . . , n}. Then
πA(A) and πB(B) are orthogonal Latin squares.
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Proof. Obvious.14

Theorem 3.3.2. Let n ≥ 2 be an integer, and let M be a set of pairwise
orthogonal n× n Latin squares. Then |M | ≤ n− 1.

Proof. We may assume that M ̸= ∅, for otherwise, the result is immediate.
Set t = |M | and M = {A1, . . . , At}; we must show that t ≤ n− 1. First, for
each i ∈ {1, . . . , t}, we let πi be the permutation of {1, . . . , n} that transforms
the first row of Ai into 1, . . . , n, and let A′

i = πi(Ai). By Proposition 3.3.1,
Latin squares A′

1, . . . , A
′
t are pairwise orthogonal. Now, since 1 is the (1, 1)-th

entry (i.e. the entry in the first row and first column) of all the matrices
A′

1, . . . , A
′
t, we see that 1 is not the (2, 1)-th entry (i.e. the entry in the second

row and first column) of any of the Latin squares A′
1, . . . , A

′
t. Further, no two

of A′
1, . . . , A

′
t can have the same number in the (2, 1)-th entry; indeed, if for

some distinct i, j ∈ {1, . . . , t}, we had that the (2, 1)-th entry of A′
i and A′

j

was the same, say k, then (k, k) would be both the (1, k)-th and the (2, 1)-th
entry of the matrix obtained by superimposing A′

i and A′
j , contrary to the

fact that A′
i and A′

j are orthogonal. So, each of A′
1, . . . , A

′
t has a number

from 2, . . . , n in the (2, 1)-th entry, and no two of A′
1, . . . , A

′
t have the same

(2, 1)-th entry; thus, t ≤ n− 1.

Theorem 3.3.3. Let n ≥ 2 be an integer. Then the following are equivalent:

(a) there exists a finite projective plane of order n;

(b) there exists a collection of n−1 pairwise orthogonal n×n Latin squares.

Proof of “(b) =⇒ (a)” (outline). Assume that (b) is true, and let L1, . . . , Ln−1

be pairwise orthogonal n× n Latin squares. We will give a construction of
the corresponding finite projective plane of order n.15

Our finite projective plane has n2 + n + 1 points, and we call them
r, s, ℓ1, . . . , ℓn−1, x1,1, . . . , x1,n, x2,1, . . . , x2,n, . . . , xn,1, . . . , xn,n.

16

Our finite projective plane has n2+n+1 lines, and we construct them as
follows. One line is B = {r, s, ℓ1, . . . , ℓn−1}. Further, for each i ∈ {1, . . . , n},
we have the line Ri = {r, xi,1, . . . , xi,n}; and for each j ∈ {1, . . . , n}, we
have the line Sj = {s, x1,j , . . . , xn,j}.17 The points and lines constructed

14Can you see why?
15As an exercise, prove that this construction is correct.
16So, we have the points r and s; we have n− 1 points ℓi; and we have n2 points xi,j .

In total, we have 2 + (n− 1) + n2 = n2 + n+ 1 points.
17We remark that for all i, j ∈ {1, . . . , n}, we have that Ri∩Sj = {xi,j}. We also remark

that, so far, we have constructed 2n+1 lines, and we need to construct (n2+n+1)−(2n+1) =
n2 − n = (n− 1)n more.
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Figure 3.5: Points and lines (except the Lj
i ’s) of the projective plane from

the proof of Theorem 3.3.3.

thus far are represented in Figure 3.5. Now, for each i ∈ {1, . . . , n − 1},
the point ℓi belongs to the (already constructed) line B, and to n other
lines, call them L1

i , . . . , L
n
i , which we construct as follows. For all i ∈

{1, . . . , n − 1} and j ∈ {1, . . . , n}, we set Lj
i = {ℓi} ∪ {xp,q | 1 ≤ p, q ≤

n, and the (p, q)-th entry of Li is j}.
The proof of correctness (i.e. of the fact that we have indeed constructed

a finite projective plane) is left as an exercise.18

We remark that the proof of the “(a) =⇒ (b)” part of Theorem 3.3.3 is
similar to the “(b) =⇒ (a)” direction, only it goes the other way (from a
finite projective plne to a collection of pairwise orthogonal Latin squares). To
check your understanding, you can try to give the construction by yourself.

Example 3.3.4. Let L1 and L2 be, respectively, the left (red) and right
(blue) Latin Square from Figure 3.3. The finite projective plane of order 3
that corresponds to {L1, L2} is as follows. Its points are

r, s, ℓ1, ℓ2, x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, x3,1, x3,2, x3,3.

Its lines are as follows:

18We remark, however, that once we have shown that we have indeed constructed a finite
projective plane, Theorem 3.1.4 immediately implies that the order of our finite projective
plane is n (e.g. because we have n2 + n+ 1 points).
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� B = {r, s, ℓ1, ℓ2};

� R1 = {r, x1,1, x1,2, x1,3};

� R2 = {r, x2,1, x2,2, x2,3};

� R3 = {r, x3,1, x3,2, x3,3};

� S1 = {s, x1,1, x2,1, x3,1};

� S2 = {s, x1,2, x2,2, x3,2};

� S3 = {s, x1,3, x2,3, x3,3};

� L1
1 = {ℓ1, x1,1, x2,3, x3,2};

� L2
1 = {ℓ1, x1,2, x2,1, x3,3};

� L3
1 = {ℓ1, x1,3, x2,2, x3,1};

� L1
2 = {ℓ2, x1,1, x2,2, x3,3};

� L2
2 = {ℓ2, x1,2, x2,3, x3,1};

� L3
2 = {ℓ2, x1,3, x2,1, x3,2}.

3.4 An algebraic construction of projective planes

Let F be any field. As usual, + and · are, respectively, addition and multipli-
cation in F, and 0 and 1 are, respectively, the additive and multiplicative
identity in F. We construct the projective plane FP 2 as follows. We be-
gin with the set T := F3 \ {(0, 0, 0)}, i.e. the set of all ordered triples of
elements of F, except for the triple whose entries are all zero. We then
form a binary relation ∼ on T as follows: for (x1, y1, z1), (x2, y2, z2) ∈ T , we
have (x1, y1, z1) ∼ (x2, y2, z2) if and only if there exists a scalar λ ∈ F \ {0}
such that (x2, y2, z2) = λ(x1, y1, z1).

19 It is easy to see that ∼ is an equiv-
alence relation on T .20 The set of points of FP 2 is T/∼; in other words,
points of FP 2 are the equivalence classes of the equivalence relation ∼ on
T . We will denote the equivalence class of (x, y, z) ∈ T by (x, y, z), so that
(x, y, z) = {(λx, λy, λz) | λ ∈ F \ {0}}. Thus, the set of points of FP 2 is pre-
cisely the set {(x, y, z) | (x, y, z) ∈ T}. Next, for each (a, b, c) ∈ T , we define
P (a, b, c) to be the set of all points (x, y, z) such that ax+ by+ cz = 0;21 the
lines of FP 2 are precisely the sets P (a, b, c) with (a, b, c) ∈ T . We remark that
for all (a1, b1, c1), (a2, b2, c2) ∈ T , we have that P (a1, b1, c1) = P (a2, b2, c2) if
and only if (a1, b1, c1) ∼ (a2, b2, c2).

22

Theorem 3.4.1. For each field F, FP 2 is a projective plane.23

19This means that x2 = λx1, y2 = λy1, and z2 = λz1.
20Check this!
21Note that for all λ ∈ F \ {0}, we have that ax + by + cz = 0 if and only if a(λx) +

b(λy) + c(λz) = 0, and so this is well-defined.
22Check this!
23This means that FP 2 satisfies all the conditions from the definition of a finite projective

plane, except that the set of points may possibly be infinite.
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Proof. We use notation from the construction of FP 2. We must verify that
the points and lines of FP 2 satisfy (P0), (P1), and (P2) from the definition
of a projective plane.

First, we check that (P0) is satisfied for

Q :=
{
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)

}
.

We note that each of the following four matrices 1 0 0
0 1 0
0 0 1

 ,

 0 1 0
0 0 1
1 1 1

 ,

 0 0 1
1 1 1
1 0 0

 ,

 1 1 1
1 0 0
0 1 0


has rank three.24 So, if A is any one of the four matrices above, then Ax = 0
has only the trivial solution, and consequently, no line of FP 2 contains three
(or more) points of Q. So, (P0) is satisfied.

Next, we check that (P1) is satisfied. We fix distinct lines P1, P2

of FP 2, and we show that |P1 ∩ P2| = 1. By construction, there exist
(a1, b1, c1), (a2, b2, c2) ∈ T such that P1 = P (a1, b1, c1) and P2 = P (a2, b2, c2).
Since P1 ̸= P2, we have that (a1, b1, c1) ̸∼ (a2, b2, c2), that is, neither one of
(a1, b1, c1), (a2, b2, c2) is a scalar multiple of the other. We now use Linear
Algebra. We consider the 2× 3 matrix

A =

[
a1 b1 c1
a2 b2 c2

]
.

Since neither row of A is a scalar multiple of the other, we see that rank(A) =
2. On the other hand, by the Rank-Nullity Theorem, we have that rank(A)+

dim ker(A) = 3. So, dim ker(A) = 1. Let
{ x

y
z

} be a basis for ker(A);25

then P1 ∩ P2 =
{
(x, y, z)

}
, and we deduce that |P1 ∩ P2| = 1. Thus, (P1) is

satisfied.
The proof of the fact that (P2) is satisfied is analogous to the proof that

(P1) is satisfied.26

24Note that each of these matrices was obtained by taking three of the four elements of
Q and (essentially) turning them into rows of the matrix. Each selection of three elements
of Q corresponds to one of our four matrices.

25So, (x, y, z) ̸= (0, 0, 0), and we see that (x, y, z) ∈ T . Furthermore, we have that

ker(A) =
{ λx

λy
λz

 | λ ∈ F
}
.

26Check this!
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Theorem 3.4.2. If F is a finite field, with |F| = n, then FP 2 is a finite
projective plane of order n.

Proof. By Theorem 3.4.1, FP 2 is a projective plane. Furthermore, since F is
finite, it is obvious that the projective plane FP 2 is finite. We must show
that the order of FP 2 is n. In view of Theorem 3.1.4, it suffices to show that
FP 2 has precisely n2+n+1 points. Now, note that for all (x, y, z) ∈ T , there
exists a unique triple (x′, y′, z′) ∈ T such that the last non-zero coordinate
of (x′, y′, z′) is 1 and (x, y, z) ∼ (x′, y′, z′).27 Now, there are n2 triples of the
form (x, y, 1) in T ; there are n triples of the form (x, 1, 0) in T ; and there is
one triple (1, 0, 0) in T . So, there are n2 + n + 1 equivalence classes of ∼,
that is, FP 2 has n2+n+1 points. As we already pointed out, Theorem 3.1.4
now implies that the finite projective plane FP 2 is of order n.

It is well-known that for all integers n ≥ 2, there exists a field of size n if
and only if n is a power of a prime (that is, if and only if there exist a prime
number p and a positive integer k such that n = pk). This, together with
Theorem 3.4.2, implies that if n ≥ 2 is a power of a prime, then there exists
a finite projective plane of order n. However, it is not known whether there
exists a finite projective plane whose order is not a power of a prime.

27For existence, we observe that for all (x, y, z) ∈ T , we have the following:

� if z ̸= 0, then (x, y, z) ∼ (z−1x, z−1y, 1);

� if z = 0 and y ̸= 0, then (x, y, z) ∼ (y−1x, 1, 0);

� if y = z = 0, then x ̸= 0 (since x, y, z cannot all be zero) and (x, y, z) ∼ (1, 0, 0).

Can you check uniqueness?
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Chapter 4

Flows and cuts in networks.
Matchings in bipartite graphs

4.1 Network flows and cuts

A network is an ordered four-tuple (G, s, t, c), where G is an oriented graph,
s and t are two distinct vertices of this graph (called the source and sink,
respectively), and c : E(G) → [0,+∞) is a function, called the capacity
function (see Figure 4.1 for an example). The capacity of an edge e ∈ E(G)
is the number c(e).

Networks can be used to model, for example, a system of pipes used
to transport some resource, such as water or oil; capacities would be the
number of units of volume that a given pipe can transport per unit time.

A feasible flow (or simply flow) in a network (G, s, t, c) is a function
f : E(G) → [0,+∞) that satisfies the following two properties (see Figure 4.2
for an example):

� f(e) ≤ c(e) for all e ∈ E(G);1

� for all v ∈ V (G) \ {s, t}, we have
∑

(x,v)∈E(G)

f(x, v) =
∑

(v,y)∈E(G)

f(v, y).2

The value of a flow f is

val(f) =
( ∑

(s,x)∈E(G)

f(s, x)
)
−
( ∑

(x,s)∈E(G)

f(x, s)
)
.

1This means that flow cannot be higher than capacity.
2This means that, for each vertex other than the source and the sink, the in-flow is

equal to the out-flow. This condition is called the conservation of flow condition.



Chapter 4. Flows and cuts in networks. Matchings in bipartite graphs 57

π

2π

6

2

1
2

3

5
4

9 6

8s t

Figure 4.1: A network with capacities in red.
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Figure 4.2: A network flow. Flows are in blue and capacities are in red.
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Figure 4.3: A cut in a network. (The edges of the cut are in red.)
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s t

A

B

Figure 4.4: A cut S(A,B) in a network. (The edges of the cut are in red.)

For instance, the value of the flow in Figure 4.2 is (π + 6)− 1
2 = π + 11

2 . A
maximum flow in (G, s, t, c) is a flow f∗ that has maximum value, i.e. one
that satisfies val(f) ≤ val(f∗) for all flows f .

Theorem 4.1.1. Every network (G, s, t, c) has a maximum flow.

Proof. Omitted.

Theorem 4.1.1 should certainly seem plausible, and yet it is not entirely
obvious how one might prove it (since the number of flows is, typically,
infinite). The proof relies on certain results from Analysis, which we omit.

As usual, for a (directed or undirected) graph G and a set R ⊆ E(G), we
denote by G−R the graph obtained from G by deleting all edges in R.

An s, t-cut, or simply cut, in a network (G, s, t, c) is a set R ⊆ E(G) such
that G − R contains no directed path from s to t (see Figure 4.3 for an
example).3 The capacity of the cut R is c(R) =

∑
e∈R

c(e).

Our main theorem (proven in the next section) is the following.

Max-flow min-cut theorem. The maximum value of a flow in a network
is equal to the minimum capacity of a cut in that network.

4.2 Proof of the Max-flow min-cut theorem

We now need some terminology and notation. First, for a network (G, s, t, c),
a flow f in that network, and a set of edges R ⊆ E(G), we write

3Equivalently, every directed path from s to t in G uses at least one edge of R.
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� c(R) =
∑
e∈R

c(e);

� f(R) =
∑
e∈R

f(e).

Next, for a directed graph G and disjoint sets A,B ⊆ V (G), we set

S(A,B) := {(a, b) ∈ E | a ∈ A, b ∈ B}.

Thus, S(A,B) is the set of all edges from A to B (see Figure 4.4 for an
example).4

For a network (G, s, t, c), disjoint sets A,B ⊆ V (G), and a flow f , we
write

� c(A,B) = c(S(A,B));5

� f(A,B) = f(S(A,B)).

Proposition 4.2.1. Let (G, s, t, c) be a network, and let (A,B) be a partition
of V (G) such that s ∈ A and t ∈ B. Then S(A,B) is a cut in (G, s, t, c).

Proof. Let P = p0, p1, . . . , pℓ, with p0 = s and pℓ = t, be a directed path in
G. We must show that P uses at least one edge of S(A,B). By hypothesis,
p0 = s ∈ A and pℓ = t ∈ B; let i ∈ {0, . . . , ℓ − 1} be maximum with the
property that pi ∈ A. Then pi+1 ∈ B, and see that (pi, pi+1) ∈ S(A,B), i.e.
the directed path P uses an edge of S(A,B), which is what we needed to
show.

Proposition 4.2.2. Let (G, s, t, c) be a network, and let R be a cut in this
network. Then there exists a partition (A,B) of V (G) such that s ∈ A, t ∈ B,
and S(A,B) ⊆ R.6

Proof. Let A be the set of all vertices v ∈ V (G) such that G− R contains
a directed path from s to v, and set B = V (G) \ A. Clearly, s ∈ A and
t ∈ B.7 We now claim that S(A,B) ⊆ R. Suppose otherwise, and fix an edge

4S(A,B) does not contain edges from B to A!
5According to our notation, c(S(A,B)) =

∑
e∈S(A,B)

c(e), i.e. c(A,B) is the sum of

capacities of all the edges from A to B.
6Note that this implies that c(A,B) ≤ c(R). Thus, in our proof of the Max-flow min-cut

theorem, it will be enough to consider cuts of the form S(A,B), where (A,B) is a partition
of V (G), with s ∈ A and t ∈ B; cuts of this form are sometimes called elementary cuts.

7The fact that t /∈ A follows from the fact that R is a cut in (G, s, t, c), and so there
are no directed paths from s to t in G−R; so, t ∈ B.
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(x, y) ∈ S(A,B) \ R. (In particular, x ∈ A and y ∈ B.) Let P = p0, . . . , pℓ,
with p0 = s and pℓ = x, be a directed path in G−R. Since (x, y) /∈ R, we
then have that p0, . . . , pℓ, y is a directed path from s to y in G−R, and so
by construction, we have that y ∈ A, contrary to the fact that y ∈ B.

Lemma 4.2.3. Let f be a flow in a network (G, s, t, c), and let (A,B) be a
partition of V (G) such that s ∈ A and t ∈ B. Then

val(f) = f(A,B)− f(B,A).

In particular,8 we have that

val(f) =
( ∑

(x,t)∈E(G)

f(x, t)
)
−
( ∑

(t,x)∈E(G)

f(t, x)
)
.

Proof. By the definition of a flow, for all vertices v ∈ A \ {s}, we have that( ∑
(v,x)∈E(G)

f(v, x)
)
−
( ∑

(x,v)∈E(G)

f(x, v)
)

= 0,

and consequently,

∑
v∈A\{s}

(( ∑
(v,x)∈E(G)

f(v, x)
)
−
( ∑

(x,v)∈E(G)

f(x, v)
))

= 0,

On the other hand, for the source s, we have that( ∑
(s,x)∈E(G)

f(s, x)
)
−
( ∑

(x,s)∈E(G)

f(x, s)
)

= val(f).

By adding the last two equalities, we get

∑
v∈A

(( ∑
(v,x)∈E(G)

f(v, x)
)
−
( ∑

(x,v)∈E(G)

f(x, v)
))

= val(f).

Note that for each edge (u1, u2) ∈ E(G) such that u1, u2 ∈ A, the term
f(u1, u2) appears exactly twice in the sum above: once with the + sign,9

and one with the − sign.10 After we cancel out such terms, what remains is
precisely f(A,B)− f(B,A) = val(f), which is what we needed to show.

8This happens if we take A = V (G) \ {t} and B = {t}.
9For this, we take v = u1, x = u2, and (v, x) ∈ E(G) to add f(u1, u2) (via the first

sum).
10For this, we take v = u2, x = u1, and (x, v) ∈ E(G) to subtract f(u1, u2) (via the

second sum).
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Corollary 4.2.4. Let f be a flow in a network (G, s, t, c), and let R be a
cut in (G, s, t, c). Then val(f) ≤ c(R).

Proof. By Proposition 4.2.2, there exists a partition (A,B) of V (G) such
that s ∈ A, t ∈ B, and S(A,B) ⊆ R. Then

val(f) = f(A,B)− f(B,A) by Lemma 4.2.3

≤ f(A,B) because f(e) ≥ 0 for all e ∈ E(G)

≤ c(A,B) because f(e) ≤ c(e) for all e ∈ E(G)

≤ c(R) because S(A,B) ⊆ R and
and c(e) ≥ 0 for all e ∈ E(G)

which is what we needed to show.

We now introduce a key new concept: that of an “augmenting path.” First,
an (s, t)-path in a network (G, s, t, c) is a sequence v0, v1, . . . , vℓ of pairwise
distinct vertices of G such that v0 = s, vℓ = t, and for all i ∈ {0, . . . , ℓ− 1},
we have that one of (vi, vi+1) and (vi+1, vi) belongs to E(G). Note that an
(s, t)-path may, but need not be, a directed (s, t)-path (see the figure below
for an example).

s t

Now, given a flow f in the network (G, s, t, c), an (s, t)-path v0, v1, . . . , vℓ in
(G, s, t, c) is said to be an f -augmenting path if the following two conditions
are satisfied (see Figure 4.5 for an example):

� for all i ∈ {1, . . . , ℓ − 1} such that (vi, vi+1) ∈ E(G), we have that
f(vi, vi+1) < c(vi, vi+1);

11

� for all i ∈ {1, . . . , ℓ − 1} such that (vi+1, vi) ∈ E(G), we have that
f(vi+1, vi) > 0.12

Lemma 4.2.5. Let f be a flow in a network (G, s, t, c). Then f is a maximum
flow if and only if there does not exist an f-augmenting path in (G, s, t, c).
Furthermore, if f is a maximum flow, then there exists a cut R in (G, s, t, c)
such that val(f) = c(R).

11So, the flow through each edge directed “with the flow” is strictly smaller than the
capacity of that edge.

12So, the flow through each edge directed “against the flow” is strictly positive.
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Figure 4.5: An f -augmenting path (edges in blue) in a network (G, s, t, c).
(Flows are in blue and capacities are in red.)

Proof. It suffices to prove the following two statements:

(a) if there exists an f -augmenting path in (G, s, t, c), then f is not a
maximum flow in (G, s, t, c);

(b) if there does not exist an f -augmenting path in (G, s, t, c), then f is a
maximum flow in (G, s, t, c), and furthermore, there exists a cut R in
(G, s, t, c) such that val(f) = c(R).

We first prove (a). Suppose that v0, . . . , vℓ (with v0 = s and vℓ = t) is an
f -augmenting path in (G, s, t, c). Now, set

� ε1 := min
(
{c(vi, vi+1)−f(vi, vi+1) | 0 ≤ i ≤ ℓ−1, (vi, vi+1) ∈ E(G)}∪

{∞}
)
;

� ε2 := min
(
{f(vi+1, vi) | 0 ≤ i ≤ ℓ− 1, (vi+1, vi) ∈ E(G)} ∪ {∞}

)
;

� ε := min{ε1, ε2}.13

Since v0, . . . , vℓ is an f -augmenting path, we have that ε1, ε2 > 0, and
consequently, ε > 0. We now define a new flow f ′ as follows:

� f ′(vi, vi+1) = f(vi, vi+1)+ε for all i ∈ {0, . . . , ℓ−1} such that (vi, vi+1) ∈
E(G);14

13The reason we have ∞ in the definition of ε1 and ε2 is because our f -augmenting path
may have only “with-the-flow” or only “against-the-flow” edges, and we cannot take the
minimum of an empty set. Note, however, that at least one of ε1 and ε2 is a real number
(and not ∞), and consequently, ε is a real number.

14So, for edges on our augmenting path directed with the flow, we increase the flow by ε.
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� f ′(vi+1, vi) = f(vi+1, vi)−ε for all i ∈ {0, . . . , ℓ−1} such that (vi+1, vi) ∈
E(G);15

� f ′(e) = f(e) for all other edges e.

It is easy to verify that f ′ is indeed a feasible flow.16 Furthermore, by
construction, val(f ′) = val(f) + ε, and so (since ε > 0) we have that
val(f ′) > val(f). Thus, f is not a maximum flow in (G, s, t, c).

It remains to prove (b). For this, we suppose that (G, s, t, c) does not
admit an f -augmenting path, and we show that f is a maximum flow. Let
A be the set of all vertices v ∈ V (G) such that there exists a path v0, . . . , vℓ
with v0 = s and vℓ = v, and satisfying the following two properties:17

� for all i ∈ {1, . . . , ℓ − 1} such that (vi, vi+1) ∈ E(G), we have that
f(vi, vi+1) < c(vi, vi+1);

� for all i ∈ {1, . . . , ℓ − 1} such that (vi+1, vi) ∈ E(G), we have that
f(vi+1, vi) > 0.

Set B = V (G) \ A. Clearly, s ∈ A and t ∈ B.18 Further, for all x ∈ A and
y ∈ B,

� if (x, y) ∈ E(G), then f(x, y) = c(x, y), and

� if (y, x) ∈ E(G), then f(y, x) = 0.19

Note that this implies that f(A,B) = c(A,B) and f(B,A) = 0. But now we
have that

val(f) = f(A,B)− f(B,A) by Lemma 4.2.3

= c(A,B) because f(A,B) = c(A,B)
and f(B,A) = 0.

15So, for edges on our augmenting path directed against the flow, we decrease the flow
by ε.

16Check this!
17Essentially, but somewhat informally, we are choosing A to be the set of all vertices

v ∈ V (G) such that there exists an f -augmenting path from s to v.
18If we had t ∈ A, then by the construction of A, there would be an f -augmenting path

in (G, s, t, c), a contradiction.
19Otherwise, there would be an f -augmenting path from s to y, contrary to the fact

that y /∈ A.
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By Proposition 4.2.1, we know that R := S(A,B) is a cut, and by what we
just showed, val(f) = c(A,B) = c(R). It now follows from Corollary 4.2.4
that f is a maximum flow in (G, s, t, c).20

We are now ready to prove the Max-flow min-cut theorem, restated below.

Max-flow min-cut theorem. The maximum value of a flow in a network
is equal to the minimum capacity of a cut in that network.

Proof. Let (G, s, t, c) be a network, and let f be a maximum flow in it (the
existence of such a flow is guaranteed by Theorem 4.1.1). By Lemma 4.2.5,
there exists a cut R in (G, s, t, c) such that val(f) = c(R). Furthermore,
for any cut R′ in (G, s, t, c), Corollary 4.2.4 guarantees that val(f) ≤ c(R′),
and consequently, c(R) ≤ c(R′); thus, R is a cut of minimum capacity in
(G, s, t, c).

4.3 The Ford-Fulkerson algorithm

The proof of Lemma 4.2.5 can easily be converted into an algorithm21

that finds a maximum flow and a minimum capacity of a cut in an input
network. The idea is to repeatedly find augmenting paths and update the flow
(increasing its value). When no augmenting path exists, we instead find a cut
whose capacity is equal to the value of our flow, which (by Corollary 4.2.4)
guarantees that this cut is of minimum capacity.

Before we describe the algorithm, a couple of remarks are in order. First
of all, the term “algorithm” is not entirely appropriate here because for
some networks, the procedure might not terminate. This, however, can only
happen if the capacities are irrational (a concrete example is given at the
end of this section).22 If all capacities are rational, then the algorithm will
indeed terminate (see Theorems 4.3.4 and 4.3.5). We also emphasize that, if
the algorithm does terminate, then its output is correct.

The procedure that we now describe will be used repeatedly as a subrou-
tine in the Ford-Fulkerson algorithm. Suppose that f is a flow in a network
(G, s, t, c). We now either find an f -augmenting path in (G, s, t, c), or we
find a cut whose capacity is val(f), as follows:

20Indeed, suppose f ′ is any flow in (G, s, t, c). Then by Corollary 4.2.4, we have that
val(f ′) ≤ R; since val(f) = c(R), it follows that val(f ′) ≤ val(f).

21As we shall see, technically, this is not quite an algorithm.
22Note, however, that it is possible that the algorithm terminates even if some (or all)

capacities are irrational.
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1. Set A := {s}.

2. While t /∈ A:

(a) Either find vertices x ∈ A and y ∈ V (G) \A such that

� (x, y) ∈ E(G) and f(x, y) < c(x, y), or

� (y, x) ∈ E(G) and f(y, x) > 0,

or determine that such x and y do not exist.

(b) If we found x and y, then we set backpoint(y) := x, and we update
A := A ∪ {y}.

(c) Otherwise, we stop and return the cut S(A, V (G) \A).23

3. Construct an f -augmenting path by following backpoints starting from
t, and return this path.

Example 4.3.1. Consider the flow f in the network (G, s, t, c) in Figure 4.6.
Either find an f -augmenting path, or find a cut whose capacity is val(f).

Solution. We begin with A := {s}. We now iterate several times.

1. We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u} and
backpoint(u) := s.

2. We select s ∈ A and w ∈ V (G) \ A, and we set A := {s, u, w} and
backpoint(w) := s.

3. We select u ∈ A and v ∈ V (G) \ A, and we set A := {s, u, w, v} and
backpoint(v) := u.

4. We select v ∈ A and t ∈ V (G) \A, and we set A := {s, u, w, v, t} and
backpoint(t) := v.

We now reconstruct our f -augmenting path: s, u, v, t.

Note that the choices made in our solution to Example 4.3.1 were not
unique. For instance, in step 3, we could have made the following choice
instead:

3. We select w ∈ A and t ∈ V (G) \ A, and we set A := {s, u, w, t} and
backpoint(t) := w.

This would have yielded the augmenting path s, w, t.

23In this case, an argument analogous to the proof of Lemma 4.2.5 guarantees that
c(A, V (G) \A) = val(f).
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3,3 3,3
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Figure 4.6: The network and flow from Example 4.3.1. Flows are in blue
and capacities in red.
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u
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0,3 0,3

1,1

1,1

Figure 4.7: The network and flow from Example 4.3.2. Flows are in blue
and capacities in red.

Example 4.3.2. Consider the flow f in the network (G, s, t, c) in Figure 4.7.
Either find an f -augmenting path, or find a cut whose capacity is val(f).

Solution. We begin with A := {s}. We now iterate several times.

1. We select s ∈ A and u ∈ V (G) \ A, and we set A := {s, u} and
backpoint(u) := s.

2. We select s ∈ A and v ∈ V (G) \ A, and we set A := {s, u, v} and
backpoint(v) := s.

There are now no further vertices that we can select, and t /∈ A. We now see
that S(A, V (G) \ A) = {(u, t), (v, t)} is a cut whose capacity is 2, which is
precisely equal to val(f).

We now describe the Ford-Fulkerson algorithm, which finds a maximum
flow in a network (G, s, t, c). Its steps are as follows:
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Figure 4.8: The network from Example 4.3.3.

1. Set f(e) := 0 for all e ∈ E(G).

2. While there exists an f -augmenting path in the network:

(a) Find an f -augmenting path v0, . . . , vℓ (with v0 = s and vℓ = t).

(b) Set

� ε1 := min
(
{c(vi, vi+1)−f(vi, vi+1) | 0 ≤ i ≤ ℓ−1, (vi, vi+1) ∈

E(G)} ∪ {∞}
)
;

� ε2 := min
(
{f(vi+1, vi) | 0 ≤ i ≤ ℓ − 1, (vi+1, vi) ∈ E(G)} ∪

{∞}
)
;

� ε := min{ε1, ε2}.
(c) Update f as follows:

� f(vi, vi+1) := f(vi, vi+1)+ε for all i ∈ {0, . . . , ℓ−1} such that
(vi, vi+1) ∈ E(G);24

� f(vi+1, vi) := f(vi+1, vi)−ε for all i ∈ {0, . . . , ℓ−1} such that
(vi+1, vi) ∈ E(G).25

3. Return f .

Example 4.3.3. Find a maximum flow and an a cut of minimum capacity
in the network represented in Figure 4.8.

Solution. We first set f(e) = 0 for all e ∈ E(G) (see the figure below, with
flows in blue and capacities in red).

24So, for edges on our augmenting path directed with the flow, we increase the flow by ε.
25So, for edges on our augmenting path directed against the flow, we decrease the flow

by ε.
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We now iterate several times.

1. We find an augmenting path s, v, t, we get ε = 1, and we update f as
in the picture below (flows are in blue and capacities are in red).

s t

u

v

w

0,2 0,1

1,2

0,3 0,3

1,1

0,1

2. We find an augmenting path s, u, t, we get ε = 1, and we update f as
in the picture below (flows are in blue and capacities are in red).

s t

u

v

w

1,2 0,1

1,2

0,3 0,3

1,1

1,1

3. We find a cut S({s, u, v}, {w, t}) = {(u, t), (v, t)} of capacity is 2, which
is precisely equal to val(f).
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The flow f is a maximum flow, and the cut S({s, u, v}, {w, t}) = {(u, t), (v, t)}
is a minimum capacity cut.

As we already mentioned, if all capacities of the input network are rational,
then the Ford-Fulkerson algorithm terminates. Moreover, the output flow
through each edge is rational. We first prove this for integer capacities
(see Theorem 4.3.4), and then more generally for rational capacities (see
Theorem 4.3.5).

Theorem 4.3.4. Let (G, s, t, c) be a network in which all capacities are non-
negative integers. Then, for input (G, s, t, c), the Ford-Fulkerson algorithm
terminates and outputs a maximum flow, and furthermore, the output flow
through each edge is a non-negative integer. In particular, some maximum
flow in (G, s, t, c) has the property that flows through all edges are non-
negative integers.

Proof. If we begin with an integer flow (i.e. a flow f such that f(e) is an
integer for each edge e in our network) in the network (G, s, t, c), and we
find an augmenting path, then since all capacities are integers, the number
ε (defined as in the description of the Ford-Fulkerson algorithm) will be
a positive integer; so, the updated flow will still be an integer flow, since
the flow through an edge can either remain unchanged, or increase by ε, or
decrease by ε. Now, the initial flow created by the Ford-Fulkerson algorithm
for the network (G, s, t, c) is the zero-flow (and so in particular, an integer
flow), and by what we just proved, after each iteration, the new flow is still
an integer flow. In each iteration, the value of the flow increases by a positive
integer (namely, by the ε that we compute for that iteration), and possible
values of feasible flows are bounded above (e.g. by the sum of capacities). So,
there can be only finitely many iterations, and in particular, the algorithm
terminates. The fact that the algorithm returns a correct answer follows from
its stopping criterion: the algorithm terminates and returns a flow f once
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there are no f -augmenting paths, and in this case, Lemma 4.2.5 guarantees
that f is a maximum flow.

Note that Theorem 4.3.4 does not state that every maximum flow in
a network with integer capacities is an integer flow. It merely guarantees
that at least one maximum flow in such a network is an integer flow.26 For
instance, the flow in the picture below is maximum for any value of ε ∈ [0, 1],
but only two values of ε (namely, ε = 0 and ε = 1) yield an integer flow.

1,1

1,1
ε,1

1 + ε,2

1− ε,2

s t val(f) = 2

A
B

c(A,B) = 2

ε ∈ [0, 1]

Theorem 4.3.4 is important for certain theoretical applications (we will see
this in section 4.4), as well for certain practical applications.27

If we replace the word “integer” by the word “rational” in the statemnent
of Theorem 4.3.4, we still get a correct statement.

Theorem 4.3.5. Let (G, s, t, c) be a network in which all capacities are non-
negative rational numbers. Then, for input (G, s, t, c), the Ford-Fulkerson
algorithm terminates and outputs a maximum flow, and furthermore, the
output flow through each edge is an non-negative rational number. In partic-
ular, some maximum flow in (G, s, t, c) has the property that flows through
all edges are non-negative rational numbers.

Proof. Let d be a positive integer such that all capacities in (G, s, t, c) are
integer multiples of 1

d .
28 Now the proof is completely analogous to that of

Theorem 4.3.4, except that instead of integers, we have integer multiples of
1
d (for flows and capacities) throughout.29

The key point of the proof of Theorem 4.3.5 is that there exists some
positive integer d such that in each iteration, the value of the flow increases

26While the maximum value of a flow in a network is unique, there may be many (possibly
infinitely many) flows in the network that have that value, and by definition, all such flows
are maximum.

27Consider, for example, a network that models a transportation network of trucks,
where the capacity of a truck is the number of containers that it can carry. Certainly, we
would want a maximum flow that is an integer flow. (A truck should not transport 7

3
or

3
√
π containers!)
28To see that d exists, we can first write all capacities in (G, s, t, c) as fractions, and then

we take d to be the least common multiple of the denominators of the capacities.
29Check this!
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by at least 1
d , and so there cannot be infinitely many iterations. If (some

of) our capacities are irrational, such a d need not exist. Let us give an

example of this.30 First, let r = −1+
√
5

2 , and let the sequence {rn}∞n=0 be
defined recursively as follows:

� r0 = 1 and r1 = r;

� rn+2 = rn − rn+1 for all integers n ≥ 0.

It is easy to check that rn = rn for all integers n ≥ 0.31 Let M be some large
number (say, M = 100). We now consider the network flow below.

M

M

M

M

M

M

1

1 = r0

r = r1s t

b

c

a

d

The maximum value of a flow in this network is 2M , as certified by the flow
represented below, and the cut ({s, a, b, c, d}, {t}) of capacity 2M .

M ,M

0,M

M ,M

M ,M

M ,M

M ,M

0,1

0,1

0,rs t

b

c

a

d

30We give only describe the construction. If you’d like a challenge, prove that it actually
works. (It’s a slightly messy induction.)

31This formula can be obtained using, for example, generating functions. Correctness is
easily verified by induction.
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We note that the flow above can easily be obtained in two iterations of the
Ford-Fulkerson algorithm: we start with the zero flow, then we choose the
augmenting path s, d, t (with ε = M), and then we choose the augmenting
path s, b, c, t (again with ε = M). However, if we keep choosing “bad”
augmenting paths, the algorithm may continue forever, as we describe below.

Let P1 be the s, t-path s, b, a, d, c, t; let P2 be the s, t-path s, a, b, c, d, t;
and let P3 be the s, t-path s, d, a, b, c, t.

M

M

M

M

M

M

1

1

rs t

b

c

a

d

P1 = s, b, a, d, c, t

M

M

M

M

M

M

1

1

rs t

b

c

a

d

P2 = s, a, b, c, d, t

M

M

M

M

M

M

1

1

rs t

b

c

a

d

P3 = s, d, a, b, c, t

We start with the zero flow f0, and then we use the augmenting path s, a, b, c, t
(with ε = 1), thus obtaining the flow f1, represented below.



Chapter 4. Flows and cuts in networks. Matchings in bipartite graphs 73

0,M

1,M

0,M

1,M

0,M

1,M

1,1

0,1

0,rs t

b

c

a

d

From now on, we cyclically select augmenting paths P1, P2, P3. It can be then
shown by induction that the algorithm never terminates,32 and furthermore,

the value of the flows that the algorithm produces converges to 1+2
∞∑
n=2

rn = 3,

whereas the maximum flow in our network has value 2M > 3.33

4.4 Matchings and transversals

A matching in a graph G is a set of edges M ⊆ E(G) such that every vertex
of G is incident with at most one edge in M . An example of a matching in a
graph is given below (edges of the matching are in red).

A vertex cover of a graph G is any set C of vertices of G such that every
edge of G has at least one endpoint in C. An example of a vertex cover in a
graph is given below (vertices of the vertex cover are in red).

32This is, essentially, because ε tends to zero as we keep iterating. Recall that in the
case of rational capacities (see Theorem 4.3.5), we could always find an integer d ≥ 1 such
that in each iteration, we had ε ≥ 1

d
. This need not be the case if (some of) our capacities

are irrational.
33If you want a bit of a challenge, try to prove (by induction) that this is indeed correct.
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The Kőnig-Egerváry theorem. The maximum size of a matching in a
bipartite graph is equal to the minimum size of a vertex cover in that graph.

Proof. Let G be a bipartite graph with bipartition (A,B). Clearly, it suffices
to prove the following two statements:

(a) for every matching M and every vertex cover C of G, we have that
|M | ≤ |C|;34

(b) there exist a matchingM and a vertex cover C of G such that |M | = |C|.

We begin by proving (a). Fix a matching M and a vertex cover C in G.
Clearly, every edge of M has at least one endpoint in C. Since no two edges
of M share an endpoint, we deduce that |M | ≤ |C|. This proves (a).

It remains to prove (b). Let s and t be two new vertices, i.e. s ̸= t and
s, t /∈ V (G). We now form a network (G′, s, t, c) as follows:

� V (G′) = V (G) ∪ {s, t};

� E(G′) = {(s, a) | a ∈ A} ∪ {(a, b) | a ∈ A, b ∈ B, ab ∈ E(G)} ∪ {(b, t) |
b ∈ B};

� c(a, b) = |A|+ 1 for all (a, b) ∈ E(G′), with a ∈ A and b ∈ B;

� c(s, a) = 1 for all a ∈ A;

� c(b, t) = 1 for all b ∈ B.

Let f be a maximum flow in (G′, s, t, c), and let R be a cut of minimum
capacity. By Theorem 4.3.4, we may assume that f(e) is an integer for all
e ∈ E(G′). By the Max-flow min-cut theorem, we know that val(f) = c(R).
It now suffices to produce a matching of size val(f) and vertex cover of size
c(R).

34In fact, (a) holds for all graphs, not just bipartite ones. However, there are (non-
bipartite) graphs for which (b) fails.
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|A| + 1
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First, we claim that f(e) ∈ {0, 1} for all e ∈ E(G′). Clearly, it suffices
to show that f(e) ≤ 1 for all e ∈ E(G′).35 For all a ∈ A, we have that
f(s, a) ≤ c(s, a) = 1; and for all b ∈ B, we have that f(b, t) ≤ c(b, t) = 1.
Now, fix a ∈ A and b ∈ B such that ab ∈ E(G). The inflow into a is at
most 1,36 and so the outflow is at most 1. So, f(a, b) ≤ 1. This proves that
f(e) ∈ {0, 1} for all e ∈ E(G′), as we had claimed.

Now, let M = {ab ∈ E(G) | a ∈ A, b ∈ B, f(a, b) = 1}. Then37

|M | = |{(a, b) ∈ E(G′) | a ∈ A, b ∈ B, f(a, b) = 1}|

= |{e ∈ SG′(A ∪ {s}, B ∪ {t}) | f(e) = 1}|

(∗)
= f(A ∪ {s}, B ∪ {t})

(∗∗)
= val(f),

where (*) follows from the fact that f(e) ∈ {0, 1} for all e ∈ E(G), and (**)
follows from Lemma 4.2.3. Let us check that M is a matching in G. Suppose
otherwise. Then at least one of the following holds:

35This is because, for all e ∈ E(G′), f(e) is a non-negative integer, and so if f(e) ≤ 1,
then f(e) ∈ {0, 1}.

36This is because (s, a) is the only edge in G′ with head a, and f(s, a) ≤ c(s, a) = 1.
37SG′(A ∪ {s}, B ∪ {t}) is the set of all edges from A ∪ {s} to B ∪ {t} in the oriented

graph G′; note that all edges in SG′(A ∪ {s}, B ∪ {t}) are in fact from A to B.
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(i) there exist a ∈ A and b1, b2 ∈ B (with b1 ̸= b2) such that ab1, ab2 ∈ M ;

(ii) there exist a1, a2 ∈ A (with a1 ̸= a2) and b ∈ B such that a1b, a2b ∈ M .

Suppose first that (i) holds. Then f(a, b1) = f(a, b2) = 1, and so the outflow
from a is at least 2. On the other hand, the inflow into a is at most 1,38 a
contradiction. Suppose now that (ii) holds. then f(a1, b) = f(a2, b) = 1, and
so the inflow into b is at least 2. On the other hand, the outflow from b is at
most 1,39 a contradiction. This proves that M is indeed a matching.

It remains to produce a vertex cover of size c(R). Let C be the set of
all vertices in V (G) = A ∪B that are incident with at least one edge of R.
Our goal is to show that C is a vertex cover of size at most c(R). First,
note that {(s, a) | a ∈ A} is a cut in (G′, s, t, c) of capacity |A|, and so
c(R) ≤ |A|. Since every edge from A to B has capacity |A|+ 1 > c(R), we
deduce that R does not contain any edges from A to B; then R = {(s, a) |
a ∈ A ∩ C} ∪ {(b, t) | b ∈ B ∩ C}. It follows that

c(R) =
( ∑

a∈A∩C
c(s, a)︸ ︷︷ ︸

=1

)
+
( ∑

b∈B∩C
c(b, t)︸ ︷︷ ︸
=1

)

= |A ∩ C|+ |B ∩ C|

= |C|.

It remains to show that C is a vertex cover of G. Fix adjacent vertices a ∈ A
and b ∈ B; we must show that at least one of a, b belongs to C. Suppose
otherwise. It then follows from the construction of C that R contains neither
(s, a) nor (b, t); moreover, since R contains no edges from A to B, we see
that R does not contain (a, b), either. So, s, a, b, t is a directed path from s
to t in G′−R, contrary to the fact that R is a cut in (G′, s, t, c). This proves
that C is indeed a vertex cover of G. This completes the proof of (b).

Given a bipartite graph G with bipartition (A,B),

� an A-saturating matching in G is a matching M in G such that every
vertex of A is incident with some edge in M ;

� a B-saturating matching in G is a matching M in G such that every
vertex of B is incident with some edge in M .

38This is because (s, a) is the only edge in G′ with head a, and f(s, a) ≤ c(s, a) = 1.
39This is because (b, t) is the only edge in G′ with tail b, and f(b, t) ≤ c(b, t) = 1.
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For a graph G and a set A ⊆ V (G), we denote by NG(A) the set of
all vertices in V (G) \ A that have a neighbor in A. As a corollary of the
Kőnig-Egerváry theorem, we obtain the following.

Hall’s theorem (graph theoretic formulation). Let G be a bipartite
graph with bipartition (A,B). Then the following are equivalent:

(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A
′)|;

(b) G has an A-saturating matching.

A′

NG(A
′)

B

A

Proof. Suppose first that (b) holds; we must prove that (a) holds. Fix an
A-saturating matching M in G, and fix A′ ⊆ A. Since M is an A-saturating
matching, and since A′ is a stable set,40 we know that precisely |A′| edges
in M are incident with a vertex in A′, and each of those edges has another
endpoint in B. No two edges in M share an endpoint, and it follows that
exactly |A′| vertices in B are incident with an edge of M that has an endpoint
in A′; let B′ be the set of all such vertices of B. But clearly, B′ ⊆ NG(A

′),
and so |NG(A

′)| ≥ |B′| = |A′|. This proves (a).
Suppose, conversely, that (a) holds; we must prove that (b) holds. Since

all edges of G are between A and B, it suffices to show that G has a matching
of size at least |A|.41 By the Kőnig-Egerváry theorem, it is enough to show
that any vertex cover of G is of size at least |A|. Let C be a vertex cover of
G. Then there can be no edges between A \ C and B \ C, and we deduce

40A stable set (or independent set) is a set of pairwise non-adjacent vertices.
41Note that any matching in G of size at least |A| is in fact of size precisely |A|.
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that NG(A \ C) ⊆ B ∩ C. Now we have the following:

|A| = |A ∩ C|+ |A \ C|

≤ |A ∩ C|+ |NG(A \ C)| by (a)

≤ |A ∩ C|+ |B ∩ C| because NG(A \ C) ⊆ B ∩ C

= |C|.

This completes the proof of (b).

The degree of a vertex v in a graph G, denoted by dG(v), is the number
of edges of G that v is incident with.

Corollary 4.4.1. Let G be a bipartite graph with bipartition (A,B). Assume
that G has at least one edge and that for all a ∈ A and b ∈ B, we have that
dG(a) ≥ dG(b). Then G has an A-saturating matching.

Proof. We first check that dG(a) ≥ 1 for all a ∈ A. Since G has at least one
edge, and since every edge of G has one endpoint in A and the other one in
B, we see that some vertex b0 ∈ B is incident with at least one edge, and
therefore satisfies dG(b0) ≥ 1. But then by hypothesis, every vertex a ∈ A
satisfies dG(a) ≥ dG(b0) ≥ 1.

Now, suppose that G does not have an A-saturating matching. Then by
Hall’s theorem, there exists some A′ ⊆ A such that |A′| > |NG(A

′)|.

A′

NG(A
′)

B

A

Note that every edge in G has at least one endpoint in (A \A′) ∪NG(A
′),42

42Indeed, if some edge of G had neither endpoint in (A \A′) ∪NG(A
′), then one of its

endpoints would be in A′ and the other one would be in B \NG(A
′), a contradiction.



Chapter 4. Flows and cuts in networks. Matchings in bipartite graphs 79

and so
|E(G)| ≤

∑
v∈(A\A′)∪NG(A′)

dG(v)

≤
( ∑

a∈A\A′
dG(a)

)
+
( ∑

b∈NG(A′)

dG(b)
)
.

Now, since A′ ⊆ A and NG(A
′) ⊆ B, we know that for all a ∈ A′ and

b ∈ NG(A
′), we have that dG(a) ≥ dG(b). Furthermore, by our choice of A′,

we have that |A′| > |NG(A
′)|. Since dG(a) ≥ 1 for all a ∈ A, we now deduce

that
∑
a∈A′

dG(a) >
∑

b∈NG(A′)

dG(b), and it follows that

|E(G)| ≤
( ∑

a∈A\A′
dG(a)

)
+
( ∑

b∈NG(A′)

dG(b)
)
.

<
( ∑

a∈A\A′
dG(a)

)
+
( ∑

a∈A′
dG(a)

)
=

∑
a∈A

dG(a)

= |E(G)|,

which is impossible.

For a non-negative integer k, a graph G is k-regular if it all its vertices are
of degree k. A graph G is regular if there exists some non-negative integer k
such that G is k-regular. (In other words, a graph is regular if all its vertices
are of the same degree.)

A perfect matching in a graph G is a matching M such that every vertex
of G is incident with an edge in M . An example of a perfect matching is
shown below (edges of the perfect matching are in red).

Obviously, not all graphs have perfect matchings. For instance, no graph
with an odd number of vertices has a perfect matching. (There are also many
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graphs that have an even number of vertices, and yet do not have a perfect
matching.)

Corollary 4.4.2. Every regular bipartite graph that has at least one edge
has a perfect matching.

Proof. Let G be a k-regular (k ≥ 0) bipartite graph with bipartition (A,B),
and assume that G has at least one edge. By Corollary 4.4.1, G has an
A-saturating matching. To show that this matching is a perfect matching, it
suffices to show that |A| = |B|. Since G is k-regular, we see that |E(G)| =
k|A| and |E(G)| = k|B|; consequently, k|A| = k|B|. Since G has at least one
edge, we see that k ̸= 0, and we deduce that |A| = |B|. This completes the
argument.

In this section, we have studied matchings in bipartite graphs. There is
also a theory of matchings in general graphs. Notably, Tutte’s theorem (see
section 9.3) gives a necessary and sufficient condition for a graph to have a
perfect matching.

We complete this section by giving another formulation of Hall’s theorem.
We first need a definition. Suppose X and I are sets, and {Ai}i∈I is a
family of (not necessarily distinct) subsets of X.43 A transversal (or a
system of distinct representatives) for (X, {Ai}i∈I) is an injective (i.e. one-
to-one) function f : I → X such that for all i ∈ I, we have that f(i) ∈ Ai.
The following readily follows from the graph theoretic formulation of Hall’s
theorem (the details are left as an exercise).

Hall’s theorem (combinatorial formulation). Let X and I be finite
sets, and let {Ai}i∈I be a family of (not necessarily distinct) subsets of X.
Then the following are equivalent:

(a) all sets J ⊆ I satisfy |J | ≤ |
⋃

j∈J Aj |;

(b) (X, {Ai}i∈I) has a transversal.

4.5 Extending Latin rectangles

For positive integers r and n, with r ≤ n, an r × n Latin rectangle is an
r × n array (or matrix) whose entries are numbers 1, . . . , n, and in which
each number 1, . . . , n occurs at most once in each row and each column. One
2× 4 Latin rectangle is represented below.

43Technically, we have that A : I → P(X); for i ∈ I, we write Ai instead of A(i).
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1 2 3

2 31

4

4

Theorem 4.5.1. Let r and n be positive integers such that r < n. Then
every r × n Latin rectangle can be extended to an n× n Latin square.44

Proof. Let L =
[
a1 . . . an

]
be an r× n Latin rectangle.45 Obviously, it

suffices to show that we can extend L to an (r + 1)× n Latin rectangle by
adding a row of length n to the bottom of L, for then the result will follow
immediately by an easy induction.

Let A = {a1, . . . ,an} and B = {1, . . . , n}, and let G be the bipartite
graph with bipartition (A,B) in which ai ∈ A and j ∈ B are adjacent if and
only if j is not an entry of the column ai. For instance, for the Latin rectangle
from the beginning of the section, we would get the following bipartite graph:

1

2

2

4

3

1 3

4

1 2 3 4

A

B

Each column of L has r entries, and consequently, there are n− r values in
B that do not appear in it. So, for all ai ∈ A, we have that dG(ai) = n− r.
Now, fix j ∈ B. We know that j appears exactly once in each row of L, and L
has r rows. Consequently, j appears exactly r times in L, and since it cannot
appear more than once in any column, we see that it appears in precisely r
columns of L. Thus, j fails to appear in precisely n− r columns of L, and
consequently, dG(j) = n− r. We have now shown that is (n− r)-regular. So,
G is a regular bipartite graph, and (since r < n) it has at least one edge.
Corollary 4.4.2 now implies that G has a perfect matching, call it M . Now,

44This means that, for any r × n Latin rectangle, it is possible to add n − r rows of
length n to the bottom of the Latin rectangle that we started with and thus obtain an
n× n Latin square.

45This means that a1, . . . ,an are the columns of our Latin rectangle, in that order.
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for each i ∈ {1, . . . , n}, let ji be the (unique) element of {1, . . . , n} such that
aiji ∈ M . We now add the row

[
j1 . . . jn

]
to the bottom of L, and we

thus obtain an (r + 1)× n Latin rectangle, which is what we needed.
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Chapter 5

Graph connectivity

5.1 Vertex and edge connectivity

Notation: For a graph G and a set X ⫋ V (G), we denote by G \X the
graph obtained from G by deleting all vertices of X (as well as all edges that
have at least one endpoint in X); if |X| = 1, say X = {x}, we often write
G \ x instead of G \X. For a graph G and a set F ⊆ E(G), we denote by
G− F the graph obtained from G by deleting all edges in F ; if |F | = 1, say
F = {e}, we often write F − e instead of G− F .

For a graph G and (not necessarily disjoint) sets A,B ⊆ V (G), an A-B
path in G, or a path from A to B in G, is either a one-vertex path whose sole
vertex is in A ∩B, or a path on at least two vertices whose one endpoint is
in A and whose other endpoint is in B.

Given a graph G and (not necessarily disjoint) sets A,B ⊆ V (G), we say
that a set X ⊆ V (G) separates A from B in G if every path from A to B in
G contains at least one vertex of X. Note that this implies that A∩B ⊆ X.1

A graph G is connected if for all x, y ∈ V (G), the graph G contains a
path between x and y.

Given a graph G and a non-negative integer k, we say that G is k-vertex-
connected, or simply k-connected, if |V (G)| ≥ k + 1 and for all X ⊆ V (G)
such that |X| ≤ k−1, we have that G\X is connected. Note that this means
that every (non-null) graph is 0-connected, and that every connected graph
on at least two vertices is 1-connected.2 The vertex-connectivity, or simply
connectivity, of a graph G, denoted κ(G), is the largest integer k such that

1Indeed, if x ∈ A ∩B, then x counts as a one-vertex path from A to B. So, any set of
vertices that separates A from B must include A ∩B as a subset.

2However, K1 is not 1-connected.
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G is k-connected. Clearly, if there exists a set of at most k vertices whose
deletion from G yields a disconnected graph, then κ(G) ≤ k. Note also that
if k = κ(G), then either G ∼= Kk+1 or there exists a set of k vertices whose
deletion from G yields a disconnected graph.

Given a graph G and disjoint sets A,B ⊆ V (G), we say that a set
F ⊆ E(G) separates A from B in G if every path from A to B contains at
least one edge of F .

Given a graph G and a non-negative integer ℓ, we say that G is ℓ-edge-
connected if |V (G)| ≥ 2 and for all F ⊆ E(G) such that |F | ≤ ℓ − 1, we
have that G − F is connected. The edge-connectivity of a graph G on at
least two vertices, denoted by λ(G), is the largest integer ℓ such that G is
ℓ-edge-connected. Clearly, if there exists a set of at most ℓ edges whose
deletion from G yields a disconnected graph, then λ(G) ≤ ℓ. Note that if
ℓ = λ(G), then there exists a set of ℓ edges whose deletion from G yields a
disconnected graph.

Proposition 5.1.1. Let G be a graph on at least two vertices. Then

(a) for all edges e ∈ E(G), we have that λ(G)− 1 ≤ λ(G− e) ≤ λ(G);

(b) for all sets F ⊆ E(G), we have that λ(G− F ) ≤ λ(G).

Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e ∈ E(G).

We first show that λ(G − e) ≥ λ(G) − 1. Fix F ⊆ E(G − e) such that
|F | ≤ λ(G) − 2. Set F ′ := F ∪ {e}; then |F ′| ≤ λ(G) − 1, and we deduce
that G− F ′ is connected. But (G− e)− F = G− F ′, and we deduce that
(G− e)− F is connected. This proves that λ(G− e) ≥ λ(G)− 1.

It remains to show that λ(G−e) ≤ λ(G). Fix F ⊆ E(G) with |F | = λ(G),
such that G− F is disconnected. Set F ′ := F \ {e}; then |F ′| ≤ λ(G). Note
that (G − e) − F ′ is obtained from G − F by possibly deleting one edge.3

Since G − F is disconnected, it follows that (G − e) − F ′ is disconnected.
Since |F ′| ≤ λ(G), we deduce that λ(G− e) ≤ λ(G).

Proposition 5.1.2. Let G be a graph on at least two vertices. Then

(a) for all edges e ∈ E(G), we have that κ(G)− 1 ≤ κ(G− e) ≤ κ(G);

(b) for all sets F ⊆ E(G), we have that κ(G− F ) ≤ κ(G).

3Indeed, if e ∈ F , then (G − e) − F ′ = G − F . On the other hand, if e /∈ F , then
(G− e)− F ′ = (G− F )− e.
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Proof. Clearly, (b) follows from (a) by an easy induction. It remains to prove
(a). Fix e ∈ E(G).

We first show that κ(G − e) ≥ κ(G) − 1. Since G is κ(G)-connected,
we know that G (and consequently, G − e as well) has at least κ(G) + 1
vertices. Now, fix X ⊆ V (G) such that |X| ≤ κ(G)− 2; we must show that
(G− e)−X is connected. Suppose first that e is incident with some vertex
in X. Then (G− e) \X = G \X. Since |X| ≤ κ(G)− 2, we see that G \X is
connected, and it follows that (G−e)\X is connected. It remains to consider
the case when e is not incident with any vertex in X. Set e = x1x2 (i.e. let
x1 and x2 be the endpoints of e). Set X1 := X ∪ {x1} and X2 := X ∪ {x2}.
Then |X1| = |X2| = κ(G) − 1, and we deduce that G \X1 and G \X2 are
connected. Now, since x2 ∈ V (G) \ X1, and since G \ X1 is a connected
graph on at least two vertices, we see that x2 is adjacent to some vertex in
u ∈ V (G) \X1; since x1 ∈ X1, we see that u ̸= x1. Now, (G− e) \X can be
obtained from the connected graph G \X2 by adding to it the vertex x2 and
making it adjacent to all vertices in NG(x2) \ {x1}. Since u ∈ NG(x2) \ {x1},
we see that x2 is not an isolated vertex of (G− e) \X,4 and we deduce that
(G− e) \X is connected. This proves that κ(G− e) ≥ κ(G)− 1.

It remains to show that κ(G−e) ≤ κ(G). By definition, |V (G)| ≥ κ(G)+1.
If G has precisely κ(G) + 1 vertices, then so does G− e, and it follows from
the definition that κ(G− e) ≤ κ(G). It remains to consider the case when
|V (G)| ≥ κ(G) + 2. In this case, there exists a set X ⊆ V (G) of size κ(G)
such that G \X is disconnected. But then (G− e) \X is disconnected as
well, and it follows that κ(G− e) ≤ κ(G).

We note that, unlike edge deletion, vertex deletion sometimes increases
connectivity. For instance, for the graph G represented below, we have that
κ(G) = λ(G) = 1, but κ(G \ x) = λ(G \ x) = 5.

x

G

Recall that for a graph G, δ(G) is the minimum and ∆(G) the maximum

4An isolated vertex is a vertex that has no neighbors.
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degree in G, i.e. δ(G) = min{dG(v) | v ∈ V (G)} and ∆(G) = max{dG(v) |
v ∈ V (G)}.

Theorem 5.1.3. Let G be a graph on at least two vertices. Then κ(G) ≤
λ(G) ≤ δ(G).

Proof. We first prove that λ(G) ≤ δ(G). Fix a vertex v ∈ V (G) such that
dG(v) = δ(G), and let F be the set of all edges of G that are incident with
v; then |F | = δ(G). Clearly, G − F is disconnected,5 and it follows that
λ(G) ≤ δ(G).

It remains to show that κ(G) ≤ λ(G). Fix a set F ⊆ E(G) such that
|F | = λ(G) and G− F is disconnected.

Claim. If C is the vertex set of a component of G− F , then no
edge of F has both its endpoints in C.

Proof of the Claim. Suppose otherwise. Let C be the vertex set of a
component of G− F ,6 and let e ∈ F be an edge that has both its endpoints
in C. Then G − (F \ {e}) is still disconnected,7 contrary to the fact that
|F \ {e}| = |F | − 1 = λ(G)− 1. This proves the Claim. ♦

Suppose first that there exists a vertex v ∈ V (G) that is not incident
with any edge in F . Let C be the vertex set of the component of G−F that
contains v (see the picture below). Now, let X be the set of all vertices in
C that are incident with an edge in F ; then v ∈ C \X. By the Claim, no
edge in F has both endpoints in C, and so |X| ≤ |F | = λ(G). Moreover, X
separates C \X from V (G) \ C in G; since both C \X and V (G) \ C are
non-empty,8 it follows that G \X is disconnected. So, κ(G) ≤ λ(G).

5We are using the fact that G has at least two vertices.
6Since G− F is disconnected, this implies that C and V (G) \ C are both non-empty,

and there are no edges between them.
7This is because there are still no edges between C and V (G) \ C, and both C and

V (G) \ C are non-empty.
8The fact that G \X is non-empty follows from the fact that v ∈ C \X. The fact that

V (G) \C is nonempty follows from the fact that C is the vertex set of a component of the
disconnected graph G− F .
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C

V (G) \ C

X

F

v

It remains to consider the case when every vertex of G is incident with
an edge of F .9 Fix any v ∈ V (G); we will show that dG(v) ≤ λ(G). Let C
be the component of G− F that contains v, and let Fv be the set of edges
of F incident with v. Let u1, . . . , ut be the neighbors of v in the component
C, and for all i ∈ {1, . . . , t}, let Fi be the set of all edges of F incident with
ui. By supposition, sets Fv, F1, . . . , Ft are all non-empty, and by the Claim,
they are pairwise disjoint. So,

dG(v) = |Fv|+ t ≤ |Fv|+ |F1|+ · · ·+ |Ft| ≤ |F | = λ(G),

as we had claimed. Since we chose v arbitrarily, it now follows that ∆(G) ≤
λ(G); we already saw that λ(G) ≤ δ(G) ≤ ∆(G), and we now deduce that
λ(G) = ∆(G). Now, if G is a complete graph, then |V (G)| = ∆(G) + 1,
and we see that κ(G) = ∆(G) = λ(G).10 So assume that G is not complete,
and fix some x ∈ V (G) that has a non-neighbor in G. Then G \ NG(x)
is disconnected, and we have that |NG(x)| = dG(x) ≤ ∆(G) = λ(G). So,
κ(G) ≤ λ(G).

Terminology: A vertex-cutset (or simply cutset) of a graph G is any set
X ⫋ V (G) such that G \X has more components than G.11 Similarly, an

9For an example, see the graph below, with the edges of F in red.

10Check this!
11So, if G is connected, then a vertex-cutset of G is any set X ⫋ V (G) such that G \X

is disconnected.
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edge-cutset of G is any set F ⊆ E(G) such that G− F has more components
than G.

By definition, no graph G has a vertex-cutset of size strictly smaller than
κ(G). Similarly, no graph G has an edge-cutset of size strictly smaller than
λ(G).

5.2 Menger’s theorems

Menger’s theorem (vertex version). Let G be a graph, and let A,B ⊆
V (G).12 Then the minimum number of vertices separating A from B in G is
equal to the maximum number of pairwise disjoint A-B paths in G.13

b2

a4 = b1

a1

a2 b3

a3

A = {a1, a2, a3, a4}

B = {b1, b2, b3}

set of vertices
separating
A from B

Two disjoint
A-B paths
are in red.

Proof. We assume inductively that the theorem holds for graphs that have
fewer than |E(G)| edges. More precisely, we assume that for all graphs
G′ such that |E(G′)| < |E(G)|, and all sets A′, B′ ⊆ V (G′), the minimum
number of vertices separating A′ from B′ in G′ is equal to the maximum
number of pairwise disjoint A′-B′ paths in G′. We must prove that this holds
for G as well. From now on, we let k be the minimum number of vertices
separating A from B in G.

First, we claim that there can be no more than k pairwise disjoint paths
from A to B in G. Indeed, let X ⊆ V (G) be a set of size k separating A
from B in G, and let P be any collection of pairwise disjoint paths from A
to B. Then every path in P contains at least one vertex of X, and since
paths in P are pairwise disjoint, no two paths in P contain the same vertex
of X. So, |P| ≤ |X| = k, as we had claimed.

12A and B need not be disjoint.
13“Pairwise disjoint” here means that no two of the paths have a vertex in common (and

consequently, no two of the paths have an edge in common).
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It remains to show that there are at least k pairwise disjoint paths from
A to B. Clearly, for any set X ⊆ V (G) separating A from B in G, we have
that A ∩B ⊆ X; consequently, |A ∩B| ≤ k. Now, if E(G) = ∅, then A ∩B
separates A from B in G, and so |A ∩ B| = k; in this case, the vertices of
A ∩ B form k pairwise disjoint one-vertex paths from A to B, and we are
done. From now on, we assume that G has at least one edge, say xy. Let
Gxy := G/xy, i.e. let Gxy be the graph obtained from G by contracting the
edge xy, and let vxy be the vertex obtained by contracting xy.14

x y vxy

G Gxy = G/xy

Now, if x or y belongs to A, then let A′ = (A\{x, y})∪{vxy}, and otherwise,
let A′ = A. Similarly, if x or y belongs to B, then let B′ = (B\{x, y})∪{vxy},
and otherwise, let B′ = B.

Let Y ⊆ V (Gxy) be a minimum-sized set of vertices separating A′ from B′

in Gxy.
15 By the induction hypothesis, there are |Y | many pairwise disjoint

paths in Gxy from A′ to B′, and it readily follows16 that there are at least
|Y | many pairwise disjoint paths in G from A to B. So, if |Y | ≥ k,17 then
we are done. From now on, we assume that |Y | ≤ k − 1. Then vxy ∈ Y ,
for otherwise, Y would separate A from B in G,18 contrary to the fact that
|Y | ≤ k − 1. Now X := (Y \ {vxy}) ∪ {x, y} separates A from B in G,19

and we have that |X| = |Y |+ 1. Note that this implies that |X| = k.20 Set
X = {x1, . . . , xk}.

14Formally, vxy is some (“new”) vertex that does not belong to V (G), and

Gxy is the graph with vertex set V (Gxy) =
(
V (G) \ {x, y}

)
∪ {vxy} and edge

set E(Gxy) = {e ∈ E(G) | e is incident neither with x nor with y in G} ∪ {vvxy |
v ∈ V (G), v is adjacent to x or y in G}.

15This means that for all sets Y ′ ⊆ V (Gxy) separating A from B in Gxy, we have that
|Y | ≤ |Y ′|.

16Details?
17In fact, it is not possible that |Y | > k (details?), but we do not need this stronger fact.
18Proof?
19Proof?
20Indeed, since |Y | ≤ k− 1, we have that |X| ≤ k. On the other hand, since X separates

A from B in G, we know that |X| ≥ k. So, |X| = k.
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We now consider the graph G− xy, i.e. the graph obtained from G by
deleting the edge xy. Since x, y ∈ X, we know that any set of vertices
separating A from X in G−xy also separates A from B in G;21 consequently,
any such set has at least k vertices, and so by the induction hypothesis, there
are k pairwise disjoint paths from A to X in G− xy, call them P1, . . . , Pk.
Similarly, there are k pairwise disjoint paths from B to X in G−xy, call them
Q1, . . . , Qk. We may assume that for all i ∈ {1, . . . , k}, xi is an endpoint
both of Pi and of Qi. But now P1 − x1 −Q1, . . . , Pk − xk −Qk are pairwise
disjoint paths from A to B,22 and we are done.

x1

xk

P1

Pk

...

A X B

Q1

Qk

Given a graph G and distinct vertices s, t ∈ V (G), two paths from s to t
in G are internally disjoint if they have no vertices in common except the
endpoints s and t. The following corollary is also often referred to as the
vertex version of Menger’s theorem.

Corollary 5.2.1. Let G be a graph, and let s, t ∈ V (G) be distinct, non-
adjacent vertices of G. Then the minimum number of vertices of V (G) \
{s, t} separating s from t in G is equal to the maximum number of pairwise
internally disjoint s-t paths in G.

21Let us check this. Let Z be any set of vertices separating A from X in G− xy, and
let p1, . . . , pt, with p1 ∈ A and pt ∈ B, be a path from A to B in G. Then some vertex of
p1, . . . , pt belongs to X; let i ∈ {1, . . . , t} be the smallest index such that pi ∈ X. Then
p1, . . . , pi is a path from A to X in G− xy. Furthermore, since p1, . . . , pi contains exactly
one vertex of X, and since x, y ∈ X, we see that the path p1, . . . , pi does not use the edge
xy; consequently, p1, . . . , pi is a path from A to X in G−xy, and we deduce that this path
(and consequently, the path p1, . . . , pt as well) contains a vertex of Z.

22It is clear that the Pi − xi −Qi’s are walks from A to B in G. But in fact, they are
pairwise disjoint paths, for otherwise, there would be a path from A to B in G that uses
no vertices of X (details?), contrary to the fact that X separates A from B in G.
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The red and blue
path are internally
disjoint.

set of two vertices
separating s from t

s t

Proof. Let S := NG(s) and T := NG(t). Obviously, the minimum number of
vertices of V (G) \ {s, t} separating s from t in G is equal to the minimum
number of vertices of V (G) \ {s, t} separating S from T in G \ {s, t}.23
Similarly, the maximum number of pairwise internally disjoint s-t paths
in G is equal to the maximum number of pairwise disjoint S-T paths in
G. By Menger’s theorem (vertex version), the minimum number of vertices
separating S from T in G\{s, t} is equal to the maximum number of pairwise
disjoint S-T paths in G \ {s, t}. So, the minimum number of vertices of
V (G) \ {s, t} separating s from t in G is equal to the maximum number of
pairwise internally disjoint s-t paths in G.

Our next goal is to prove the edge version of Menger’s theorem. The
line graph of a graph G, denoted by L(G), is the graph whose vertex set is
E(G), and in which e, f ∈ L(V (G)) = E(G) are adjacent if and only if e and
f share an endpoint in G. An example is shown below.

e1

e2 e3

e4
e5

e1

e2

e4

e3

e5

G L(G)

f1

f2

f1

f2

23Indeed, for any set X ⊆ V (G) \ {s, t}, we have that X separates s from t in G if and
only if X separates S from T in G \ {s, t}.
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Our goal is to use line graphs to derive the edge version of Menger’s
theorem from the vertex version of the theorem.

An induced path (or chordless path) in a graph G is a path P = p1, . . . , pr
such that for all distinct i, j ∈ {1, . . . , r}, we have that pipj ∈ E(G) if and
only if |i − j| = 1. Note that if G contains a path P between vertices
x and y, then G contains an induced path Q between x and y such that
V (Q) ⊆ V (P ).24

Proposition 5.2.2. Let G be a graph, let s, t ∈ V (G) be distinct vertices of
G, let S be the set of all edges of G incident with s, and let T be the set of
all edges of G incident with t. Let X ⊆ E(G). Then X separates s from t in
G if and only if X separates S from T in L(G).25

Proof. We will prove that X fails to separate s from t in G if and only if X
fails to separate S from T in L(G).

Suppose first that X does not separate s from t in G; we must show
that X does not separate S from T in L(G). Fix a path v1, . . . , vr in G,
with v1 = s and vr = t, that does not use any edge of X.26 But now
v1v2, v2v3, . . . , vr−1vr is a path from S to T in L(G) that does not use any
vertex (in L(G)) in X. So, X does not separate S from T in L(G).

Suppose now that X does not separate S from T in L(G); we must show
that X does not separate s from t in G. Fix an induced path e1, . . . , er
in L(G), with e1 ∈ S and er ∈ T , that does not contain any vertex (in
L(G)) from X.27 For each i ∈ {1, . . . , r − 1}, let vi be a common endpoint
of ei and ei+1.

28 Since the path e1, . . . , er in L(G) is induced, we see that
s, v1, . . . , vr−1, t is a path in G that uses only edges e1, . . . , er, and therefore,
fails to use any edge from X. So, X does not separate s from t in G.

Two paths in a graph G are edge-disjoint if they have no edges in common.
An example is shown below.

24Let us check this. Suppose that P = p1, . . . , pr, with p1 = x and pr = y, is a path
in G. Of all paths in G between x and y using only vertices in V (P ) = {p1, . . . , pr}, let
Q = q1, . . . , qs (with q1 = x and qs = y) be one of minimum length. But then it is clear
that the path Q is induced (details?).

25Note that the elements of X are edges of G, but vertices of L(G).
26Such a path exists because X does not separate s from t in G.
27Since X does not separate S from T in L(G), we know that L(G) contains a path

from S to T that uses no vertices of X. If we choose e1, . . . , er to be a minimum-length
path with these properties, then we see that the path e1, . . . , er is induced in L(G).

28Such a vertex exists because ei and ei+1 are adjacent vertices of L(G), and consequently,
they are edges of G that share an endpoint.
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s t

The red and blue path
are edge-disjoint.

Proposition 5.2.3. Let G be a graph, let s, t ∈ V (G) be distinct vertices
of G, let S be the set of all edges in G incident with s, and let T be the set
of all edges in G incident with t. Let ℓ be a non-negative integer. Then the
following are equivalent:

(i) there exist ℓ pairwise edge-disjoint s-t paths in G;

(ii) there exist ℓ pairwise disjoint S-T paths in L(G).

Proof. Suppose first that (i) holds, and fix ℓ pairwise edge-disjoint s-t paths
in G, say P1, . . . , Pℓ. For all i ∈ {1, . . . , ℓ}, set Pi = vi1, . . . , v

i
ri (with vi1 = s

and viri = t). Now, for all i ∈ {1, . . . , ℓ}, set PL
i = vi1v

i
2, v

i
2v

i
3, . . . , v

i
ri−1v

i
ri .

Clearly, PL
1 , . . . , P

L
ℓ are pairwise disjoint S-T paths in L(G).

Suppose now that (ii) holds, and fix ℓ pairwise disjoint S-T paths in L(G),
say QL

1 , . . . , Q
L
ℓ ; we may assume that the paths QL

i are induced in L(G).29

For all i ∈ {1, . . . , ℓ}, set QL
i = ei1, . . . , e

i
ri . Now, for all i ∈ {1, . . . , ℓ} and

j ∈ {1, . . . , ri}, let vij be a common vertex of the edges eij and eij+1 in G,

and set Qi = s, vi1, . . . , v
i
ri−1, t. Then Q1, . . . , Qℓ are pairwise edge-disjoint

s-t paths in G,30 and we are done.

Menger’s theorem (edge version). Let G be a graph, and let s, t ∈ V (G)
be distinct vertices of G. Then the minimum number of edges separating s
from t in G is equal to the maximum number of pairwise edge-disjoint s-t
paths in G.

s t

edges separating s from t

29Why may we assume this?
30We are using the fact that the paths QL

1 , . . . , Q
L
ℓ are induced in L(G).
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Proof. Let S be the set of all edges in G incident with s, and let T be the
set of all edges in G incident with t. By Proposition 5.2.2, the minimum
number of edges separating s from t in G is equal to the minimum number of
vertices separating S from T in L(G). By Proposition 5.2.3, the maximum
number of pairwise edge-disjoint s-t paths in G is equal to the maximum
number of pairwise disjoint S-T paths in G. By Menger’s theorem (vertex
version), the minimum number of vertices separating S from T in L(G) is
equal to the maximum number of pairwise disjoint S-T paths in G. We now
deduce that the minimum number of edges separating s from t in G is equal
to the maximum number of pairwise edge-disjoint s-t paths in G.

The global version of Menger’s theorem. Let G be a graph on at least
two vertices, and let k, ℓ ≥ 0 be integers.

(a) G is k-connected if and only if for all distinct s, t ∈ V (G), there exist k
pairwise internally disjoint s-t paths in G.

(b) G is ℓ-edge-connected if and only if for all distinct s, t ∈ V (G), there
exist ℓ pairwise edge-disjoint s-t paths in G.

Proof. We first prove (a). Suppose that G is k-connected, and let s and t be
distinct vertices of G.

Suppose first that s and t are non-adjacent. Since G is k-connected, s
and t cannot be separated by fewer than k vertices of V (G) \ {s, t}; so, by
Corollary 5.2.1, there are k internally disjoint paths between s and t.

Suppose now that s and t are adjacent. Set G′ := G− st.31 By Proposi-
tion 5.1.2, G′ is (k−1)-connected. Now s and t are distinct and non-adjacent
in G′, and they cannot be separated (in G′) by fewer than k − 1 vertices of
V (G′) \ {s, t}; so, Corollary 5.2.1 guarantees that there are k − 1 internally
disjoint paths between s and t in G′. These k − 1 paths, plus the one-edge
path s, t, form k internally disjoint paths in G.

Suppose now that there are k internally disjoint paths between any two
distinct vertices of G; we must show that G is k-connected.

Let us first show that |V (G)| ≥ k + 1. By hypothesis, G has at least two
vertices; fix any distinct vertices s, t ∈ V (G). Then there are k internally
disjoint paths between them, and all but possibly one of those paths have
an internal vertex;32 so, these k paths together have at least k − 1 internal

31So, G′ is the graph obtained from G by deleting the edge st.
32If s and t are adjacent, then s, t is a path between s and t with no internal vertices.

However, any other path between s and t has at least one internal vertex.
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vertices, and it follows that |V (G)| ≥ (k − 1) + 2 = k + 1,33 which is what
we needed.

It remains to show that for all sets X ⊆ V (G) such that |X| ≤ k − 1, we
have that G \X is connected. Suppose otherwise, and fix some X ⊆ V (G)
such that |X| ≤ k − 1 and G \X is disconnected. Then G \X has at least
two components, and we choose vertices s and t from distinct components of
G \X. Now X ⊆ V (G) \ {s, t} separates s from t, and so by Corollary 5.2.1,
there can be at most |X| ≤ k − 1 internally disjoint paths between s and t
in G. But this contradicts the fact that there are k internally disjoint paths
between any two distinct vertices of G. This completes the proof of (a).

We now prove (b). Suppose first that G is ℓ-edge-connected. Fix distinct
vertices s, t ∈ V (G). Since G is ℓ-edge-connected, s cannot be separated from
t with fewer than ℓ edges of G, and so by Menger’s theorem (edge version),
there are at least ℓ pairwise edge-disjoint paths between s and t in G.

Suppose now that G is not ℓ-edge connected. Then there exists a set
F ⊆ E(G) such that |F | ≤ ℓ− 1 and G− F is disconnected. Since G− F is
disconnected, it has at least two components; let s and t be vertices from
distinct components of G− F . Now F separates s from t, and in particular,
s can be separated from t by at most |F | ≤ ℓ−1 edges of G. So, by Menger’s
theorem (edge version), there are at most ℓ− 1 pairwise edge-disjoint paths
between s and t in G. This completes the proof of (b).

5.3 2-connected graphs and ear decomposition

A cut-vertex of a graph G is any vertex v ∈ V (G) such that G \ v has more
components than G.

cut-vertex

Recall that, for a non-negative integer k, a graph G is k-connected if
|V (G)| ≥ k + 1 and for all S ⊆ V (G) such that |S| ≤ k − 1, we have that
G \S is connected. So, a graph is 2-connected if it has at least three vertices,
is connected, and has no cut-vertices.

33We are counting the k − 1 internal vertices of our paths, plus the endpoints s and t.
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Lemma 5.3.1. Let G be a graph on at least two vertices. Then G is
2-connected if and only if any two distinct vertices lie on a common cycle.34

Proof. By Menger’s theorem (global version), a graph on at least two vertices
is 2-connected if and only if for any pair of distinct vertices, there are two
internally disjoint paths between them. But obviously, two distinct vertices
lie on a common cycle if and only if there are two internally-disjoint paths
between them. The result now follows.

In this section, we give a full structural description of 2-connected graphs.
A path addition (sometimes called open ear addition) to a graph H is the
addition to H of a path between two distinct vertices of H in such a way
that no internal vertex and no edge of the path belongs to H. In the picture
below, we show how the cube graph can be constructed by starting with a
cycle of length four and then repeatedly adding paths (the path/open ear
added at each step is in red).

The Ear lemma. A graph is 2-connected if and only if it is a cycle or can
be obtained from a cycle by repeated path addition.

Proof. We first prove the “if” (i.e. “⇐=”) part of the lemma. Clearly, cycles
are 2-connected (indeed, every cycle has at least three vertices, is connected,
and has no cut-vertices).35 Further, if a graph G can be obtained from a
2-connected graph H by adding a path, then G has at least three vertices
(because H does), and it is easy to see that G is connected and has no
cut-vertices;36 so, G is 2-connected. It now follows by an easy induction
(e.g. on the number of paths added) that any graph obtained from a cycle
by repeated path addition is 2-connected. This proves the “if” part of the
lemma.

34Note that if G has at least two vertices, and any two distinct vertices lie on a common
cycle, then in particular, G contains a cycle, and therefore, G has at least three vertices.

35Alternatively, this follows from Lemma 5.3.1.
36Check this!
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It remains to prove the “only if” (i.e. “=⇒”) part of the lemma. Fix a
2-connected graph G. By Lemma 5.3.1, G contains a cycle. Now, let H be
a maximal subgraph of G that either is a cycle or can be obtained from a
cycle by repeated path addition.37 We must show that H = G.

First, we claim that H is an induced subgraph of G.38 If not, then there
exist distinct vertices u, v ∈ V (H) that are adjacent in G, but not in H; but
then the graph obtained from H by adding the one-edge path u, v contradicts
the maximality of H. So, H is indeed an induced subgraph of G.

H G

u

v

It remains to show that V (H) = V (G). Suppose otherwise. Then since G
is connected, there is at least one edge between V (H) and V (G) \ V (H); fix
adjacent vertices u ∈ V (H) and v ∈ V (G) \ V (H). Since G is 2-connected,
we know that G\u is connected; consequently, there is a path in G\u from v
to some vertex in V (H) \ {u}; let P = v, p1, . . . , pt (t ≥ 1) be a path in G \u
with pt ∈ V (H) \ {u}; we may assume that p1, . . . , pt−1 ∈ V (G) \ V (H).39

But now the graph obtained from H by adding the path u, v, p1, . . . , pt
contradicts the maximality of H.

H G
u v

p1

pt−1

pt

This proves that V (H) = V (G). Since we already know that H is an induced
subgraph of G, it follows that H = G. This proves the “only if” part of the
lemma.

37This means that no subgraph H∗ of G that either is a cycle or can be obtained from a
cycle by repeated path addition contains H as a proper subgraph.

38A graph H is an induced subgraph of a graph G if V (H) ⊆ V (G), and for all distinct
u, v ∈ V (H), we have that uv ∈ E(H) if and only if uv ∈ E(G).

39Otherwise, we fix a minimal index i ∈ {1, . . . , t − 1} such that pi ∈ V (H), and we
consider the path v, p1, . . . , pi instead of v, p1, . . . , pt.
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Chapter 6

Triangle-free graphs and
graphs without a C4
subgraph. Cayley’s formula.
Sperner’s theorem

6.1 Graphs without K3 as a subgraph

A graph is said to be triangle-free if it does not contain K3 as a subgraph.
The following theorem is a special case of “Turán’s theorem,” gives

a formula for the maximum number of edges in any Kn-free graph (see
section 19.1).

Mantel’s theorem. Let n be a positive integer. Then

(a) any triangle-free graph on n vertices has at most ⌊n2 ⌋⌈
n
2 ⌉ = ⌊n2

4 ⌋ edges;

(b) there exists a triangle-free graph on n vertices that has precisely ⌊n2 ⌋⌈
n
2 ⌉ =

⌊n2

4 ⌋ edges.

Proof. First, let us check that ⌊n2 ⌋⌈
n
2 ⌉ = ⌊n2

4 ⌋. If n is even, then this is
obvious. If n is odd, then there exists a non-negative integer k such that
n = 2k + 1, we compute

⌊n2 ⌋⌈
n
2 ⌉ = ⌊2k+1

2 ⌋⌈2k+1
2 ⌉ = k(k + 1) = k2 + k

and

⌊n2

4 ⌋ = ⌊ (2k+1)2

4 ⌋ = ⌊4k2+4k+1
4 ⌋ = k2 + k,
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and we deduce that ⌊n2 ⌋⌈
n
2 ⌉ = ⌊n2

4 ⌋.
For (b), we observe that the complete bipartite graph K⌊n/2⌋,⌈n/2⌉ is

triangle-free1 and has precisely n vertices and ⌊n2 ⌋⌈
n
2 ⌉ edges.

It remains to prove (a). We assume inductively that the claim holds for
graphs on fewer than n vertices, i.e. that for all positive integers ñ < n, any
triangle-free graph on ñ vertices has at most ⌊ ñ2

4 ⌋ edges. It is clear that (a)
holds for n = 1 and n = 2. So, we assume that n ≥ 3, we fix a triangle-free
graph G on n vertices, and we show that G has at most ⌊n2

4 ⌋ edges. If G has
no edges, then we are done. So assume that G has at least one edge, say uv.
Then G\{u, v} is triangle-free and has n−2 vertices, and so by the induction

hypothesis, it has at most ⌊ (n−2)2

4 ⌋ edges. Further, since G is triangle-free
and uv is an edge of G, a vertex in V (G) \ {u, v} can be adjacent to at most
one of u, v; so, the number of edges between {u, v} and V (G) \ {u, v} is at
most |V (G) \ {u, v}| = n− 2. Since the edges of G are precisely the edges of
G \ {u, v}, plus the edges between {u, v} and V (G) \ {u, v}, plus the edge
uv, we see that

|E(G)| ≤ ⌊ (n−2)2

4 ⌋+ (n− 2) + 1

= ⌊n2−4n+4
4 ⌋+ n− 1

= ⌊n2

4 ⌋,

which is what we needed to show.

6.2 Graphs without C4 as a subgraph

In what follows, we will use the Cauchy-Schwarz inequality (below).

The Cauchy-Schwarz inequality. All real numbers a1, . . . , an, b1, . . . , bn
satisfy ( n∑

i=1
aibi

)2
≤

( n∑
i=1

a2i

)( n∑
i=1

b2i

)
.

Proof. Omitted.

An isolated vertex is a vertex that has no neighbors.

Theorem 6.2.1. Let n be a positive integer. Any graph on n vertices that
does not contain C4 as a subgraph has at most 1

2(n+ n3/2) edges.

1Indeed, all bipartite graphs are triangle free.
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Proof. Let G be a graph on n vertices, and assume that G does not contain
C4 as a subgraph. Clearly, we may assume that G has no isolated vertices.2

Let d1, . . . , dn be the degrees of the vertices of G;3 since G is has no isolated
veetices, we see that d1, . . . , dn ≥ 1.

Let M :=
{
(v,A) | v ∈ V (G), A ∈

(
NG(v)

2

)}
.4 We will count the number

of elements of M in two ways.
First, for each v ∈ V (G), there are precisely

(
dG(v)

2

)
choices of A such

that (v,A) ∈ M . So, |M | =
∑

v∈V (G)

(
dG(v)

2

)
=

n∑
i=1

(
di
2

)
.

We now bound |M | above, as follows. Note that the second coordinate
of any element of M is simply an element of

(
V (G)
2

)
; since |V (G)| = n, there

are at most
(
n
2

)
choices for the second coordinate of an element of M . On

the other hand, since G contains no C4 as a subgraph, we see that no two
distinct elements of M have the same second coordinate. Indeed, suppose
that (v1, A) and (v2, A) are distinct elements of M ; we then set A = {u1, u2},
we and observe that v1, u1, v2, u2, v1 is a (not necessarily induced) C4 in G,
a contradiction. So, |M | ≤

(
n
2

)
.

We now have that
n∑

i=1

(
di
2

)
≤

(
n
2

)
.

Obviously,
(
n
2

)
≤ n2

2 , and since d1, . . . , dn ≥ 1, we see that
(
di
2

)
≥ (di−1)2

2 for
all i ∈ {1, . . . , n}; consequently,

n∑
i=1

(di−1)2

2 ≤
n∑

i=1

(
di
2

)
≤

(
n
2

)
≤ n2

2 ,

and it follows that
n∑

i=1
(di − 1)2 ≤ n2.

2Why?
3The di’s are not necessarily distinct; di is the degree of the i-th vertex of G.
4In other words, M is the set of all ordered pairs (v, {u1, u2}) such that v ∈ V (G), and

u1, u2 ∈ V (G) are two distinct neighbors of v. Note also that (v, {u1, u2}) ∈ M if and only
if u1, v, u2 is a (not necessarily induced) two-edge path of G. So, |M | is in fact the number
of (not necessarily induced) two-edge paths in G.
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We now compute:

n∑
i=1

(di − 1) =
n∑

i=1
(di − 1) · 1

≤
√

n∑
i=1

(di − 1)2

√
n∑

i=1
12 by the Cauchy-Schwarz

inequality

=

√
n∑

i=1
(di − 1)2

√
n

≤
√
n2

√
n because

n∑
i=1

(di − 1)2 ≤ n2

= n3/2.

It now follows that

|E(G)| = 1
2

n∑
i=1

di = 1
2

(
n+

n∑
i=1

(di − 1)
)

≤ 1
2(n+ n3/2),

which is what we needed to show.

6.3 Cayley’s formula for the number of spanning
trees of a complete graph

Recall that a forest is an acyclic graph (i.e. a graph that has no cycles), and
a tree is a connected forest. A leaf is a vertex of degree one, i.e. a vertex that
has exactly one neighbor. In what follows, we will use the well-known fact
that every tree on at least two vertices has a leaf.5 It is clear that if v is a
leaf of a tree T , then T \ v is still a tree.

5In fact, every tree on at least two vertices has at least two leaves. Let us prove this.
Suppose that T is a tree on at least two vertices, and let P = p1, . . . , pt be a path of
maximum length in T . Since T has at least one edge (because it is connected and has
at least two vertices), we know that t ≥ 2. We claim that p1 and pt are leaves of T ; by
symmetry, it suffices to show that p1 is a leaf. Obviously, p1 is adjacent to p2 in T . Further,
if p1 were adjacent to some pi with i ∈ {3, . . . , t}, then p1, p2, . . . , pi, p1 would be a cycle
in T , contrary to the fact that T is a tree. Finally, if p1 were adjacent to some vertex
v ∈ V (T ) \ {p1, . . . , pt}, then the path v, p1, . . . , pt would contradict the maximality of P .
So, p2 is the only neighbor of p1 in T , and it follows that p1 is a leaf of T .
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A spanning tree of a connected graph G is a tree T that is a subgraph of
G, and satisfies V (T ) = V (G). An example is given below (the edges of the
spanning tree are in red).

Now, suppose we are given a labeled complete graph on n (n ≥ 2) vertices
(say, with vertices labeled 1, . . . , n). We would like to count the number of
spanning trees in this graph; equivalently, we would like to count the number
of trees on the vertex set {1, . . . , n}. There is only one spanning tree for
K2, and it is easy to see that there are three spanning trees for K3. For K4,
there are 16 spanning trees, represented in Figure 6.1 (only the edges of the
trees are represented; the remaining edges of the K4 are not shown).

Our goal in this section is to prove the following.

Cayley’s formula. For all n ≥ 2, the number of spanning trees of Kn is
nn−2.

There are a number of known proofs of Cayley’s formula; here, we give
the one that uses the so called “Prüfer codes.”

We will show that for all finite sets S ⊆ N with |S| ≥ 2, the number of
trees on the vertex set S is |S||S|−2 (see Lemma 6.3.4). Obviously, this will
immediately imply Cayley’s formula, since the number of spanning trees of
Kn is equal to the number of trees on the vertex set {1, . . . , n}.

To simplify terminology, we will say that a tree is an integer tree if all
its vertices are positive integers.6 We now define the Prüfer code of integer
trees on at least two vertices recursively, as follows:

� for any integer tree T on exactly two vertices, the Prüfer code of T ,
denoted by P (T ), is the empty sequence;

� for any integer tree T on at least three vertices, we define the Prüfer
code of T to be P (T ) := ai, P (T \ i), where i is the smallest leaf of T ,
and ai is the unique neighbor of i in T .7

6Note, however, that this is not standard terminology. (There is no standard terminology
for such trees.) We use the term “integer tree” as a convenient shorthand in this section.

7So, P (T ) is obtained by adding ai to the front of P (T \ i).
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Figure 6.1: Spanning trees of K4, or equivalently, trees on the vertex set
{1, 2, 3, 4}.
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An example is given below (the Prüfer code of the tree in the top left corner
is 7, 4, 4, 7, 5, and the procedure for finding it is shown below).
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7, 4, 4 7, 4, 4, 7 7, 4, 4, 7, 5

Now, our goal is to show that given a set S ⊆ N (with |S| = n ≥ 2), the
function T 7→ P (T ) is a bijection from the set of all trees with vertex set S,
to the set of all sequences of length n− 2 with terms in S.8

Lemma 6.3.1. If T is an integer tree on at least two vertices, then every
non-leaf of T appears in P (T ), and none of the leaves do.

Proof. We prove the lemma by induction on the number of vertices of the
integer tree T . If T is a 2-vertex integer tree, then both its vertices are
leaves, and by definition, P (T ) is the empty sequence; so the lemma is true
for 2-vertex integer trees. Now, fix an integer n ≥ 2, and assume inductively
that the lemma holds for integer trees on n vertices. Let T be an integer
tree on n + 1 vertices. Let i be the smallest leaf of T , and let ai be the
unique neighbor of i. Since T is connected and has at least three vertices,
adjacent vertices cannot both be leaves of T , and so ai is a non-leaf of T .
By construction, P (T ) = ai, P (T \ i), and so the non-leaf ai of T appears in
P (T ), whereas the leaf i of T does not. Note that for v ∈ V (T ) \ {i, ai}, we
have that dT (v) = dT\i(v), and so each vertex of T other than i and ai is a
leaf in T if and only if it is a leaf in T \ i. The result now follows from the
induction hypothesis.

Lemma 6.3.2. If two integer trees have the same vertex set and the same
Prüfer code, then they are identical.

8Obviously, there are precisely nn−2 such sequences.
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Proof. We proceed by induction on the number of vertices. There is only
one tree on a fixed two-element vertex set, and so the lemma clearly holds
for 2-vertex integer trees. Now, fix an integer n ≥ 2, and suppose inductively
that the lemma is true for integer trees on n vertices. Fix S ⊆ N with
|S| = n+1, and let T1 and T2 be trees with vertex-set S and identical Prüfer
code P . P is of length n−1, and so at least two members of S do not appear
in P ; let i be the smallest integer in S that does not appear in P . Let ai
be the first term of P , and let Pi be obtained from P by deleting its first
term. By Lemma 6.3.1, i is the smallest leaf of both T1 and T2, and by the
definition of the Prüfer code, ai is the unique neighbor of i in both T1 and T2.
Further, we have that P (T1 \ i) = P (T2 \ i) = Pi, and so by the induction
hypothesis, T1 \ i = T2 \ i. Since i has the same neighborhood in T1 and in
T2, it follows that T1 = T2.

Lemma 6.3.3. If n ≥ 2 is an integer, and if S ⊆ N with |S| = n, then every
sequence of length n− 2, all of whose terms are in S, is the Prüfer code of
some tree with vertex-set S.

Proof. We proceed by induction on n.
Suppose first that S ⊆ N satisfies |S| = 2, and let P be a sequence of

length 2− 2 = 0, all of whose terms are in S. Then P is the empty sequence.
Let T be the unique tree on the vertex-set S. Then P (T ) = P .

Now, fix an integer n ≥ 2, and suppose inductively that the lemma is
true for n. We need to show that it holds for n+ 1. Let S ⊆ N be such that
|S| = n+ 1, and let P be a sequence of length n− 1, all of whose terms are
in S. Let i be the smallest member of S that does not appear in P , and
let ai be the first term of P . Let Pi be the sequence obtained by deleting
the first term from P . By the induction hypothesis, there is a tree Ti with
vertex-set S \ {i} and Prüfer code Pi. Let T be the tree obtained by adding
the vertex i to Ti, and making i adjacent to ai and to no other vertex of Ti.
Now P (T ) = P . This completes the induction.

Note that the proof of Lemma 6.3.3 in fact gives us a recipe for “decoding”
a given Prüfer code, i.e. for finding the tree to which the code corresponds.
For an integer n ≥ 2, an n-element set S ⊆ N, and an (n− 2)-term sequence
P , with terms in S, we proceed as follows. If n ≥ 3, then we let i be the
smallest element of S that is not in P , and we let ai be the first term of
P . We make i and ai adjacent, we delete i from S, and we delete the first
term of P . We repeat the process until S has only two elements left, and
P is the empty sequence. At this point, we make the last two remaining
elements of S adjacent. An example is given below: the tree on the vertex
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set S = {1, 2, 3, 4, 5, 6, 7} whose Prüfer code is 7, 4, 4, 7, 5 is the tree on the
bottom of the picture (e is the empty sequence).
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S = {1, 2, 3, 4, 5, 6, 7} S = {2, 3, 4, 5, 6, 7} S = {3, 4, 5, 6, 7}
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Putting Lemmas 6.3.2 and 6.3.3 together, we obtain the following.

Lemma 6.3.4. Let n ≥ 2 be an integer, and let S ⊆ N be such that |S| = n.
Then the number of trees on the vertex set S is nn−2.

Proof. By Lemmas 6.3.2 and 6.3.3, the mapping T 7→ P (T ) is a bijection
from the set of all integer trees on the vertex set S to the set of all (n−2)-term
sequences, all of whose terms are elements of S. There are precisely nn−2

sequences of length n − 2, with terms in S, and it follows that there are
precisely nn−2 trees on the vertex set S.

Cayley’s formula follows immediately from Lemma 6.3.4, since the number
of spanning trees of Kn is precisely the number of trees on the vertex set
{1, . . . , n}.
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6.3.1 Cayley’s formula via determinants

In this subsection, we give (without proof) a formula for computing the
number of spanning trees of any graph on the vertex set {1, . . . , n}.

Suppose that n ≥ 2 is an integer, and that G is a graph on the vertex set
{1, . . . , n}. Then the Laplacian of G is the matrix Q = [qi,j ]n×n given by

qi,j =


dG(i) if i = j

−1 if i ̸= j and ij ∈ E(G)

0 if i ̸= j and ij /∈ E(G)

We now need some notation. Suppose A = [ai,j ]n×m is a matrix, and
suppose i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}; then Ai,j is the matrix obtained
from A by deleting the i-th row and j-th column. In particular, A1,1 is the
matrix obtained from A by deleting the first row and first column.

Theorem 6.3.5. Let n ≥ 2 be an integer, let G be any graph on the vertex
set {1, . . . , n}, and let Q be the Laplacian of G. Then the number of spanning
trees of G is precisely det(Q1,1).

Proof. Omitted.

Example 6.3.6. Using Theorem 6.3.5, prove Cayley’s formula.

Solution. Fix an integer n ≥ 2, and consider the complete graph on the
vertex set {1, . . . , n}. Then the Laplacian of this graph is the n× n matrix

Q =


n− 1 −1 −1 . . . −1

−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . n− 1


n×n

.

The matrix Q1,1 has exactly the same form, only it is of size (n−1)× (n−1):

Q1,1 =


n− 1 −1 −1 . . . −1

−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1

...
...

...
. . .

...
−1 −1 −1 . . . n− 1


(n−1)×(n−1)

.
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We now compute the determinant of Q1,1:

det(Q1,1) =

∣∣∣∣∣∣∣∣∣∣∣

n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . n− 1

∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

(∗)
=

∣∣∣∣∣∣∣∣∣∣∣

n− 1 −1 −1 . . . −1
−n n 0 . . . 0
−n 0 n . . . 0

...
...

...
. . .

...
−n 0 0 . . . n

∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

(∗∗)
=

∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 . . . −1
0 n 0 . . . 0
0 0 n . . . 0
...

...
...

. . .
...

0 0 0 . . . n

∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

(∗∗∗)
= nn−2,

where (*) is obtained by subtracting the first row from all the subsequent
ones, (**) is obtained by adding to the first column the sum of all subsequent
ones, and (***) is obtained by multiplying the diagonal entries of the upper
triangular matrix that we obtained. By Theorem 6.3.5, we now have that
the number of spanning trees of Kn is precisely nn−2, which proves Cayley’s
formula.

6.4 Sperner’s theorem

For a partially ordered set (X,≤),

� a chain in (X,≤) is any set C ⊆ X such that for all x1, x2 ∈ C, we have
that either x1 ≤ x2 or x2 ≤ x1.

9

9This definition works both for finite and for infinite X. Note also that ∅ is a chain
in (X,≤). However, if X is finite and C is a non-empty chain in (X,≤), then C can be
ordered as C = {x1, . . . , xt} so that x1 ≤ · · · ≤ xt.
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� a maximal chain in (X,≤) is a chain C in (X,≤) such that there is no
chain C′ in (X,≤) with the property that C ⫋ C′;

� an antichain in (X,≤) is any set A ⊆ X such that for all distinct
x1, x2 ∈ A, we have that x1 ̸≤ x2 and x2 ̸≤ x1.

Note that a chain and an antichain in (X,≤) can have at most one element
in common.10

Here, we are interested in a special case of the above. As usual, for a set
X, we denote by P(X) the power set (i.e. the set of all subsets) of X. Clearly,
for any set X, we have that ⊆P(X):= {(A,B) | A,B ∈ P(X), A ⊆ B} is a
partial order on X. To simplify notation, in what follows, we write (P(X),⊆)
instead of (P(X),⊆P(X)). We apply the above definitions to (P(X),⊆),
as follows. For a set X,

� a chain in (P(X),⊆) is any set C of subsets of X such that for all
C1, C2 ∈ C, we have that either C1 ⊆ C2 or C2 ⊆ C1.

11

� a maximal chain in (P(X),⊆) is a chain in (P(X),⊆) such that there
is no chain C′ in (P(X),⊆) with the property that C ⫋ C′;

� an antichain in (P(X),⊆) is any set A of subsets of X such that for
all distinct A1, A2 ∈ A, we have that A1 ̸⊆ A2 and A2 ̸⊆ A1.

12

As before, note that a chain and an antichain in (P(X),⊆) can have at most
one element in common.

Example 6.4.1. Let X = {1, 2, 3, 4}. All the following are chains in
(P(X),⊆):13

� {{2, 4}, {1, 2, 4}};14

� {∅, {1}, {1, 2}, {1, 2, 3}, X}.15

10Indeed, if distinct elements x1, x2 belong to a chain of (X,≤), then x1 ≤ x2 or x2 ≤ x1.
On the other hand, if they belong to an antichain of (X,≤), then x1 ̸≤ x2 and x2 ̸≤ x1.
So, distinct elements x1 and x2 cannot simultaneously belong to a chain and an antichain
of (X,≤).

11This definition works both for finite and for infinite X. Note also that ∅ is a chain in
(P(X),⊆). However, if X is finite and C is a non-empty chain in (P(X),⊆), then C can
be ordered as C = {C1, . . . , Ct} so that C1 ⊆ · · · ⊆ Ct.

12Equivalently: A1 \A2 and A2 \A1 are both non-empty.
13Note, however, that there are many other chains in (P(X),⊆) as well.
14Note that this chain is not maximal, since we can add (for example) the set {2} to it

and obtain a larger chain.
15This chain is maximal.
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� {∅, {4}, {2, 4}, {1, 2, 4}, X};16

Further, the following are all antichains in (P(X),⊆):17

� {∅};

� {X};

� {{1, 2}, {2, 3}, {1, 3, 4}};

� {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

Sperner’s theorem. Let n be a non-negative integer, and let X be an
n-element set. Then any antichain in (P(X),⊆) has at most

(
n

⌊n/2⌋
)
ele-

ments. Furthermore, this bound is tight, that is, there exists an antichain in
(P(X),⊆) that has precisely

(
n

⌊n/2⌋
)
elements.

Proof. First, we note that the set of all ⌊n/2⌋-element subsets of X is an
antichain in (P(X),⊆), and this antichain has precisely

(
n

⌊n/2⌋
)
elements.

It remains to show that any antichain in (P(X),⊆) has at most
(

n
⌊n/2⌋

)
elements.

Claim 1. There are precisely n! maximal chains in (P(X),⊆).

Proof of Claim 1. Clearly, any maximal chain in (P(X),⊆) is of the form
{∅, {x1}, {x1, x2}, . . . , {x1, x2, . . . , xn}}, where x1, . . . , xn is some ordering of
the elements of X. There are precisely n! such orderings, and so the number
of maximal chains in (P(X),⊆) is n!. ♦

Claim 2. For every set A ⊆ X, the number of maximal chains
of (P(X),⊆) containing A is precisely |A|!(n− |A|)!.

Proof of Claim 2. Set k = |A|. As in the proof of Claim 1, we observe that any
maximal chain in (P(X),⊆) is of the form {∅, {x1}, {x1, x2}, . . . , {x1, x2, . . . , xn}},
where x1, . . . , xn is some ordering of the elements of X; this chain contains
A if and only if A = {x1, . . . , xk} (and therefore, X \ A = {xk+1, . . . , xn}).
The number of ways of ordering A is k!, and the number of ways of ordering
X \A is (n− k)!. So, the total number of chains of (P(X),⊆) containing A
is precisely k!(n− k)!. ♦

Now, fix an antichain A in (P(X),⊆). We form the matrix M whose
rows are indexed by the elements of A, and whose columns are indexed by

16This chain is maximal.
17Note, however, that there are many other antichains in (P(X),⊆) as well.
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the maximal chains of (P(X),⊆), and in which the (A, C)-th entry is 1 if
A ∈ C and is 0 otherwise.18 Our goal is to count the number of 1’s in the
matrix M in two ways.

First, by Claim 2, for any A ∈ A, the number of maximal chains of
(P(X),⊆) containing A is precisely |A|!(n− |A|)!; so, the number of 1’s in
the row of M indexed by A is precisely |A|!(n− |A|)!. Thus, the number of
1’s in the matrix M is precisely∑

A∈A
|A|!(n− |A|)!.

On the other hand, by Claim 1, the number of columns of M is precisely n!.
Furthermore, no chain of (P(X),⊆) contains more than one element of the
antichain A, and so no column of M contains more than one 1. So, the total
number of 1’s in the matrix M is at most n!. We now have that∑

A∈A
|A|!(n− |A|)! ≤ n!,

and consequently, ∑
A∈A

|A|!(n−|A|)!
n! ≤ 1.

On the other hand, for all A ⊆ X (and in particular, for all A ∈ A), we have
that

|A|!(n−|A|)!
n! = 1

n!
|A|!(n−|A|)!

= 1

( n
|A|)

(∗)
≥ 1

( n
⌊n/2⌋)

,

where (*) follows from the fact that
(
n
k

)
≤
(

n
⌊n/2⌋

)
for all k ∈ {0, . . . , n}.19

We now have that

1 ≥
∑
A∈A

|A|!(n−|A|)!
n! ≥

∑
A∈A

1

( n
⌊n/2⌋)

≥ |A| 1

( n
⌊n/2⌋)

,

which yields |A| ≤
(

n
⌊n/2⌋

)
. This completes the argument.

18Here, A ∈ A, C is a maximal chain in (P(X),⊆), and the (A, C)-th entry of M is the
entry in the row indexed by A and column indexed by C.

19This was discussed in section 1.3.
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Chapter 7

Ramsey theory

7.1 The Pigeonhole principle

The Pigeonhole Principle. Let n1, . . . , nt (t ≥ 1) be non-negative integers,
and let X be a set of size at least 1 + n1 + · · ·+ nt. If (X1, . . . , Xt) is any
partition of X,1 then there exists some i ∈ {1, . . . , t} such that |Xi| > ni.

2

Proof. Suppose otherwise, and fix a partition (X1, . . . , Xt) such that |Xi| ≤
ni for all i ∈ {1, . . . , t}. But then

1 + n1 + · · ·+ nt ≤ |X| = |X1|+ · · ·+ |Xt| ≤ n1 + · · ·+ nt,

a contradiction.

As an immediate corollary, we obtain the following.

Corollary 7.1.1. Let n and t be positive integers. Let X be an n-element
set, and let (X1, . . . , Xt) be any partition of X.3 Then there exists some
i ∈ {1, . . . , t} such that |Xi| ≥ ⌈nt ⌉.

Proof. By the Pigeonhole Principle, we need only show that n ≥ 1+t(⌈nt ⌉−1).
If t |n,4 then ⌈nt ⌉ =

n
t , and we have that

1 + t(⌈nt ⌉ − 1) ≤ 1 + t(nt − 1) = n− t+ 1 ≤ n,

1Here, we allow sets X1, . . . , Xt to possibly be empty.
2If one thinks of elements of X as “pigeons” and sets X1, . . . , Xt as “pigeonholes,” then

the Pigeonhole Principle states that some pigeonhole Xi receives more than ni pigeons.
3Here, we allow sets X1, . . . , Xt to possibly be empty.
4“t |n” means that n is divisible by t.
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which is what we needed. Suppose now that t ̸ |n, so that ⌈nt ⌉ − 1 = ⌊nt ⌋.
Then let m = ⌊nt ⌋ and ℓ = n−mt; since t ̸ |n, we have that ℓ ≥ 1. But now

1 + t(⌈nt ⌉ − 1) = 1 + t(⌊nt ⌋) = 1 + tm ≤ ℓ+ tm = n,

and we are done.

We remark that Corollary 7.1.1 is also often referred to as the Pigeonhole
Principle.

7.2 Ramsey numbers

A clique in a graph G is any set of pairwise adjacent vertices of G. The clique
number of G, denoted by ω(G), is the maximum size of a clique in G.

A stable set (or independent set) in a graph G is any set of pairwise
non-adjacent vertices of G. The stability number (or independence number)
of G, denoted by α(G), is the maximum size of a stable set in G.

We begin with a simple proposition, which we will then generalize.

Proposition 7.2.1. Let G be a graph on at least six vertices. Then either
ω(G) ≥ 3 or α(G) ≥ 3.

Proof. Let u be any vertex of G. Then |V (G) \ {u}| ≥ 5, and so (by the
Pigeonhole Principle) either u has at least three neighbors or it has at least
three non-neighbors.

Suppose first that u has at least three neighbors. If at least two of those
neighbors, say u1 and u2, are adjacent, then {u, u1, u2} is a clique of G of
size three, and we deduce that ω(G) ≥ 3. On the other hand, if no two
neighbors of u are adjacent, then they together form a stable set of size at
least three, and we deduce that α(G) ≥ 3.

Suppose now that u has at least three non-neighbors. If at least two of
those non-neighbors, say u1 and u2, are non-adjacent, then {u, u1, u2} is a
stable set of G of size three, and we deduce that α(G) ≥ 3. On the other
hand, if the non-neighbors of u are pairwise adjacent, then they together
form a clique of size at least three, and we deduce that ω(G) ≥ 3.

As usual, for a graph G and a vertex u, NG(u) is the set of all neighbors
of u in G, and we set NG[u] := {u} ∪ NG(u); NG(u) is called the open
neighborhood (or simply neighborhood) of u in G, and NG[u] is called the
closed neighborhood of u in G. Our next theorem generalizes Proposition 7.2.1.
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Theorem 7.2.2. Let k and ℓ be positive integers, and let G be a graph on
at least

(
k+ℓ−2
k−1

)
vertices.5 Then either ω(G) ≥ k or α(G) ≥ ℓ.

Proof. We may assume inductively that for all positive integers k′, ℓ′ such
that k′ + ℓ′ < k + ℓ, all graphs G′ on at least

(
k′+ℓ′−2
k′−1

)
vertices satisfy either

ω(G′) ≥ k′ or α(G′) ≥ ℓ′.
If k = 1 or ℓ = 1, then the result is immediate.6 So, we may assume

that k, ℓ ≥ 2. Now, set n =
(
k+ℓ−2
k−1

)
, n1 =

(
k+ℓ−3
k−1

)
, and n2 =

(
k+ℓ−3
k−2

)
; then

n = n1 + n2, and consequently, n − 1 = 1 + (n1 − 1) + (n2 − 1). Fix any
vertex u ∈ V (G), and set N1 = V (G) \NG[u] and N2 = NG(u).

u

N1 N2

Since (N1, N2) is a partition of V (G) \ {u}, and since |V (G) \ {u}| ≥ n− 1 =
1 + (n1 − 1) + (n2 − 1), the Pigeonhole Principle guarantees that either
|N1| ≥ n1 or |N2| ≥ n2.

Suppose first that |N1| ≥ n1, i.e. |N1| ≥
(k+(ℓ−1)−2

k−1

)
. Then by the

induction hypothesis, either ω(G[N1]) ≥ k or α(G[N1]) ≥ ℓ − 1. In the
former case, we have that ω(G) ≥ ω(G[N1]) ≥ k, and we are done. So,
suppose that α(G[N1]) ≥ ℓ − 1, and let S be a stable set of G[N1] of size
ℓ− 1. Then {u} ∪ S is a stable set of size ℓ in G, we deduce that α(G) ≥ ℓ,
and again we are done.

Suppose now that |N2| ≥ n2, i.e. |N2| ≥
((k−1)+ℓ−2

k−2

)
. Then by the

induction hypothesis, either ω(G[N2]) ≥ k− 1 or α(G[N2]) ≥ ℓ. In the latter
case, we have that α(G) ≥ α(G[N2]) ≥ ℓ, and we are done. So, suppose that
ω(G[N2]) ≥ k − 1, and let C be a clique of G[N2] of size k − 1. But then
{u} ∪ C is a clique of size k in G, we deduce that ω(G) ≥ k, and again we
are done.

For positive integers k and ℓ, we denote by R(k, ℓ) the smallest integer n
such that every graph G on at least n vertices satisfies either ω(G) ≥ k or
α(G) ≥ ℓ. The existence of R(k, ℓ) follows immediately from Theorem 7.2.2.
Numbers R(k, ℓ) (with k, ℓ ≥ 1) are called Ramsey numbers.

5Note that
(
k+ℓ−2
k−1

)
=

(
k+ℓ−2
ℓ−1

)
.

6Indeed, it is clear that ω(G) ≥ 1 and α(G) ≥ 1. So, if k = 1, then ω(G) ≥ k; and if
ℓ = 1, then α(G) ≥ ℓ.
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It is easy to see that for all k, ℓ ≥ 1, we have that7

R(1, ℓ) = 1 R(k, 1) = 1

R(2, ℓ) = ℓ R(k, 2) = k

Furthermore, we have R(3, 3) = 6. Indeed, by Proposition 7.2.1, R(3, 3) ≤ 6.
On the other hand, ω(C5) = 2 and α(C5) = 2, and so R(3, 3) > 5. Thus,
R(3, 3) = 6. The exact values of a few other Ramsey numbers are known, but
no general formula for R(k, ℓ) is known. Note, however, that Theorem 7.2.2
gives an upper bound for Ramsey numbers, namely,

R(k, ℓ) ≤
(
k+ℓ−2
k−1

)
for all positive integers k, ℓ.

We complete this section by giving a lower bound for the Ramsey num-
ber R(k, k). Interestingly, this lower bound is obtained using probabilistic
methods.

Theorem 7.2.3. For all integers k ≥ 3, we have that R(k, k) > 2k/2.

Proof. Since ω(C5) = 2 and α(C5) = 2, we see that R(3, 3) > 5 > 23/2 and
R(4, 4) > 5 > 24/2. Thus, the claim holds for k = 3 and k = 4. From now on,
we assume that k ≥ 5. We will show that there exists a graph G on ⌊2k/2⌋
vertices such that ω(G), α(G) < k. This is enough, because it implies that
R(k, k) > ⌊2k/2⌋, and consequently, that R(k, k) > 2k/2 (because Ramsey
numbers are integers).

Let G be a graph on n := ⌊2k/2⌋ vertices, with adjacency as follows:
between any two distinct vertices, we (independently) put an edge with
probability 1

2 (and a non-edge with probability 1
2).

For any set of k vertices of G, the probability that this set is a clique is

(12)
(k2); there are

(
n
k

)
subsets of V (G) of size k, and the probability that at

least one of them is a clique is at most
(
n
k

)
(12)

(k2). So, the probability that

ω(G) ≥ k is at most
(
n
k

)
(12)

(k2). Similarly, the probability that α(G) ≥ k

is at most
(
n
k

)
(12)

(k2). Thus, the probability that G satisfies at least one of

7Check this!
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ω(G) ≥ k and α(G) ≥ k is at most

2
(
n
k

)
(12)

(k2) ≤ 2( enk )k(12)
(k2) by Theorem 1.3.1

≤ 2( e2
k/2

k
)k

2k(k−1)/2 because n = ⌊2k/2⌋

= 2( e2k/2

k2(k−1)/2 )
k

= 2( e
√
2

k )k

< 1 because k ≥ 5.

Thus, the probability that G satisfies neither ω(G) ≥ k nor α(G) ≥ k is
strictly positive. So, there must be at least one graph on n = ⌊2k/2⌋ vertices
whose clique number and stability number are both strictly smaller than k.
This completes the argument.

7.3 Ramsey’s theorem (hypergraph version)

First, we need some notation. We denote by N the set of all positive integers.8

For a positive integer n, we set [n] = {1, . . . , n}. For a set X and a non-
negative integer k, we denote by

(
X
k

)
the set of all subsets of X of size k.

In particular,
(
X
2

)
is the set of all subsets of X of size two. Note that this

means that if G is a (simple) graph, then E(G) ⊆
(
V (G)
2

)
.

Recall that for positive integers k and ℓ, the Ramsey number R(k, ℓ) is
the smallest N ∈ N such that every graph G on at least N vertices satisfies
either ω(G) ≥ k or α(G) ≥ ℓ. Here is a slightly different way to think about
Ramsey numbers. Clearly, any graph G corresponds to a complete graph
on the same vertex set, whose edges are colored black or white, with an
edge of the complete graph colored black if it was an edge of the graph
G, and colored white otherwise. With this set-up, it is easy to see that
R(k, ℓ) (with k, ℓ ∈ N) is the smallest N ∈ N such that any complete graph
on at least N vertices, whose edges are colored black or white, has either
a monochromatic9 black complete subgraph of size k, or a monochromatic
white complete subgraph of size ℓ. Now, let us suppose that instead of colors

8In some texts, N is used to denote the set of all non-negative integers. Here, it is the
set of all positive integers.

9Here, “monochromatic” simply means that all edges are colored with the same color.
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black and white, we use colors 1 and 2. Then a coloring of the complete
graph on the vertex set X is simply a function c :

(
X
2

)
→ [2].10 We now see

that R(k, ℓ) (with k, ℓ ∈ N) is the smallest N ∈ N such that for all finite sets
X with |X| ≥ N , and all colorings c :

(
X
2

)
→ [2], either there exists a set

A1 ∈
(
X
k

)
such that c assigns color 1 to each set in

(
A1

2

)
, or there exists a set

A2 ∈
(
X
ℓ

)
such that c assigns color 2 to each set in

(
A2

2

)
.11

This can be generalized!
Recall that, for a set X, we denote by P(X) the power set of X, i.e. the

set of all subsets of X. A hypergraph is an ordered pair H = (V (H), E(H)),
where V (H) is some non-empty finite set,12 and E(H) ⊆ P(V (H)) \ {∅}.
As in the graph case, members of V (H) are called vertices and members
of E(H) are called edges of the hypergraph H.13 For a positive integer
p, a hypergraph is p-uniform if all its edges have precisely p vertices. A
hypergraph is uniform if it is p-uniform for some p. So, if H is a p-uniform
hypergraph, then E(H) ⊆

(
V (H)

p

)
. Note that this means that a graph is

simply a 2-uniform hypergraph.
Given p, t, k1, . . . , kt ∈ N, the Ramsey number Rp(k1, . . . , kt) is the small-

est N ∈ N (if it exists) such that for all finite sets X with |X| ≥ N , and all
colorings (i.e. functions) c :

(
X
p

)
→ [t],14 there exist an index i ∈ [t] and a

set Ai ∈
(
X
ki

)
such that c assigns color i to each element of

(
Ai
p

)
.15 As our

next theorem shows, the Ramsey numbers Rp(k1, . . . , kt) are always defined.
We will give two proofs of this theorem. The first is more elementary (it
proceeds by induction on p), but also somewhat messy. The second one
(given in section 7.5) relies on the “infinite version” of Ramsey’s theorem
(see section 7.4); this second proof is more “advanced” (i.e. it requires more
sophisticated mathematical results), but it is also more elegant.

Ramsey’s theorem (hypergraph version). For all p, t, k1, . . . , kt ∈ N,
the number Rp(k1, . . . , kt) exists.

Proof. We fix t ∈ N, and we proceed by induction on p.
First, for p = 1, we fix k1, . . . , kt ∈ N, and we set N = (k1 − 1) + · · ·+

(kt−1)+1. Fix any finite set X with |X| ≥ N , and any coloring c :
(
X
p

)
→ [t].

10Note that the edge set of the complete graph on vertex set X is precisely the set
(
X
2

)
.

11Note that “A1 ∈
(
X
k

)
” simply means that A1 is a k-element subset of X. Similarly,

“A2 ∈
(
X
ℓ

)
” simply means that A2 is an ℓ-element subset of X.

12Occasionally, V (H) is allowed to be empty.
13So, an edge of a hypergraph can be any non-empty subset of vertices of the hypergraph.
14So, c is an assignment of colors to the edges of the “complete” p-uniform hypergraph

on vertex set X.
15With this set-up, we have that R(k, ℓ) = R2(k, ℓ).
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Now, for all i ∈ [t], set Ci = {x ∈ X | c({x}) = i}. Then (C1, . . . , Ct) is
a partition of X, and |X| ≥ N = (k1 − 1) + · · · + (kt − 1) + 1. So, by the
Pigeonhole Principle, there is some i ∈ [t] such that |Ci| ≥ ki. Now, let Ai

be any subset of Ci such that |Ai| = ki; so, Ai ∈
(
X
ki

)
. By construction, c

assigns color i to each element of
(
Ai
p

)
. So, R1(k1, . . . , kt) exists, and we see

that the theorem holds for p = 1.
Now, fix p ∈ N, and assume inductively that the Ramsey number

Rp(k1, . . . , kt) is defined for all k1, . . . , kt ∈ N. We must show that the
number Rp+1(k1, . . . , kt) is defined for all k1, . . . , kt ∈ N.

Fix k1, . . . , kt ∈ N, and assume inductively that the numberRp+1(k′1, . . . , k
′
t)

is defined for all k′1, . . . , k
′
t ∈ N such that k′1 + · · ·+ k′t < k1 + · · ·+ kt.

Suppose first that there exists some i ∈ [t] such that ki = 1. We then
set N := 1, and we fix any finite set X such that |X| ≥ N . Let Ai be any
one-element subset of X (so, Ai ∈

(
X
ki

)
). Then

(
Ai
p+1

)
= ∅, and so (vacuously)

c assigns color i to each element of
(
Ai
p+1

)
. Thus, Rp+1(k1, . . . , kt) is defined

(and is, in fact, equal to 1). From now on, we assume that k1, . . . , kt ≥ 2.
To simplify notation, we set ri := Rp+1(k1, . . . , ki−1, ki − 1, ki+1, . . . , kt)

for all i ∈ [t] (this is defined by the induction hypothesis for k1 + · · ·+ kt).
Further, we set N := Rp(r1, . . . , rt) + 1 (this is defined by the induction
hypothesis for p).

Fix a finite setX such that |X| ≥ N , and fix a function c :
(

X
p+1

)
→ [t]. Set

n := |X|; we may assume that X = [n].16 We now define an auxiliary coloring
c̃ :
(
[n−1]

p

)
→ {t}, as follows: for all A ∈

(
[n−1]

p

)
, we set c̃(A) = c(A ∪ {n}).

Since n − 1 ≥ Rp(r1, . . . , rt), we know that there exists some i ∈ [t] and a
set Xi ∈

(
[n−1]
ri

)
such that c̃ assigns color i to each element of

(
Xi
p

)
. Finally,

since |Xi| = ri = Rp+1(k1, . . . , ki−1, ki − 1, ki+1, . . . , kt), we know that there
exists some j ∈ [t] and a set Yj ∈

(
Xi
k′j

)
, where k′j = kj − 1 if j = i and

k′j = kj otherwise, such that c assigns color j to each element of
( Yj

p+1

)
. If

j ̸= i, then we set Aj = Yj , and we observe that Aj ∈
([n]
kj

)
, and that (by

construction) c assigns color j to each element of
( Aj

p+1

)
. Suppose now that

j = i. Then we set Ai = Yi ∪ {n}. Once again by construction, we have that
|Ai| = ki, and that c assigns color i to each element of

(
Ai
p+1

)
.17 This proves

that Rp+1(k1, . . . , kt) is defined.

We now consider a geometric application (see the Erdős-Szekeres theorem

16If not, we simply rename the elements of X (via a bijection).
17Indeed, fix any A ∈

(
Ai
p+1

)
. If n /∈ A, then A ∈

(
Yi
p+1

)
, and so c(A) = i. On the other

hand, if n ∈ A, then A \ {n} ∈
(
Xi
p

)
, and we see that c(A) = c̃(A \ {n}) = i.
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below). A set X of points in the plane is convex if for all distinct x1, x2 ∈ X,
the line segment between x1 and x2 lies in X.

convex non-convex

The convex hull of a non-empty set S of points in the plane is the smallest
convex set in the plane that includes S. If S is a non-empty, finite set of
points, then the convex hull of S is either a one-point set, a line interval, or
a convex polygon (with its interior).

If S is a finite set of points in the plane containing at least three non-
collinear points,18 then the convex hull of S is a convex polygon (with its
interior), and the vertices of this polygon are all in S;19 see the picture below
for an example.

Let us say that (pairwise distinct) points x1, . . . , xt (t ≥ 3) in the plane are in
convex position if they are the vertices of some convex polygon. Equivalently,
(pairwise distinct) points x1, . . . , xt (t ≥ 3) are in convex position if their
convex hull is a convex t-gon whose vertices are precisely x1, . . . , xt (not
necessarily in that order).

We now need a geometric lemma.

18Three or more points are collinear if they lie on the same line.
19However, not every element of S need be a vertex of the polygon.
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Lemma 7.3.1. Any set of five points in the plane, no three of which are
collinear, contains four points in convex position.

Proof. To simplify notation, for non-collinear points x, y, z in the plane, we
denote by ∆xyz the triangle with vertices x, y, z.

Let a1, . . . , a5 be five point in the plane, no three of which are collinear.
We now consider the convex hull of these five points. Since no three of these
points are collinear, their convex hull is a convex polygon, and each vertex
of the polygon is one of a1, . . . , a5.

20 If the polygon is a pentagon, then
clearly, any four of our five points are in convex position. If the polygon is
a quadrilateral, then its vertices (which are some four of a1, . . . , a5) are in
convex position. So assume that the polygon is a triangle. By symmetry, we
may assume that the vertices of this triangle are a1, a2, a3. Since no three
points of a1, . . . , a5 are collinear, we see that a4, a5 both lie in the interior
(and not on any edge) of the triangle ∆a1a2a3. Using the fact that a4 is in
the interior of ∆a1a2a3, we construct six regions in the interior of ∆a1a2a3,
as in the picture below (the regions Ci,j are the interiors if the triangles in
the picture, and in particular, they are disjoint from the lines represented in
the picture).

a1 a2

a3

a4

C3,1 C3,2

C2,1

C2,3 C1,3

C1,2

Since no three of a1, . . . , a5 are collinear, we see that a5 ∈ C1,2∪C1,3∪C2,1∪
C2,3∪C3,1∪C3,2. Now, fix i, j ∈ {1, 2, 3} with i ̸= j such that a5 ∈ Ci,j . Then
ai, a4, a5, aj are the vertices of a convex quadrilateral, and we are done.

The Erdős-Szekeres theorem. Let t ≥ 4 be an integer. Any set of at least
R4(5, t) points in the plane, no three of which are collinear, contains t points

20However, not all of a1, . . . , a5 need be vertices of the polygon.
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in convex position.

Proof. We consider a set S of at least R4(5, t) points in the plane, and we
assume that no three of these points are collinear. We now consider a coloring
c :
(
S
4

)
→ [2] defined as follows: for all X ∈

(
S
4

)
, c(X) = 1 if the four points

of X are not in convex position, and c(X) = 2 if they are in convex position.
Since |S| ≥ R4(5, t), we know that either there exists some A1 ∈

(
S
5

)
such

that c assigns color 1 to all elements of
(
A1

4

)
, or there exists some A2 ∈

(
S
t

)
such that c assigns color 2 to all elements of

(
A2

4

)
.

Suppose that there exists some A1 ∈
(
S
5

)
such that c assigns color 1 to

all elements of
(
A1

4

)
. Then A1 is a set of five points in the plane, no three of

which are collinear, and no four of which are in convex position. But this
contradicts Lemma 7.3.1.

It now follows that there exists some A2 ∈
(
S
t

)
such that c assigns color

2 to all elements of
(
A2

4

)
. Then A2 is a set of t points in the plane, no three

of which are collinear, and any four of which are in convex position. Let us
show that the points in A2 are in fact in convex position. We consider the
convex hull of A2; this convex hull is a convex polygon, and we let X2 be
the set of vertices of this polygon. Clearly, X2 ⊆ A2. If X2 = A2, then we
are done. So assume that X2 ⫋ A2. Then all points in X2 \ A2 are in the
interior of our polygon.21 We now choose any a ∈ A2 \X2. Clearly, there
exist three (pairwise distinct) points x1, x2, x3 ∈ X2 such that a is in the
interior of the triangle ∆x1x2x3.

22

x1

x2 x3

a

But then a, x1, x2, x3 are not in convex position, contrary to the fact that
c({a, x1, x2, x3}) = 2 (since {a, x1, x2, x3} ∈

(
A2

4

)
).

21Since no three points in A2 are collinear, no point of X2 \ A2 is on an edge of the
polygon.

22Once again, we are using the fact that no three of our points are collinear.
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7.4 Ramsey’s theorem (infinite version)

For a function c : A → B and a set A′ ⊆ A, we denote by c ↾ A′ the restriction
of c to A′.23

Ramsey’s theorem (infinite version). For all t, p ∈ N, all infinite sets
X, and all colorings c :

(
X
p

)
→ [t], there exists an infinite set A ⊆ X such

that c ↾
(
A
p

)
is constant.24

Proof. We fix t ∈ N, and we proceed by induction on p.
For p = 1, we fix an infinite set X and a coloring c :

(
X
1

)
→ [t]. For all

i ∈ [t], we set Ci = {x ∈ X | c({x}) = i}. Then (C1, . . . , Ct) is a partition of
the infinite set X, and consequently, at least one of the sets C1, . . . , Ct, say
Ci, is infinite. Furthermore, c ↾

(
Ci
1

)
is constant (indeed, it assigns color i to

each element of
(
Ci
1

)
). So, the theorem is true for p = 1.

Now, fix p ∈ N, and assume the theorem is true for p.25 We must show
that it is true for p+ 1. Fix an infinite set X and a coloring c :

(
X
p+1

)
→ [t].

Our goal is to recursively construct a sequence {Xn}∞n=1 of infinite subsets
of X and a sequence {xn}∞n=1 of elements of X with the following three
properties:

� xn ∈ Xn for all n ∈ N;

� Xn+1 ⊆ Xn \ {xn} for all n ∈ N;

� for all n ∈ N, c assigns the same color to all sets of the form {xn} ∪ Y ,
with Y ∈

(
Xn+1

p

)
.

First, we set X1 = X and we choose x1 ∈ X arbitrarily. Now, having
constructed X1, . . . , Xn and x1, . . . , xn, we construct Xn+1 and xn+1 as
follows. We define an auxiliary coloring cn :

(
Xn\{xn}

p

)
→ [t] by setting

cn(A) = c(A ∪ {xn}) for all A ∈
(
Xn\{xn}

p

)
.26 Since Xn \ {xn} is infinite, the

induction hypothesis guarantees that there exists some infinite set Xn+1 ⊆
Xn \ {xn} such that cn ↾

(
Xn+1

p

)
is constant. But now by construction, we

have that c assigns the same color to all sets of the form {xn} ∪ Y , with
Y ∈

(
Xn+1

p

)
. Finally, we choose xn+1 ∈ Xn+1 arbitrarily.

23So, c ↾ A′ is a function from A′ to B, and for all a ∈ A′, we have (c ↾ A′)(a) = c(a).
24This means that c assigns the same color to all p-element subsets of A.
25So, we are assuming that for all infinite sets X, and all colorings c :

(
X
p

)
→ [t], there

exists an infinite set A ⊆ X such that c ↾
(
A
p

)
is constant.

26Note that if A ∈
(
Xn\{xn}

p

)
, then A ∪ {xn} ∈

(
Xn
p+1

)
⊆

(
X

p+1

)
, and so c(A ∪ {xn}) is

defined.
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We have now constructed our sequences {Xn}∞n=1 and {xn}∞n=1. It follows
from the construction that for all n ∈ N, the coloring c assigns the same
color to all sets of the form {xn} ∪ {xj1 , . . . , xjp}, with n < j1 < · · · < jp;
let us say this color is associated with xn. Now, for all i ∈ [t], we let
Ai = {xn | n ∈ N, i is associated with xn}. Then (A1, . . . , At) is a partition
of the infinite set {x1, x2, x3, . . . }, and we deduce that at least one of the
sets A1, . . . , At, say Ai, is infinite. But now c ↾

(
Ai
p+1

)
is constant (it assigns i

to all elements of
(
Ai
p+1

)
). This completes the induction.

Note that, to form the sequence {xn}∞n=1 in the proof that we just
completed, we made infinitely many “arbitrary choices” (indeed, each xn was
chosen arbitrarily from some specified infinite set). So, we implicitly used
the “Axiom of Choice,” which allows us to make infinitely many arbitrary
choices in this way. It is actually possible to avoid the use of the Axiom of
Choice in the proof above, but then the proof would be slightly messier,27

and we omit the details.

7.5 Kőnig’s infinity lemma

An infinite graph (i.e. graph with an infinite vertex set) is locally finite if each
vertex has finite degree. As in the case of finite graphs, an infinite graph is
connected if there is a path28 between any two vertices. An infinite graph is
a forest if it contains no cycles,29 and it is a tree if it is a connected forest.
An infinite rooted tree is an ordered pair (T, r) such that T is an infinite tree,
and r is some vertex of T , called the root.

A ray in an infinite graph G is a sequence x0, x1, x2, x3, . . . of pairwise
distinct vertices such that for all integers n ≥ 0, xnxn+1 is an edge of G.

Kőnig’s infinity lemma. Every infinite, locally finite rooted tree (T, r)
contains a ray starting at r (i.e. a ray of the form r, x1, x2, . . . ).

Proof (outline). Since the tree T is infinite and connected, there are infinitely
many paths in T with one endpoint r. Since r has only finitely many
neighbors, infinitely many of these paths have the second vertex (say, x1)
in common as well. Since x1 has only finitely many neighbors, among the
infinitely many paths starting with r, x1, infinitely many have the third

27Essentially, we would start with an injection f : N → X, and then work with f [N]
instead of X. Then, instead of making an arbitary choice, we could choose the xn ∈ Xn

whose pre-image (via f) is minimum.
28The path is supposed to be finite.
29Again, cycles are finite.
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vertex (say, x2) in common. We proceed like this, and we obtain an infinite
sequence r, x1, x2, x3, . . . . But now r, x1, x2, x3, . . . is a ray starting at r.

We remark that the proof of Kőnig’s infinity lemma also uses the Axiom
of Choice (because at the n-th step, there may be more than one possible
choice for xn, and if so, we choose arbitrarily).

The infinite version of Ramsey’s theorem and Kőnig’s infinity lemma
together imply the hypergraph version of Ramsey’s theorem, as we now show.

Ramsey’s theorem (hypergraph version). For all p, t, k1, . . . , kt ∈ N,
the number Rp(k1, . . . , kt) exists.

Proof. Clearly, it suffices to show that for all p, t, k ∈ N, the Ramsey num-
ber Rp(k, . . . , k︸ ︷︷ ︸

t

) exists.30 Suppose that for some p, t, k ∈ N, the number

Rp(k, . . . , k︸ ︷︷ ︸
t

) does not exist. Now, for each integer n ≥ p, we say that a

coloring c :
(
[n]
p

)
→ [t] is n-bad if there is no set A ∈

([n]
k

)
such that c ↾

(
A
p

)
is constant; a coloring is bad if it is n-bad for some integer n ≥ p. Since
Rp(k, . . . , k︸ ︷︷ ︸

t

) does not exist, we see that for all integers n ≥ p, there is at

least one n-bad coloring.31

Now, let C be the set of all bad colorings, and let T be the graph on the
vertex set C ∪ {r} (where r /∈ C),32 with adjacency as follows:

� r is adjacent to all p-bad colorings, and to no other elements of C;

� for all integers n ≥ p, n-bad colorings are pairwise non-adjacent;

� for all integers n ≥ p, an n-bad coloring cn is adjacent to an (n+1)-bad
coloring cn+1 if and only if cn+1 is an extension of cn;

33

� for all integers n1, n2 ≥ p such that |n1 − n2| ≥ 2, no n1-bad coloring
is adjacent to any n2-bad coloring.

30Indeed, fix p, t, k1, . . . , kt ∈ N, and set k = max{k1, . . . , kt}. If Rp(k, . . . , k︸ ︷︷ ︸
t

) exists, then

so does Rp(k1, . . . , kt), and in fact, we have that Rp(k1, . . . , kt) ≤ Rp(k, . . . , k︸ ︷︷ ︸
t

). (Details?)

31Details?
32Here, r is simply an artificially added root, which we need in order to make a rooted

tree.
33This means that cn+1 ↾

(
[n]
p

)
= cn.



Chapter 7. Ramsey theory 125

Now (T, r) is a rooted tree. Furthermore, for each integer n ≥ p, the number
of n-bad colorings is finite,34 and so it follows from the construction of T
that the T is locally finite. So, by Kőnig’s infinity lemma, there is a ray

r, cp, cp+1, cp+2, . . . in T . Set c =
∞⋃
n=p

cn; then c :
(N
p

)
→ [t],35 and so by the

infinite version of Ramsey’s theorem, there is an infinite set A such that
c ↾
(
A
p

)
is constant. We now choose any subset Ak ∈

(
A
k

)
, and we observe

that c ↾
(
Ak
p

)
is constant. Now, Ak is a finite subset of N, and consequently,

there exists some n ∈ N such that Ak ⊆ [n]; we may assume that n ≥ p.36

Now Ak ∈
([n]
k

)
, and cn ↾

(
Ak
p

)
= c ↾

(
Ak
p

)
is constant, contrary to the fact

that cn is bad.

34In fact, the number of colorings c :
(
[n]
p

)
→ [t] is finite.

35We are using the fact that each coloring in the sequence cp, cp+1, cp+2, . . . extends the
previous one, and so the union of this sequence is a function (coloring).

36Otherwise, we have that Ak ⊆ [p], and we consider p instead of n.
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Chapter 8

Error correcting codes

8.1 A motivating example

Let us suppose a sender wishes to send a message (say, a sequence of 1’s and
0’s) to a receiver. If the communication channel is unreliable or noisy, the
message may get corrupted. For instance, the sender may send 1011, and
the receiver may receive 1001.1 In this case, the receiver has no chance of
spotting and fixing the error.

One way to address this problem might be to agree to triple each bit (i.e.
each 1 or 0); so, instead of 1011, we would send 111000111111. Suppose just
one error occurred, and the receiver received 111000110111. Because the
receiver knows he was supposed to get a sequence of tripled 1’s and 0’s, he can
confidently say that there was an error in the boxed triple: 111000 110 111.
The receiver knows that the boxed triple should have been either 000 or 111,
and the latter (i.e. 111) is more likely because it is more likely that only one
error occurred than that two errors did. So, the receiver guesses that the
message sent was 111000111111, which corresponds to 1011. On the other
hand, if more than one error occurs in a triple corresponding to one bit, then
the receiver will either fail to detect the error or will correct it incorrectly.
For instance, if the receiver receives 111000100111, then he will incorrectly
guess that the sender sent 111000000111, which corresponds to 1001.

Here is another way to address the same problem. Consider the Fano
plane, represented below.2

1Here, errors are shown in red, to facilitate reading. However, the receiver does not see
this: he simply receives a string of 1’s and 0’s, uncolored.

2We saw the Fano plane in chapter 3. Here, points are relabeled (relative to what we
had in chapter 3), and the names of lines are omitted. We still have seven lines, represented
by the six line segments and one circle. (Each line has exactly three points.)
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1 2 4

7

5

6

3

We now form 16 row vectors of length seven as follows: we take all possible
incidence vectors of lines of the Fano plane,3 the incidence vectors of the
complements of the lines of the Fano plane,4 plus the vectors (0, 0, 0, 0, 0, 0, 0)
and (1, 1, 1, 1, 1, 1, 1). Let H be the set of these 16 vectors. Now, these
vectors have the following two properties:

� any two distinct vectors in H differ in at least three places/coordinates;

� for any vector w of 1’s and 0’s of length 7, there exists a unique vector
h ∈ H such that w and h differ in at most one place/coordinate.

This means that if a sender sends a vector from H, and at most one error
is made during transmission, the receiver can correctly guess which vector
was sent. Indeed, the receiver simply chooses the unique vector from H that
differs in at most one coordinate from the vector that the receiver received.

How do we use H? First, note that there are precisely 16 strings of
1’s and 0’s of length four (indeed, these are simply the integers 0, 1, . . . , 15
written in binary code). So, we can set up a bijection π between the set of
these 16 strings and the set H. Now, suppose we wish to transmit a string of
1’s and 0’s of length 4n, for some positive integer n. We divide such a string
into n consecutive blocks of length four, and instead of sending these blocks,
we send (consecutively) the n vectors from H that correspond to them. The
advantage of this is that if, during transmission, at most one error is made
in each vector, the receiver will be able to spot it and correct it, and then to
read off (using π−1) the sender’s original 4n-bit message.

Note that, if we use H, then instead of sending 4n bits (the number of
bits in our original message), we send 7n bits. If data is expensive, then
this is clearly an improvement over tripling each bit (where we would send
3n bits for each n-bit message). We remark that H is a type of “Hamming

3For example, the incidence vector of the line {1, 2, 4} is (1, 1, 0, 1, 0, 0, 0).
4For example, the incidence vector of the complement of the line {1, 2, 4} is

(0, 0, 1, 0, 1, 1, 1).
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code,” sometimes called the Hamming(7,4) code (because the original 4 bits
are converted into 7 bits).

8.2 Basic notions

An alphabet is some finite set of symbols Σ = {s0, . . . , sm}. Often, our
alphabet is the finite field Fq, where q is a prime power;5 particularly often,
our alphabet is F2 = Z2, which is simply the binary code (and we can
perform addition and multiplication modulo 2). A word of length n is a
string (or row vector) of length n of symbols from our alphabet; Σn is the
set of all words of length n using symbols from the alphabet Σ. A code
is a subset C of Σn.6 Elements of the code are codewords. Given words
x = x1 . . . xn and y = y1 . . . yn in Σn,7 the Hamming distance between x and
y, denoted by d(x,y), is the number of places in which x and y differ, i.e.
d(x,y) = |{i ∈ {1, . . . , n} | xi ≠ yi}|. It is straightforward to check that the
Hamming distance d(·, ·) is a “metric” on Σn, that is, that is satisfies the
following three properties:8

� d(x, y) = 0 ⇔ x = y;

� d(x, y) = d(y, x);

� d(x, z) ≤ d(x, y) + d(y, z).

The inequality from the third bullet point is referred to as the triangle
inequality.

Codes are used as follows. A sender would like to send a message to a
receiver, and for this, he uses some code C ⊆ Σn, where Σ is some alphabet.
There is a bijection π (known to both the sender and the receiver) between all
possible messages and the code C. Now, the sender encodes his message (i.e.
turns it into a codeword via the bijection) and sends it to the receiver. The

5Recall that, for a positive integer q, there is a field of size q if and only if q is a prime
power (i.e. q = pn, where p is a prime number and n is a positive integer). Furthermore,
all finite fields of the same size are isomorphic. If q a prime power, then Fq is the unique
(up to isomorphism) field of size q. Note that if p is a prime number, then Fp = Zp (but
this is only true if p is prime!).

6So, in the opening example from section 8.1, we have Σ = F2, n = 12 (the original
message had four bits, and so after we tripled each bit, we got 12 bits), and C =
{w1 . . . w12 ∈ Σ12 | w3k−2 = w3k−1 = w3k ∀k ∈ {1, 2, 3, 4}}.

7Here, we treat a string or length n and a row vector of length n as interchangeable.
We use one or the other depending on convenience.

8Check this!
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receiver receives this codeword, but possibly with some errors. (If the sender
sends the codeword x and the receiver receives the word x̃, then d(x, x̃) is
the number of errors created during transmission.) The receiver corrects the
errors (this is possible if the number of errors is small enough, where “small
enough” depends on the code used), and then recovers the original message
using π−1.

In general, there are two competing goals for codes. On the one hand,
we wish to send as many different messages as possible, using as few bits as
possible. On the other hand, we wish to maximize the number of errors that
we can successfully correct.

Now, suppose Σ is an alphabet of size at least two, and C ⊆ Σn is a code
containing at least two codewords. Here are some parameters for the code C:

� the codeword length is n;

� the size of the alphabet is q = |Σ|;

� the dimension of C is |C|, instead of which we often consider the
logarithm k = logq |C|;

� the minimum distance in C is d = min{d(x, y) | x, y ∈ C, x ̸= y}.
A code with these parameters is an (n, k, d)q-code. Note that if at most ⌊d−1

2 ⌋
errors are made during the transmission of a codeword, then the receiver
can correctly spot and correct the errors by selecting the (unique) codeword
with minimum Hamming distance from the word that he received.

8.2.1 Some simple codes

The simplest code is the total code Σn, where Σ is an alphabet of size
q = |Σ| ≥ 2, and n is a positive integer. The total code Σn is an (n, n, 1)q
code.9 If we use this code, we send little data, but we cannot correct even a
single error!

The repetition code Repn of length n over the alphabet Σ (with q = |Σ| ≥
2) is the code C = {x . . . x︸ ︷︷ ︸

n

| x ∈ Σ}. It is an (n, 1, n)q-code.
10 This code

allows us to correct as many as ⌊n−1
2 ⌋ errors, but it uses a lot of data.

9Indeed, the size of the alphabet is q, the codeword length is n, and k = logq |Σn| =
logq q

n = n. The minimum distance is ∆(Σn) = 1 (indeed, recall that |Σ| ≥ 2, and take
two symbols s1, s2 ∈ Σ; then the distance between s1 s1 . . . s1︸ ︷︷ ︸

n−1

and s2 s1 . . . s1︸ ︷︷ ︸
n−1

is 1).

10Indeed, the size of the alphabet is q, and the codeword length is n. Further, |C| =
|Σ| = q, and so k = logq |C| = logq q = 1. Finally, the distance between any two distinct
words is precisely n.
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Another simple example is the parity code C of length n (with n ≥ 2)
over the alphabet F2; it consists of all words of the form w1 . . . wn with
w1, . . . , wn ∈ F2 and

∑n
i=1wi = 0. Let us check that this is an (n, n− 1, 2)2-

code. Obviously, the codeword length is n and the size of the alphabet is
q = 2. Next, |C| = 2n−1; this is because the first n−1 symbols of a codeword
can be chosen arbitrarily (and there are 2n−1 ways of doing this), but the
n-th symbol is uniquely determined by the previous n− 1 ones (because the
sum must be 0). So, k = logq |C| = log2 2

n−1 = n− 1. Finally, it is obvious
that two different words cannot have distance 1, for otherwise, the sum of
symbols in one of them would be 1, a contradiction. On the other hand,
both 0 . . . 0︸ ︷︷ ︸

n−2

00 and 0 . . . 0︸ ︷︷ ︸
n−2

11 are in our code, and the distance between them

is 2. So, the minimum distance in our code is d = 2.

8.2.2 The Hadamard code

Given vectors a = (a1, . . . , an)
T and b = (b1, . . . , bn)

T in Rn, the standard
inner product (or dot product) of a and b is a · b =

∑n
i=1 aibi. Two vectors

in Rn are orthogonal with respect to the dot product if their dot product is
zero.

A Hadamard matrix of order n is an n× n matrix whose entries are all 1
or −1, and whose columns are pairwise orthogonal (with respect to the dot
product). For example, the matrix

H2 =

[
1 1
1 −1

]
is Hadamard matrix of order 2. Furthermore, if H is an n× n Hadamard
matrix, then [

H H
H −H

]
is a Hadamard matrix of order 2n.11

Proposition 8.2.1. Let H be a Hadamard matrix of order n. Then HHT =
nIn.

12 Furthermore, HT is also a Hadamard matrix of order n.

Proof. Let us show that HTH = nIn. To simplify notation, set H =[
h1 . . . hn

]
. For each i ∈ {1, . . . , n}, the (i, i)-th entry of HTH is

hi · hi, which is equal to n because all entries of a Hadamard matrix are ±1.

11Check this!
12As usual, In is the n× n identity matrix.
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On the other hand, for distinct i, j ∈ {1, . . . , n}, the (i, j)-th entry of HTH
is hi · hj , which is equal to 0 since any two distinct columns of a Hadamard
matrix are orthogonal. This proves that HTH = nIn.

Now, since HTH = nIn, we have that ( 1nH
T )H = In; since

1
nH

T and
H are square matrices whose product is the identity matrix, we know from
Linear Algebra that 1

nH
T and H are both invertible and are each other’s

inverses. Consequently, H( 1nH
T ) = In, and we deduce that HHT = nIn.

It remains to show thatHT is a Hadamard matrix. SinceH is a Hadamard
matrix of order n, we know that HT is an n× n matrix, and that all entries
of HT are ±1. It remains to show that the columns of HT are pairwise
orthogonal. To simplify notation, we set HT =

[
a1 . . . an

]
; note that

this means that aT1 , . . . ,a
T
n are the rows of H (listed from top to bottom).

Now, fix distinct i, j ∈ {1, . . . , n}. Then the (i, j)-th entry of HHT is ai · aj .
But we we already showed that HHT = nIn, and so (since i ̸= j) the (i, j)-th
entry of HHT is 0. Thus, ai · aj = 0. So, the columns of HT are pairwise
orthogonal, and it follows that HT is a Hadamard matrix.

We now construct the Hadamard code as follows. Fix any Hadamard
matrix H of order n. Then the Hadamard code associated with H consists
of all rows of H and all rows of −H. This code has 2n codewords.13 It is
easy to check that this is an (n, 1 + log2 n,

n
2 )2-code.

14

8.3 The Singleton, Hamming, and Gilbert-Varshamov
bounds

For positive integers n, d, q with n ≥ d and q ≥ 2, let Aq(n, d) be the
maximum size of a code (i.e. the maximum possible number of codewords in
a code) C with the following parameters:

� the size of the alphabet is q;

� the codeword length is n;

� the minimum distance is at least d.

The Singleton bound. For all positive integers n, d, q such that n ≥ d and
q ≥ 2, we have that Aq(n, d) ≤ qn−d+1.

13For this, we must check that no two rows of H are the same, and that no row of H is
equal to any row of −H. But this follows from the fact that, by Proposition 8.2.1, HT is a
Hadamard matrix (details?).

14Details?
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Proof. We prove this by induction on n, keeping q fixed and allowing d to
vary. More precisely, we fix positive integers n, d, q such that n ≥ d and
q ≥ 2, and we assume inductively that for all positive integers n′, d′ with
n′ ≥ d′ and n′ < n, we have that Aq(n

′, d′) ≤ qn
′−d′+1. We must show that

Aq(n, d) ≤ qn−d+1.
Fix a code C over an alphabet Σ with |Σ| = q, and assume that the

codeword length in C is n and that the minimum distance between codewords
in C is at least d. We must show that |C| ≤ qn−d+1. If d = 1, then

|C| ≤ |Σn| = qn = qn−d+1,

and we are done. So, from now on, we assume that d ≥ 2. This implies that
n− d+ 1 < n; we will apply the induction hypothesis to n− d+ 1.

We construct the code C̃ ⊆ Σn−d+1 as follows: C̃ is the set of all words
w1 . . . wn−d+1 in Σn−d+1 for which there exist some wn−d+2, . . . , wn ∈ Σ such
that w1 . . . wn−d+1wn−d+2 . . . wn ∈ C.15 Let us check that |C̃| = |C|. We
define the function f : C → C̃ by setting f(w1 . . . wn−d+1wn−d+2 . . . wn) =
w1 . . . wn−d+1 for all w1 . . . wn−d+1wn−d+2 . . . wn ∈ C; we will show that f
is a bijection. By the construction of C̃ and f , we have that f is onto
C̃. Now, fix codewords w = w1 . . . wn and w′ = w′

1 . . . w
′
n in C such that

f(w) = f(w′); then w1 . . . wn−d+1 = w′
1 . . . w

′
n−d+1, and it follows that the

Hamming distance between w and w′ is at most d− 1.16 Since the minimum
distance in C is at least d, we conclude that w = w′, and it follows that f is
one-to-one. Thus, f : C → C̃ is a bijection, and we deduce that |C̃| = |C|.

Now, C̃ is a code over Σ, with |Σ| = q, the length of codewords in C̃ is
n− d+ 1 < n,17 and obviously, the minimum distance in C̃ is at least 1. So,
by the induction hypothesis, we have that

|C̃| ≤ Aq(n− d+ 1, 1) ≤ q(n−d+1)−1+1 = qn−d+1.

Since |C̃| = |C|, we deduce that |C| ≤ qn−d+1, which is what we needed to
show.

We now need some notation. Suppose n, t, q are positive integers and Σ is
an alphabet of size q. For all w ∈ Σn, we let BΣn

t (w) be the “combinatorial
ball” of radius t around w, i.e. BΣn

t (w) is the set of all words in Σn whose

15So, C̃ is the set of all words that can be obtained by deleting the last d− 1 symbols of
a codeword in C.

16Indeed, w and w′ are both of length n, and they coincide in their first n− d+1 places.
So, they differ in at most d− 1 places, i.e. their Hamming distance is at most d− 1.

17We are using the fact that d ≥ 2.
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Hamming distance from w is at most t. When no confusion is possible, we
write Bt(w) instead of BΣn

t (w).

Proposition 8.3.1. Let n, t, q be positive integers such that n ≥ t and q ≥ 2,
and let Σ be an alphabet of size q. Then |Bt(w)| =

∑t
k=0

(
n
k

)
(q − 1)k for all

w ∈ Σn.

Proof. Fix a word w ∈ Σn. We must show that the number of words in Σn

at distance at most t from w is precisely
∑t

k=0

(
n
k

)
(q−1)k. Clearly, it suffices

to show that for all k ∈ {0, . . . , t}, the number of words in Σn at distance k
from w is precisely

(
n
k

)
(q− 1)k. So, fix k ∈ {0, . . . , t}. There are

(
n
k

)
ways to

choose the k places in which a word at Hamming distance k from w differs
from w. For each such choice, and for each of the k selected placed, we have
q − 1 ways of altering w in that place;18 so, for all k places together, we get
(q − 1)k ways of altering w. So, there are precisely

(
n
k

)
(q − 1)k words in Σn

at distance k from w.

The Hamming bound. Let n, d, q be positive integers such that n ≥ d and
q ≥ 2, and let t = ⌊d−1

2 ⌋. Then Aq(n, d) ≤ qn∑t
k=0 (

n
k)(q−1)k

.

Proof. Fix a code C ⊆ Σn, where Σ is an alphabet of size q, and assume
that the minimum distance between codewords in C is at least d. We must
show that |C| ≤ qn∑t

k=0 (
n
k)(q−1)k

. Set m := |C| and C = {c1, . . . , cm}. Since
the minimum Hamming distance between codewords in C is at least d, and
since t = ⌊d−1

2 ⌋, we see that the combinatorial balls Bt(c1), . . . , Bt(cm) are

18Indeed, we can select any symbol from Σ, except the one that appears in the selected
place in the word w itself. Since |Σ| = q, we have q − 1 choices.
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pairwise disjoint.19 We now compute:

qn = |Σn| because |Σ| = q

≥ |
m⋃
i=1

Bt(ci)|

=
m∑
i=1

|Bt(ci)| because Bt(c1), . . . , Bt(cm)

are pairwise disjoint

= m
t∑

k=0

(
n
k

)
(q − 1)k by Proposition 8.3.1

= |C|
t∑

k=0

(
n
k

)
(q − 1)k because m = |C|.

This implies that |C| ≤ qn∑t
k=0 (

n
k)(q−1)k

, which is what we needed to show.

The Gilbert-Varshamov bound. Let n, d, q be positive integers such that
n ≥ d and q ≥ 2. Then Aq(n, d) ≥ qn∑d−1

k=0 (
n
k)(q−1)k

.

Proof. Fix a code C ⊆ Σn, where Σ is some alphabet of size q, with minimum
distance between codewords in C at least d, and with |C| = Aq(n, d).

20 We
must show that |C| ≥ qn∑d−1

k=0 (
n
k)(q−1)k

.

Set m = |C| and C = {c1, . . . , cm}.

Claim. Σn =
⋃m

i=1Bd−1(ci).

Proof of the Claim. It is clear that
⋃m

i=1Bd−1(ci) ⊆ Σn. Suppose that⋃m
i=1Bd−1(ci) ⫋ Σn, and fix some w ∈ Σn \

(⋃m
i=1Bd−1(ci)

)
. Then

d(w, ci) ≥ d for all i ∈ {1, . . . ,m}. We now form a new code C̃ := C ∪ {w};
obviously, C̃ ⊆ Σn, with |Σ| = q, and by construction, the minimum distance
in C̃ is at least d. But now the fact that |C̃| = |C| + 1 = Aq(n, d) + 1
contradicts the definition of Aq(n, d). This proves the Claim. ♦

19Note that we are using the triangle inequality for the Hamming distance here.
20Such a code C exists by the definition of Aq(n, d).
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We now compute:

qn = |Σn| because |Σ| = q

= |
m⋃
i=1

Bd−1(ci)| by the Claim

≤
m∑
i=1

|Bd−1(ci)|

= m
d−1∑
k=0

(
n
k

)
(q − 1)k by Proposition 8.3.1

= |C|
d−1∑
k=0

(
n
k

)
(q − 1)k because m = |C|.

It follows that |C| ≥ qn∑d−1
k=0 (

n
k)(q−1)k

, which is what we needed to show.

8.4 Some Linear Algebra preliminaries for linear
codes

In what follows, for a field F and a positive integer n, we denote by Fn the
set of all row vectors of length n whose entries are all in F. For vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn, we define ⟨x,y⟩ =

∑n
i=1 xiyi,

where the summation and multiplication denote the operations from the field
F; note that ⟨x,y⟩ ∈ F. If ⟨x,y⟩ = 0, then x and y are said to be orthogonal.

Instead of multiplying matrices by column vectors on the right (Ax), we
will multiply matrices by row vectors on the left (xA). If A is an n×m matrix
with entries in F, and x ∈ Fn,21 then we can think of x as a 1×n matrix, and
we can compute xA according to the usual rules of matrix multiplication.22

Note that if x = (x1, . . . , xn) and A =

 r1
...
rn

 (i.e. r1, . . . , rn are the rows

of A, from top to bottom), then xA =
n∑

i=1
xiri. Furthermore, if ei is the i-th

standard basis vector of Fn, i.e. the row vector whose i-th entry is 1, and all
of whose other entries are 0, then eiA is equal to the i-th row of A.

21So, A has n rows and m columns, and x is a row vector of length n.
22Indeed, we multiply a 1×n matrix by an n×m matrix, and we obtain a 1×m matrix,

i.e. a row vector of length m.
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With these adjustments, all familiar theorems of Linear Algebra still hold,
but with rows and columns reversed. For instance, Gaussian elimination
is performed on columns, not rows.23 The set-up that we just described is
customary in the study of linear codes (see section 8.5).

For a field F and a linear subspace C of Fn, we define C⊥ = {y ∈ Fn |
⟨x,y⟩ = 0 for all x ∈ C}. It is easy to check that C⊥ is a linear subspace of
Fn.24

Theorem 8.4.1. Let F be a field, and let C be a linear subspace of Fn. Then
dimC + dimC⊥ = n.

Proof. Set k := dimC; we must show that dimC⊥ = n − k. If k = 0,
then C = {0} and C⊥ = Fn, and it follows that dimC⊥ = n = n − k.
From now on, we assume that k ≥ 1. Let {c1, . . . , ck} be some basis for

C, and let G =

 c1
...
ck

. Then C⊥ = {y ∈ Fn | yGT = 0} = Ker(GT ).25

By the Rank-nullity theorem, we have that rank(GT ) + dimKer(GT ) = n.
But rank(GT ) = rank(G) = k (because G has k rows, and they are linearly
independent), and as we saw, C⊥ = Ker(GT ). It follows that k+dimC⊥ = n,
i.e. dimC⊥ = n− k.

Proposition 8.4.2. Let F be a field, and let C be a linear subspace of Fn.
Then (C⊥)⊥ = C.

Proof. Obviously, C ⊆ (C⊥)⊥;26 since C and (C⊥)⊥ are both linear subspaces
of Fn, it follows that C is a linear subspace of (C⊥)⊥. On the other hand,
by Theorem 8.4.1, we have that

dim(C⊥)⊥ = n− dimC⊥ = n− (n− dimC) = dimC,

and we deduce that C = (C⊥)⊥.

23Alternatively, given a matrix A, we can perform Gaussian elimination as follows: we
first form the transpose AT , then we perform the familiar Gaussian elimination on rows to
obtain a matrix B, and then we take the transpose of B. The result is the same as if we
performed Gaussian elimination on the columns of A directly.

24Check this!
25Ker(GT ) = {y ∈ Fn | yGT = 0} is simply the definition of Ker(GT ).
26Indeed, every vector in C is orthogonal to every vector in C⊥. On the other hand,

(C⊥)⊥ is the set of all vectors in F that are orthogonal to every vector in C⊥. It follows
that C ⊆ (C⊥)⊥.



Chapter 8. Error correcting codes 137

8.5 Linear codes

A linear code is a linear subspace C of a vector space Fn
q , where Fq is a

finite field of size q (here, q is a prime power).27 Note that every linear code
contains the zero vector.

Notationally, if a linear code C is an (n, k, d)q-code, then we write that
C is an [n, k, d]q-code (here, square brackets indicate that C is a linear code).
Clearly, an [n, k, d]q-code is a linear subspace of Fn

q .
28 Furthermore, as our

next proposition shows, the (vector space) dimension of an [n, k, d]q-code is
k.

Proposition 8.5.1. Let C be an [n, k, d]q-code. Then dimC = k, i.e. the
dimension of C as a vector space is k.

Proof. Since C is an [n, k, d]q-code, we know that C is a linear subspace
of Fn

q ; set ℓ := dimC. We must show that ℓ = k. Let {c1, . . . , cℓ} be a

basis for C. Then C is the set of all vectors of the form
∑ℓ

i=1 αici, where
α1, . . . , αℓ ∈ Fq. There are q choices for each αi,

29 and so there are qℓ choices
for the ℓ-tuple (α1, . . . , αℓ). On the other hand, since {c1, . . . , cℓ} is linearly
independent (because it is a basis), we know that

∑ℓ
i=1 αici =

∑ℓ
i=1 βici

(where α1, . . . , αℓ, β1, . . . , βℓ ∈ Fq) if and only if (α1, . . . , αℓ) = (β1, . . . , βℓ).
It follows that |C| = qℓ, and consequently, ℓ = logq q

ℓ = logq |C| = k, which
is what we needed to show.

Now, suppose that C ⊆ Fn
q is an [n, k, d]q-code, with 0 < k < n. By

Proposition 8.5.1, we have that dimC = k, and so C is a non-trivial proper
linear subspace of Fn

q . Let G be any matrix whose rows form a basis for

C (in particular, G ∈ Fk×n
q ); then G is called the generator matrix of the

linear code C. Note that this implies that C⊥ = {y ∈ Fn
q | yGT = 0}. Next,

suppose H is any matrix such that the rows of HT form a basis for C⊥ (so,
HT is a generator matrix for C⊥). The matrix H is called a parity check
matrix for C, and by Proposition 8.4.2, it satisfies C = {x ∈ Fn

q | xH = 0},30
i.e. C = Ker(H). Note that the parity check matrix H can be used to check

27So, elements of Fn
q are row vectors of length n, all of whose entries are in the field Fq.

28This is because the alphabet over which C is a code must be of size q, and since C
is a linear code, it is a linear subspace of Fn, where F is some finite field. So, F is a field
of size q, and so it is equal (technically, isomorphic) to Fq (because all finite fields of the
same size are isomorphic).

29This is because |Fq| = q.
30Let us check this. Clearly, (C⊥)⊥ = {x ∈ Fn

q | x(HT )T = 0} = {x ∈ Fn
q | xH = 0}.

Since (C⊥)⊥ = C (by Proposition 8.4.2), it follows that C = {x ∈ Fn
q | xH = 0}.
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whether a vector x ∈ Fn
q is a codeword of C. Indeed, if xH = 0, then x ∈ C,

and otherwise, x /∈ C. Note that, given a generator matrix for C, one can
easily compute a parity check matrix for C, and vice versa.

Given a vector x ∈ Fn
q , the Hamming weight of x, denoted by wt(x), is

the number of non-zero coordinates in x.

Proposition 8.5.2. Let C ⫋ Fn
q be an [n, k, d]q-code, with 0 < k < n. Then

d = min{wt(x) | x ∈ C,x ̸= 0}.

Proof. Fix x ∈ C \ {0} with minimum Hamming weight. We must show that
d = wt(x).

First, since C is a linear code, we know that 0 ∈ C, and so (since x and
0 are distinct codewords in C) we have that d(x,0) ≥ d. But obviously,
d(x,0) = wt(x), and it follows that wt(x) ≥ d.

It remains to show that wt(x) ≤ d. Fix distinct y, z ∈ C such that
d(y, z) = d.31 Since C is a vector space, we know that y − z ∈ C, and so by
the choice of x, we have that wt(x) ≤ wt(y − z).32 But now

d = d(y, z) = wt(y − z) ≥ wt(x),

which is what we needed to show.

8.6 Hamming codes

Fix an integer ℓ ≥ 2, and set n = 2ℓ − 1, k = 2ℓ − ℓ− 1, and d = 3. Our goal
in this section is to construct an [n, k, d]2-code, called a Hamming code.33 We
do this by constructing its parity check matrix H; then the code in question
will simply be the linear subspace C = {x ∈ Fn

2 | xH = 0} of Fn
2 .

Note that the binary representation of the integer n = 2ℓ − 1 is 1 . . . 1︸ ︷︷ ︸
ℓ

.

More generally, the binary representation of any integer in {1, . . . , n} has at
most ℓ digits. Now, for all i ∈ {1, . . . , n}, let hi ∈ Fℓ

2 be the vector giving
the binary representation of i, with zeros added to the front if necessary (so

31The minimum distance between codewords in C is d. So, there exists distinct vectors
in C (say, y and z) whose distance is precisely d.

32We are also using the fact that y ̸= z, and so y − z ̸= 0.
33It is also possible to construct “q-ary Hamming codes,” which are over the (more

general) field Fq. For the sake of simplicity, though, we consider only binary Hamming
codes, i.e. those over the field F2.
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that the length of the representation is ℓ).34 Let

H :=

 h1
...
hn

 .

Note that H ∈ Fn×ℓ
2 . We now define the code C by setting

C := {x ∈ Fn
2 | xH = 0}.

Let us show that C is an [n, k, d]2-code. Obviously, C is a linear subspace
of Fn

2 .
35 Let us show that dimC = k.36 As usual, for all i ∈ {1, . . . , ℓ}, let

eℓi be the vector in Fℓ
2 whose i-th coordinate is 1, and all of whose other

coordinates are 0. Then each of eℓ1, . . . , e
ℓ
ℓ is a row of H, and furthermore,

the set {eℓ1, . . . , eℓℓ} is a basis for Fℓ
2; so, rank(H) = ℓ. The Rank-nullity

theorem guarantees that rank(H) + dimKer(H) = n, and we deduce that
dimKer(H) = n− ℓ = k. But C = Ker(H), and so dimC = k.

It remains to show that the minimum distance of words in C is d = 3.
We will use Proposition 8.5.2. As usual, for all i ∈ {1, . . . , n}, let eni be the
vector in Fn

2 whose i-th coordinate is 1, and all of whose other coordinates are
0. Note that the vectors of Fn

2 of Hamming weight 1 are precisely the vectors
en1 , . . . , e

n
n. But note that, for all i ∈ {1, . . . , n}, we have that eni H = hi ≠ 0,

and so eni /∈ C. Next, vectors of Fn
2 of Hamming weight 2 are precisely the

vectors of the form eni + enj , with i ̸= j. Now, for distinct i, j ∈ {1, . . . , n},
we have that (eni + enj )H = hi + hj ; since hi ̸= hj (and our field is F2), we
have that hi + hj ̸= 0, and it follows that eni + enj /∈ C. We have now shown
that C does not contain any non-zero vectors of Hamming weight at most
two. On the other hand, C does contain a vector of Hamming weight at most
three, e.g. the vector en1 + en2 + en3 .

37 So, min{wt(x) | x ∈ C,x ̸= 0} = 3 = d,
and so by Proposition 8.5.2, we see that the minimum distance in C is d.

34For example, if ℓ = 2, then n = 3, and we have that h1 = (0, 1), h2 = (1, 0), and
h3 = (1, 1).

35So, C is a linear code, and furthermore, the first coordinate (i.e. the n part) and the
subscript (i.e. 2) of [n, k, d]2 are correct.

36In view of Proposition 8.5.1, this will guarantee that second coordinate (i.e. the k part)
of [n, k, d]2 is correct.

37Indeed,

(en
1 + en

2 + en
3 )H = h1 + h2 + h3

= (0, . . . , 0︸ ︷︷ ︸
n−2

, 0, 1) + (0, . . . , 0︸ ︷︷ ︸
n−2

, 0, 1) + (0, . . . , 0︸ ︷︷ ︸
n−2

, 1, 1)

= 0,
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We have now shown that C is indeed an [n, k, d]2-code, that is, C is a
[2ℓ − 1, 2ℓ − ℓ − 1, 3]2-code. The code that we just constructed is called a
Hamming code.

Finally, let us explain how error checking works for the Hamming code C
that we just constructed. Suppose w ∈ Fn

2 . Then by construction, w ∈ C if
and only if wH = 0. Suppose now that w differs in exactly one coordinate
from some codeword in C, that is, that w can be obtained from a codeword
in C by introducing one error (i.e. by changing exactly one 1 into 0, or vice
versa, in some codeword of C). This means that there exist some x ∈ C and
i ∈ {1, . . . , n} such that w = x+ eni , and so

wH = (x+ eni )H

= xH︸︷︷︸
=0

+ eni H︸︷︷︸
=hi

= hi.

But hi is simply the integer i written in binary code! This means that if w
was obtained from a codeword in C by introducing exactly one error, then
the coordinate of that error is the integer whose binary representation is
given by the vector wH; we can correct the error by altering the entry (from
1 to 0, or vice versa) in that one coordinate of w.

and so en
1 + en

2 + en
3 ∈ C.
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Chapter 9

Matchings in general graphs

9.1 Basic notions

Recall that a matching in a graph G is a collection of edges of G, no two of
which share an endpoint. An example of a matching is shown below (the
edges of the matching are in red).

A maximum matching of G is a matching M of G such that for all matchings
M ′ of G, we have that |M ′| ≤ |M |. The matching number of G, denoted
by ν(G), is the size of a maximum matching (i.e. the number of edges in a

maximum matching).1 Trivially, ν(G) ≤
⌊
|V (G)|

2

⌋
.

If M is a matching and v is a vertex of a graph G, then we say that v
is saturated by M (or that M saturates v) provided that v is incident with
some edge of M . If M does not saturate v, then v is unsaturated by M . A
set X ⊆ V (G) is saturated by M if every vertex in X is saturated by M ; if
X is saturated by M , then we also say that the matching M is X-saturating.

A matching M of a graph G is perfect if all vertices of G are saturated by
M . Obviously, a graph G has a perfect matching if and only if ν(G) = |V (G)|

2 .
In particular, every graph that has a perfect matching, has an even number

1So, ν(G) = max{|M | | M is a matching of G}.
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of vertices.2 An example of a perfect matching is shown below (the edges of
the matching are in red).

9.2 The Gallai-Edmonds decomposition

In section 9.3, we will state and prove Tutte’s theorem, which gives a necessary
and sufficient condition for a graph to have a perfect matching. In fact,
we will obtain Tutte’s theorem as a corollary of the so called Tutte-Berge
formula (also stated and proven in section 9.3). In the present section, we
develop some technical tools that we will need in the proof of the Tutte-Berge
formula.

We begin by stating Hall’s theorem (proven in section 4.4). For a graph G
and a set X ⊆ V (G), we denote by NG(X) the set of all vertices in V (G)\X
that have at least one neighbor in X, i.e. NG(X) := {y ∈ V (G) \ X |
∃x ∈ X s.t. xy ∈ E(G)}.

Hall’s theorem (graph theoretic formulation). Let G be a bipartite
graph with bipartition (A,B). Then the following are equivalent:

(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A
′)|;

(b) G has an A-saturating matching.

A′

NG(A
′)

B

A

2However, there are a great many graphs on an even number of vertices that have no
perfect matching. Edgeless graphs are an obvious example, but there are many others.
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An odd component of a graph G is a (connected) component of G that
has an odd number of vertices. We denote by odd(G) the number of odd
components of G.

Remark 9.2.1. Let G be a graph. Then for all S ⊆ V (G), we have that

ν(G) ≤ |V (G)|+|S|−odd(G\S)
2 .

Proof. Fix S ⊆ V (G), set t := odd(G \ S), and let C1, . . . , Ct be the odd
components of G \ S.

C1 C2 Ct

S

. . .

...

M ′

Fix any matching M in G. Let M ′ be the set of all edges of M that have
one endpoint in S and the other one in V (C1) ∪ · · · ∪ V (Ct); obviously,
|M ′| ≤ |S|. Next, since the components C1, . . . , Ct are all odd, it follows that
at least t− |M ′| ≥ t− |S| of the components C1, . . . , Ct have a vertex that is
unsaturated by M .3 So, the total number of vertices of G that are saturated
by M is at most |V (G)| − (t − |S|) = |V (G)|+ |S| − t, and it follows that

|M | ≤ |V (G)|+|S|−t
2 . Since the matching M was chosen arbitrarily, we deduce

that ν(G) ≤ |V (G)|+|S|−t
2 = |V (G)|+|S|−odd(G\S)

2 .

A graph G is hypomatchable if it does not have a perfect matching, but
for all v ∈ V (G), the graph G \ v does have a perfect matching. Obviously,
every hypomatchable graph has an odd number of vertices.4 For example,
the graph below is hypomatchable.

3This is because for all odd components Ci, the number of edges of M that have both

endpoints in Ci is at most
⌊

V (Ci)
2

⌋
= |V (Ci)|−1

2
; if all vertices of Ci are saturated by M ,

then there must be an edge of M between S and V (Ci). The number of indices i for which
such an edge exists is at most |M ′| ≤ |S|. So, at least t− |S| components Ci have a vertex
that is unsaturated by M .

4But not all graphs with an odd number of vertices are hypomatchable!
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Indeed, deleting any one vertex from the graph above yields a graph that
has a perfect matching (as shown below; the vertex that we delete is in blue,
and the matching is in red).

A hypomatchable component of a graph G is a component of G that is a
hypomatchable graph. Obviously, every hypomatchable component of G is
odd.

For a graph G and a set S ⊆ V (G), let us denote by GS the bipartite
graph whose one side of the bipartition is S, and whose other side of the
bipartition is the collection of all odd components of G \ S, and in which a
vertex v ∈ S and an odd component C of G \ S are adjacent if and only if v
has a neighbor in V (C) in G. An example is shown below.

v1 v2 v3 v4

C1 C2

S

G

v1 v2 v3 v4

C1 C2

GS

A Gallai-Edmonds set in a graph G is a set S ⊆ V (G) that satisfies the
following two properties:

� every component of G \ S is hypomatchable (and therefore odd);

� the bipartite graph GS has an S-saturating matching.

Lemma 9.2.2. If S is a Gallai-Edmonds set of a graph G, then

ν(G) = |V (G)|+|S|−odd(G\S)
2 .
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Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 9.2.1,
we have that ν(G) ≤ |V (G)|+|S|−odd(G\S)

2 . It remains to show that ν(G) ≥
|V (G)|+|S|−odd(G\S)

2 . To simplify notation, set n := |V (G)|, s := |S|, and
t := odd(G \ S). We must show that ν(G) ≥ n+s−t

2 . We will prove this by
exhibiting a matching M in G of size n+s−t

2 .
Let C1, . . . , Ct be the odd components of G \ S (since all components of

G \ S are hypomatchable and therefore odd, we see that C1, . . . , Ct are in
fact all the components of G \ S), and set S = {v1, . . . , vs}.

. . . . . .

v1 v2 vs
. . .

C1 C2 Cs Cs+1 Ct

c1 c2 cs

S

cs+1 ct

Since S is a Gallai-Edmonds set, we know that GS has an S-saturating match-
ing, call it MS . By symmetry, we may assume that MS = {v1C1, . . . , vsCs}.
For each i ∈ {1, . . . , s}, choose a vertex ci ∈ V (Ci) such that vici ∈ E(G).5

For all i ∈ {s+1, . . . , t}, choose any vertex ci ∈ Ci. Next, since S is a Gallai-
Edmonds set, we know that for all i ∈ {1, . . . , t}, Ci is hypomatchable, and in

particular, Ci \ ci has a perfect matching, call it Mi; clearly, |Mi| = |V (Ci)|−1
2 .

Now, set M := {v1c1, . . . , vscs}∪M1 ∪ · · · ∪Mt. Then M is a matching in G.
Moreover, M saturates all but t− s vertices of G (indeed, the only vertices

of G unsaturated by M are cs+1, . . . , ct), and so |M | = n−(t−s)
2 = n+s−t

2 .

Lemma 9.2.3. Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer
than |V (G)| vertices has a Gallai-Edmonds set.

Choose a set S ⊆ V (G) so that odd(G \ S)− |S| is as large as possible,
and subject to that, |S| is as large as possible. Our goal is to show that S is
a Gallai-Edmonds set.

Claim 1. All components of G \ S are odd.

5Such a vertex ci must exist because vi and Ci are adjacent in GS .
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Proof of Claim 1. Suppose otherwise, and fix a component C of G \ S that
has an even number of vertices. Fix v ∈ V (C), and set S′ := S ∪ {v}. Since
|V (C)| is even, we see that the odd components of G \ S′ are precisely the
odd components of G \ S, plus the odd components of C \ v. Furthermore,
since |V (C)| is even, we see that |V (C) \ {v}| is odd, and so C \ v has at
least one odd component. Thus,

odd(G \ S′) = odd(G \ S) + odd(C \ v) ≥ odd(G \ S) + 1,

and consequently (since |S′| = |S|+ 1), we have that

odd(G \ S′)− |S′| ≥
(
odd(G \ S) + 1

)
− (|S|+ 1)

= odd(G \ S)− |S|.

Since |S′| > |S|, this contradicts the choice of S. This proves Claim 1. ♦

Claim 2. All components of G \ S are hypomatchable.

Proof of Claim 2. Suppose otherwise, and fix a component C of G \ S and
a vertex v ∈ V (C) such that C \ v does not have a perfect matching. By
Claim 1, C \ v has an even number of vertices; since C \ v does not have a

perfect matching, it follows that ν(C \ v) ≤ |V (C)\{v}|
2 − 1 = |V (C)|−3

2 . By the
induction hypothesis, C \ v has a Gallai-Edmonds set, call it SC . Thus,

|V (C)|−3
2 ≥ ν(C \ v)

=
|V (C\v)|+|SC |−odd

(
(C\v)\SC

)
2 by Lemma 9.2.2

=
|V (C)|−1+|SC |−odd

(
(C\v)\SC

)
2 ,

and consequently,

odd
(
(C \ v) \ SC

)
≥ |SC |+ 2.

Now, set S′ := S ∪ {v} ∪ SC . Clearly, the odd components of G \ S′ are
precisely the odd components of G\S other than C, plus the odd components
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of (C \ v) \ SC , and so

odd(G \ S′) = odd(G \ S)− 1 + odd
(
(C \ v) \ SC

)
≥ odd(G \ S)− 1 + (|SC |+ 2)

= odd(G \ S) + |SC |+ 1

= odd(G \ S) + (|S′| − |S|),

and we deduce that

odd(G \ S′)− |S′| ≥ odd(G \ S)− |S|.

Since we also have that |S′| > |S|, this contradicts the choice of S. This
proves Claim 2. ♦

Claim 3. GS has an S-saturating matching.

Proof of Claim 3. Suppose otherwise. Then by Hall’s theorem, there exists
a set X ⊆ S such that |X| > |NGS

(X)|. Set S′ := S \ X. Then all odd
components of G\S other than the ones in NGS

(X) are still odd components
of G \ S′, and we compute:

odd(G \ S′) ≥ odd(G \ S)− |NGS
(X)|

> odd(G \ S)− |X|

= odd(G \ S)− (|S| − |S′|)

= odd(G \ S)− |S|+ |S′|,

and it follows that

odd(G \ S′)− |S′| > odd(G \ S)− |S|,

contrary to the choice of S. This proves Claim 3. ♦

By Claims 2 and 3, we have that S is a Gallai-Edmonds set of G.
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9.3 The Tutte-Berge formula and Tutte’s theorem

The Tutte-Berge formula. Every graph G satisfies

ν(G) = 1
2 min
U⊆V (G)

(
|V (G)|+ |U | − odd(G \ U)

)
.

Proof. Fix a graph G. By Lemma 9.2.3, G contains a Gallai-Edmonds set,
call it S. Then

ν(G) = |V (G)|+|S|−odd(G\S)
2 by Lemma 9.2.2

≥ 1
2 min
U⊆V (G)

(
|V (G)|+ |U | − odd(G \ U)

)
.

The reverse inequality follows immediately from Remark 9.2.1.

Tutte’s theorem. A graph G has a perfect matching if and only if every
set S ⊆ V (G) satisfies |S| ≥ odd(G \ S).

Proof. Fix a graph G. Clearly, the following are equivalent:

(a) every set S ⊆ V (G) satisfies |S| ≥ odd(G \ S);

(b) min
U⊆V (G)

(
|V (G)|+ |U | − odd(G \ U)

)
≥ |V (G)|.

By the Tutte-Berge formula, (b) is equivalent to

(c) ν(G) ≥ |V (G)|
2 .

But clearly, (c) holds if and only if G has a perfect matching.6 So, (a) holds if
and only if G has a perfect matching, which is what we needed to show.

9.4 Petersen’s theorem

For a non-negative integer k, a graph G is k-regular if all vertices of G are of
degree k. A graph is cubic if it is 3-regular.

A bridge in a graph G is an edge e ∈ E(G) such that G − e has more
components than G. A graph is bridgeless if it has no bridge.

bridge

6Indeed, every graph G satisfies ν(G) ≤ |V (G)|
2

. So, (c) is in fact equivalent to ν(G) =
|V (G)|

2
. But ν(G) = |V (G)|

2
if and only if G has a perfect matching.
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Petersen’s theorem. Every cubic, bridgeless graph has a perfect matching.7

Proof. Fix a cubic, bridgeless graph G. We will apply Tutte’s theorem. Fix
S ⊆ V (G); we must show that |S| ≥ odd(G \ S).

Claim. For all odd components C of G \ S, there are at least
three edges between S and V (C) in G.

Proof of the Claim. Suppose that C is an odd component of G \ S, and
let ℓ be the number of edges between S and V (C). Since G is cubic, we
have that

∑
v∈V (C) dG(v) = 3|V (C)|; since C is an odd component, we

see that 3|V (C)| is odd, and consequently,
∑

v∈V (C) dG(v) is odd. On the
other hand, every edge incident with a vertex in V (C) either has both its
endpoints in V (C), or has one endpoint in V (C) and the other one in S; so,∑

v∈V (C) dG(v) = 2|E(G[C])|+ ℓ. Since
∑

v∈V (C) dG(v) is odd, we see that ℓ
is odd. If ℓ = 1, then the unique edge between S and V (C) is a bridge in G,
contrary to the fact that G is bridgeless. So, ℓ ≥ 3. This proves the Claim. ♦

Set t := odd(G \ S). By the Claim, the number of edges between S
and V (G) \ S is at least 3t. On the other hand, since G is cubic, the total
number of edges incident with at least one vertex of S as at most 3|S|.8
Thus, 3t ≤ 3|S|, i.e. |S| ≥ t = odd(G \ S). Since S ⊆ V (G) was chosen
arbitrarily, Tutte’s theorem guarantees that G has a perfect matching.

The bridgelessness requirement from Petersen’s theorem is necessary, as
the example below shows.

7Here is an example of a cubic, bridgeless graph, with a perfect matching shown in red.

8Note that we are double counting edges whose both endpoints are in S. Hence, the
number of edges incident with at least one vertex of S is at most 3|S|, and not necessarily
exactly 3|S|.
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s

The graph above (call it G) is cubic, but not bridgeless. If we set S := {s},
then G \ S has three odd components, and so |S| < odd(G \ S). Thus, by
Tutte’s theorem, G does not have a perfect matching.

9.5 M-augmenting paths

Convention: In the remainder of this chapter, in all our figures, edges of
the matching in question are in red.

Let M be a matching in a graph G. An M-alternating path is a path
u0, u1, . . . , ut in G such that every other edge of the path belongs to M (and
the remaining edges do not). An M-augmenting path is an M -alternating
path u0, u1, . . . , ut (t ̸= 0) such that u0, ut are both unsaturated by M .
For instance, in the picture below, u0, u1, u2, u3, u4, u5 is an M -augmenting
path (as usual, the edges of the matching M are in red; the edges of the
M -augmenting path that do not belong to M are in blue).

u0

u1

u2

u3u4

u5

We note that if M is a matching of a graph G, and u and v are adjacent
vertices of G, both unsaturated by M , then the one-edge path u, v is an
M -augmenting path.
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Lemma 9.5.1. Let M be a matching in a graph G, and let u0, u1, . . . , ut be
an M -augmenting path. Then t is odd and

M ′ :=
(
M \ {u1u2, u3u4, . . . , ut−2ut−1}

)
∪ {u0u1, u2u3, . . . , ut−1ut}

is a matching of G satisfying |M ′| = |M |+ 1.

Proof. This follows from the relevant definitions.

Theorem 9.5.2. [Berge, 1957] Let M be a matching in a graph G. Then M
is a maximum matching of G if and only if G has no M -augmenting path.

Proof. We will prove that the matching M is not maximum if and only if G
has an M -augmenting path.

If G has an M -augmenting path, then Lemma 9.5.1 guarantees that M
is not a maximum matching of G.

Suppose now thatM is not a maximum matching, and let M ′ be matching
of G such that |M ′| > |M |. Let F := M∆M ′,9 and let H be the graph with
vertex set V (H) = V (G) and edge set E(H) = F . Clearly, ∆(H) ≤ 2.10 So,
H is the disjoint union of paths and cycles.

Now, since |M ′| > |M |, some component P of H has more edges of M ′

than of M . If P is a cycle, then we see that some vertex of P is incident two
edges of M ′, contrary to the fact that M ′ is a matching. So, P is a path,
and it is easy to see that it is in fact an M -augmenting path in G.11

9By definition, M∆M ′ = (M \M ′) ∪ (M ′ \M).
10Recall that ∆(H) is the maximum degree in H, i.e. ∆(H) = max{dH(v) | v ∈ V (H)}.

Let us check that ∆(H) ≤ 2. Since M and M ′ are matchings, we see that every vertex v of
G is incident with at most one edge of M and at most one edge of M ′. Since V (H) = V (G)
and E(H) ⊆ M ∪M ′, it follows that every vertex of H is incident with at most two edges;
thus, ∆(H) ≤ 2.

11Indeed, let P be of the form u0, u1, . . . , ut. All edges of P are in M∆M ′, and so since
M and M ′ are both matchings, the edges of M \M ′ and M ′ \M alternate on P . Since P
has more edges of M ′ than of M , we have that P has an odd number of edges (so, t is
odd), and that u0u1, u2u3, . . . , ut−1ut ∈ M ′ \M and u1u2, u3u4, . . . , ut−2, ut−1 ∈ M \M ′

(see the picture below; edges of M \M ′ are in red, and edges of M ′ \M are in blue).

u0

ut

The fact that u0, ut are unsaturated by M follows from the construction of H, and from
the fact that P is a component of H.



Chapter 9. Matchings in general graphs 152

9.6 Blossoms and stems

Our goal is to give a polynomial-time algorithm that finds a maximum
matching in a graph. The basic idea is to start with an empty matching, and
then repeatedly find augmenting paths and use them to find larger matchings
(as in Lemma 9.5.1). We do this until no augmenting path remains, at which
point Theorem 9.5.2 guarantees that our matching is maximum. In this
section, we describe the basic tools that we need, and in the subsequent
section, we describe the algorithm.

We begin with a definition. Suppose that M is a matching in a graph
G. A blossom is a cycle c0, c1, . . . , c2k, c0 of length 2k + 1 (with k ≥ 1) in G
in which edges c1c2, c3c4, . . . , c2k−1c2k belong to M , and the remaining k + 1
edges do not belong to M . A stem for this blossom is an M -alternating path
s0, . . . , sℓ of even length12 such that s0 = c0 is the unique common vertex of
the cycle c0, c1, . . . , c2k, c0 and the path s0, . . . , sℓ, and sℓ is unsaturated by
M .13 The union of a blossom and a corresponding stem is called a flower.14

An example is shown below.

c0 = s0

c1

c2

c2k

s1

s`

c2k−1

Note that if M is a matching and F is a flower (with respect to M) in
a graph G, then any edge of M that has an endpoint in V (F ) is in fact an
edge of F .

Next, let G be a graph, and let C ⊆ V (G) and c ∈ C. We say that G′ is
the graph obtained form G by contracting C to c if

� V (G′) = V (G) \ (C \ {c}) = (V (G) \ C) ∪ {c}, and
12So, the path has an even number of edges, and therefore, ℓ is even.
13Note that this implies that either ℓ = 0 and c0 = s0 is unsaturated by M , or ℓ ≥ 2

and s0s1 ∈ M .
14Note that there may be more than one stem for a fixed blossom. Nonetheless, all stems

attach to the same vertex of the blossom.
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� E(G′) =
((

V (G)\C
2

)
∩ E(G)

)
∪
{
xc | x ∈ V (G) \ C, ∃c′ ∈ C s.t. xc′ ∈

E(G)
}
.

C

c

x y

zw

x y

c
zw

G G′

contracting
C to c

Lemma 9.6.1. Let M be a matching in a graph G, and let C = c0, . . . , c2k, c0
be a blossom and S = s0, . . . , sℓ a corresponding stem (in particular, c0 = s0).
Let G′ be the graph obtained from G by contracting C to c0,

15 and let
M ′ = M \ E(C). Then M ′ is a matching of G′. Furthermore, M is a
maximum matching of G if and only if M ′ is a maximum matching of G′.

Proof. The fact that M ′ is a matching of G′ follows from the appropriate
definitions. Now, we will show that M is not a maximum matching in G if
and only if M ′ is not a maximum matching in G′.

Suppose first that M ′ is not a maximum matching of G′; we must show
that M is not a maximum matching of G. Let M ′′ be a matching of G′

of size greater than |M ′|. If c0 is unsaturated by M ′′, then M ′′ ∪
(
M ∩

E(C)
)
is a matching of G of size greater than |M |. Suppose now that c0

is saturated by M ′′. Then there exists some vertex x ∈ V (G) \ V (C) and
an index j ∈ {0, . . . , 2k} such that xcj ∈ E(G). But now the matching
(M ′′ \ {xc0}) ∪ {xcj} ∪ {cj+1cj+2, cj+3cj+4, . . . , cj+2k−1cj+2k} is a matching
of G of size greater than |M | (see the picture below).

c0 xcj x

Suppose now that M is not a maximum matching of G; we must

show that M ′ is not a maximum matching of G′. First, let M̃ :=
(
M \

(E(C) ∪ E(S)
)
∪ {c0c1, c2c3, . . . , c2k−2c2k−1} ∪ {s1s2, s3s4, . . . , sℓ−1sℓ} and

M̃ ′ =
(
M ′ \ E(S)

)
∪ {s1s2, s3s4, . . . , sℓ−1sℓ}.

15Technically, we mean that G is obtained by contracting V (C) to c0.
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c0 = s0

c1

c2

c2k

s1

s`

c2k−1

c0 = s0

c1

c2

c2k

s1

s`

c2k−1

M M̃

Clearly, M̃ is a matching of G of the same size as M , and M̃ ′ is a matching
of G′ of the same size as M ′. Since the matching M of G is not maximum,
neither is M̃ ; so, by Theorem 9.5.2, there exists an M̃ -augmenting path in
G, say P = p0, . . . , pt. It now suffices to exhibit an M̃ ′-augmenting path in
G′, for Theorem 9.5.2 will then imply that the matching M̃ ′ is not maximum
in G′, and consequently, that M ′ is not maximum in G′, either.

If V (P )∩ V (C) = ∅, then P is an M̃ ′-augmenting path in G′, and we are
done. So, we may assume that V (P )∩ V (C) ̸= ∅. First of all, c2k is the only

vertex in V (C) that is unsaturated by M̃ ; since both p0, pt are unsaturated

by M̃ , we see that at most one of p0, pt belongs to V (C). By symmetry, we
may assume that p0 /∈ V (C). Now, set t1 := min{i ∈ {1, . . . , t} | pi ∈ V (C)}.
But then p0, . . . , pt1−1, c0 is an M̃ ′-augmenting path in G′,16 and we are
done.

9.7 Edmonds’ Blossom algorithm

In what follows, we will use the following notation: for a tree T and vertices
x, y ∈ V (T ), we denote by x− T − y the unique path between x and y in T .

Let G be an input graph. Initially, we start with the empty matching,
and we iteratively increase the size of the matching until this is no longer
possible, at which point, our matching is maximum. All we need to do is
show how, given a matching M in G, we either produce a larger matching,
or determine that no larger matching exists. We proceed as follows.

Step 1. First, we form an auxiliary forest F (which is a subgraph of G)
as follows. V (F ) is partitioned into levels, L0, L1, L2, . . . . Level L0 consists
of all vertices of G that are unsaturated by M . If L0 = ∅, then M is a perfect
(and therefore maximum) matching of G, and we are done. So, we may
assume that L0 ̸= ∅. Then, using breadth-first-search, we form a (maximal)

16We are using the fact that, by construction, c0 is unsaturated by M̃ ′ in G′.



Chapter 9. Matchings in general graphs 155

forest F in such a way that, for each integer k ≥ 0, Lk is the set of all
vertices of F that are at distance k from L0 in F ,17 and moreover, for all
even k ≥ 0, edges between Lk and Lk+1 in F do not belong to M , and edges
between Lk+1 and Lk+2 in F do belong to M . For each v ∈ L0, the unique
component of F that contains v is the tree Tv rooted at v.

L0

L1

L2

L3

L4

v1 v2 vt

Tv1 Tv2 Tvt

Step 2. If there exists an edge e ∈ E(G) between even levels of two
distinct trees, we immediately obtain an M -augmenting path,18 and then we
obtain a matching of size |M |+ 1, as in Lemma 9.5.1.

L0

L1

L2

L3

L4

e

If there exists an edge e ∈ E(G) between two vertices, say x and y,
belonging to even levels of the same tree Tu, then we can find a flower (i.e. a
blossom with a corresponding stem), as follows.

L0

L1

L2

L3

L4
e

x y

u

17So: distance is counted in the forest F , and not in the whole graph G.
18Indeed, suppose that for distinct u, v ∈ L0, and some even p, q, we have an edge e

between a vertex u′ ∈ V (Tu)∩Lp and a vertex v′ ∈ V (Tv)∩Lq. Then u−Tu−u′−v′−Tv−v
is an M -augmenting path in G.
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We consider the (unique) path in Tu between x and u in Tu, and the (unique)
path in Tu between y and u. The union of these two paths, together with
the edge e, is a flower in G, say, with blossom C = c0, . . . , c2k, c0 and stem
S = s0, . . . , sℓ, where c0 = s0 and sℓ ∈ L0.

19 Let G′ be the graph obtained
from G by contracting C to a vertex c0, and let M ′ = M \ E(C) (as in
Lemma 9.6.1). We now call the algorithm with input G′ and M ′. Then there
are two cases.

� If we obtain the answer that M ′ is a maximum matching in G′, then
(by Lemma 9.6.1) M is a maximum matching in G, and we are done.

� Suppose we obtained a matching M ′′ in G′ that is of size greater than
|M ′|. If c0 is unsaturated by M ′′, then (E(C)∩M)∪M ′′ is a matching
in G of size greater than |M |, and we are done. Suppose now that c0 is
saturated by M ′′, and let x ∈ V (G)\V (C) be such that xc0 ∈ M ′′. Let
v be some vertex of C such that xv ∈ E(G), and let MC be the (unique)

matching of size |V (C)|−1
2 in C, chosen so that v is MC-unsaturated.

Then (M ′′ \ {xc0})∪{xv}∪MC is a matching in G of size greater than
|M |.

Next, suppose that some edge e ∈ M \ E(F ) has at least one endpoint
in V (F ). Set e = xy. Then e in fact has both its endpoints in V (F ),
for otherwise, it would have been added to F via our breadth-first-search
construction. Moreover, both endpoints of e must belong to odd levels. If
both endpoints of e belong to the same tree Tu (for some u ∈ L0), then
similarly to the previous case, we obtain a flower containing e, and we then
proceed as in the previous case. So, we may assume that e does not have
both its endpoints in the same tree. Then there exist distinct u, v ∈ L0

such that x ∈ V (Tu) and y ∈ V (Tv), and so u − Tu − x − y − Tv − v is an
M -augmenting path in G. We can now obtain a matching of size |M |+1, as
in Lemma 9.5.1.

From now on, we assume that there are no edges (of G) between vertices
in even levels, and moreover, that every edge of M that has an endpoint
in V (F ) is in fact an edge of F . We now claim that G contains no M -
augmenting path, and that M is therefore (by Theorem 9.5.2) a maximum
matching in G. Since L0 is the set of all vertices that are unsaturated by M ,
it suffices to show that no non-trivial M -alternating path has more than one
endpoint in L0.

20 So, fix an M -alternating path P = p0, . . . , pt, with t ≥ 1.
We must show that at most one of p0, pt belongs to L0. If neither p0 nor

19In fact, sℓ = u.
20A path is non-trivial if it has at least one edge.
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pt belongs to L0, then we are done. So, by symmetry, we may assume that
p0 ∈ L0, and we must show that pt /∈ L0.

Claim. For all i ∈ {0, . . . , t− 1}, one of the following holds:

(1) pipi+1 ∈ E(F ), and there exists an integer k such that
pi ∈ Lk and pi+1 ∈ Lk+1;

(2) pipi+1 /∈ E(F ), pi belongs to an even level, and pi+1 belongs
to an odd level.21

Proof of the Claim. We proceed by induction on i. First of all, p0 ∈ L0.
So, if p0p1 ∈ E(F ), then p1 ∈ L1, and (1) holds for i = 0. So, we may
assume that p0p1 /∈ E(F ). Since vetices of L0 are unsaturated by M , we
know that p0p1 /∈ M . Now p1 ∈ V (F ), for otherwise, our breadth-first-search
construction of F would have added p0p1 to F . Since there are no edges
between even levels, we see that p1 belongs to an odd level, and so (2) holds
for i = 0.

Now, fix i ∈ {0, . . . , t − 2}, and assume that the claim holds for i. We
must show it holds for i+ 1.

Suppose first that (1) holds for i, i.e. that pipi+1 ∈ E(F ), and there exists
an integer k such that pi ∈ Lk and pi+1 ∈ Lk+1. If pi+1pi+2 ∈ E(F ), then
pi+2 ∈ Lk+2, and (1) holds for i+1. So, assume that pi+1pi+2 /∈ E(F ). Then
pi+1pi+2 /∈ M ,22 and so since P is M -alternating, we see that pipi+1 ∈ M .
But then k is odd and k + 1 is even. Note that pi+2 ∈ V (F ), for otherwise,
our breadth-first-search construction of F would have added pi+1pi+2 to F .
Since there are no edges between even levels of F , and since pi+1 belongs to
an even level, it follows that pi+2 belongs to an odd level. So, i+ 1 satisfies
(2).

Suppose now that (2) holds for i, i.e. that pipi+1 /∈ E(F ), pi belongs to
an even level, and pi+1 belongs to an odd level. Since pipi+1 has an endpoint
in V (F ), but does not belong to E(F ), we see that pipi+1 /∈ M . Therefore,
pi+1pi+2 ∈ M , since P is M -alternating. So, pi+1pi+2 ∈ E(F ).23 Since pi+1

belongs to an odd level, say Lk, we see that pi+2 belongs to the even level
Lk+1.

24 So, (1) holds for i+ 1. This proves the Claim. ♦

21Note that both (1) and (2) imply that pi, pi+1 ∈ V (F ).
22Recall that all edges of M that have an endpoint in V (F ) are in fact edges of F . So,

since pi+1 ∈ V (F ), but pi+1pi+2 /∈ E(F ), we have that pi+1pi+2 /∈ M .
23Once again, we are using the fact that all edges of M that have an endpoint in V (F ) are

in fact edges of F . So, since pi+1 ∈ V (F ) and pi+1pi+2 ∈ M , we see that pi+1pi+2 ∈ E(F ).
24We are using the fact that pi+1pi+2 ∈ M , plus the construction of F .
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In view of the Claim, p0 is the only vertex of P that belongs to L0.
25 So,

pt /∈ L0, and we are done.

Remark: The running time of Edmonds’ Blossom algorithm is O(n4), if
the algorithm is implemented in the obvious way. We omit the details.

25Indeed, fix i ∈ {1, . . . , t}. In view of the Claim, pi either belongs to an odd level, or it
belongs to a level that is one higher than the level that pi−1 belongs to. In either case,
pi /∈ L0.
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Chapter 10

Minors and planar graphs

10.1 3-connected graphs

Given a graph G and an edge xy ∈ E(G), we denote by G/xy the graph
obtained from G by contracting xy to a vertex vxy.

G

x y vxy

G/xy

More formally, G/xy is the graph with vertex set V (G/xy) = (V (G) \
{x, y}) ∪ {vxy} (where vxy /∈ V (G)) and edge set E(G) = {e ∈

(
V (G)\{x,y}

2

)
|

e ∈ E(G)}∪{vvxy | v ∈ V (G) \ {x, y}, and either vx ∈ E(G) or vy ∈ E(G)}.
If e = xy, then we sometimes write G/e instead of G/xy, and ve instead of
vxy.

Recall that for a non-negative integer k, a graph G is k-connected if it
satisfies the following two conditions:

� |V (G)| ≥ k + 1;

� for all S ⊆ V (G) such that |S| ≤ k − 1, the graph G \ S is connected.

Proposition 10.1.1. Let k be a positive integer, let G be a k-connected
graph, and let S ⊆ V (G) be such that |S| = k. Then every vertex of S has a
neighbor in each component of G \ S.
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Proof. Suppose otherwise, and fix a vertex v ∈ S and a component C of
G \ S such that v has no neighbors in V (C). Then S \ {v} separates v from
V (C) in G, and in particular, G \ (S \ {v}) is disconnected. But this is
impossible since |S \ {v}| = k − 1 and G is k-connected.

v

SC

Lemma 10.1.2. Let G be a 3-connected graph on more than four vertices.
Then G has an edge e such that G/e is 3-connected.

Proof.

Claim. For all xy ∈ E(G), either G/xy is 3-connected, or
there exists a vertex z ∈ V (G) \ {x, y} such that G \ {x, y, z} is
disconnected.

Proof of the Claim. Fix xy ∈ E(G), and suppose that G/xy is not 3-
connected. Clearly, G/xy has at least four vertices,1 and so there exists
some S ⊆ V (G/xy) such that |S| ≤ 2 and (G/xy) \ S is disconnected. If
vxy /∈ S, then it is clear that G \ S is disconnected, contrary to the fact that
G is 3-connected. So, vxy ∈ S. Now set S′ = (S \ {vxy}) ∪ {x, y}. Then
|S′| = |S|+ 1 and G \ S′ = (G/xy) \ S; so, G \ S′ is disconnected. Since G is
3-connected, it follows that |S′| ≥ 3; since |S| ≤ 2, we deduce that |S′| = 3,
and the result follows.2 ♦

Since G is 3-connected, it is clear that G has at least one edge. Now,
suppose that for all e ∈ E(G), the graph G/e is not 3-connected. Then using
the Claim, we fix an edge xy ∈ E(G) and a vertex z ∈ V (G) \ {x, y} such
that G \ {x, y, z} is disconnected, and we fix a component C of G \ {x, y, z};
we may assume that xy, z, C were chosen so that |V (C)| is minimum.3

1This is because |V (G)| > 4, and clearly, |V (G/xy)| = |V (G)| − 1.
2Indeed, we take z to be the (unique) vertex of S′ \ {x, y}.
3So, we are assuming that for all edges x′y′ ∈ E(G), all vertices z′ ∈ V (G) \ {x′, y′}

such that {x′, y′, z′} is disconnected, and all components C′ of G \ {x′, y′, z′}, we have
that |V (C)| ≤ |V (C′)|.
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x

y

z v C

Using Proposition 10.1.1, we let v ∈ V (C) be a neighbor of z. By our
supposition, G/zv is not 3-connected, and so by the Claim, there exists some
w ∈ V (G) \ {z, v} such that G \ {z, v, w} is disconnected.4 Since xy ∈ E(G),
there exists a component D of G \ {z, v, w} such that x, y /∈ V (D); so, D is
in fact a component of G \ {x, y, z, v, w}, and in particular, it is a connected
induced subgraph of G \ {x, y, z}.

z

v

w

D

x, y /∈ V (D)

v′

Now, let us show that V (D) ⫋ V (C). By Proposition 10.1.1,5 we know that
v has a neighbor v′ in V (D). But note that all neighbors of v in G belong to
V (C)∪{x, y, z}, and so since x, y, z /∈ V (D),6 we have that v′ ∈ V (D)∩V (C).
Since C is a component and D a connected induced subgraph of G \ {x, y, z},
we now deduce that V (D) ⊆ V (C). Since v ∈ V (C) \ V (D), it follows that
V (D) ⫋ V (C). But this contradicts the minimality of C.

Proposition 10.1.3. Let G be a graph, and let xy ∈ E(G) be such that
dG(x), dG(y) ≥ 3. If G/xy is 3-connected, then so is G.

Proof. To simplify notation, set G′ := G/xy. Assume that G′ is 3-connected.
Then by definition, G′ has at least four vertices, and consequently, G has at
least five vertices.

Now, fix S ⊆ V (G) such that |S| ≤ 2; we must show that G \ S is
connected. If S ∩ {x, y} = ∅, then (G \ S)/xy = G′ \ S; since G′ is 3-
connected, we see that G′ \ S is connected, and we deduce that (G \ S)/xy
is connected. But then clearly, G \ S is also connected. Next, if S = {x, y},

4It is possible that w ∈ {x, y}.
5We are applying Proposition 10.1.1 to G, k = 3, and S = {z, v, x}.
6We already saw that x, y /∈ V (D). Since D is a component of G \ {z, v, w}, we also

have that z /∈ V (D). So, x, y, z /∈ V (D).
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then G \ S = G′ \ vxy; since G′ is 3-connected, we know that G′ \ vxy is
connected, and so G \ S is connected.

It remains to consider the case when S contains exactly one of x, y. By
symmetry, we may assume that x ∈ S and y /∈ S. Now, suppose that G \ S
is disconnected. Let C be the component of G \S that contains y, and let D
be some other component of G \S. Clearly, NG(y) ⊆ S ∪ (V (C) \ {y}); since
dG(y) ≥ 3 and |S| ≤ 2, we see that V (C)\{y} ≠ ∅. Set S′ := (S\{x})∪{vxy},
and note that G \ (S ∪ {y}) = G′ \ S′. But now S′ separates V (C) \ {y} ≠ ∅
from V (D) in G′, contrary to the fact that G′ is 3-connected and |S′| ≤ 2.

x y

CD S

Note that in the statement of Proposition 10.1.3, the requirement that
dG(x), dG(y) ≥ 3 is necessary, since every 3-connected graph G satisfies
δ(G) ≥ 3.7 For a concrete example, see the picture below (G/xy is 3-
connected, but G is not).

x y vxy

G G/xy

Theorem 10.1.4 (Tutte, 1961). A graph G is 3-connected if and only if
there exists a sequence G0, . . . , Gn of graphs with the following properties:

(1) G0
∼= K4 and G = Gn;

(2) for all i ∈ {0, . . . , n−1}, Gi+1 has an edge xy with dGi+1(x), dGi+1(y) ≥
3 and Gi = Gi+1/xy.

7Otherwise, we take a vertex v ∈ V (G) with dG(v) ≤ 2, and we observe that NG(v)
separates v from V (G) \NG[v] (this is non-empty because |NG[v]| ≤ 3, and 3-connected
graphs have at least four vertices), contrary to the fact that |NG(v)| = dG(v) ≤ 2 and G is
3-connected.
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Proof. Fix a graph G.
By definition, all 3-connected graphs have at least four vertices, and it is

easy to see that K4 is (up to isomorphism) the only 3-connected graph on
four vertices. Moreover, by Theorem 5.1.3, the minimum degree of any 3-
connected graph is at least three. So, if G is 3-connected, then Lemma 10.1.2
and an easy induction guarantee that there exists a sequence G0, . . . , Gn, as
in the statement of the theorem.

On the other hand, if there exists a sequence G0, . . . , Gn as in the state-
ment of the theorem, then Proposition 10.1.3 and an easy induction guarantee
that G is 3-connected.

Note that Theorem 10.1.4 guarantees that every 3-connected graph can be
obtained from K4 by repeatedly “decontracting” vertices into edges, making
sure that, at each step, both new vertices have degree at least three. An
example is shown below (at each step, the vertex to be “decontracted” is in
red, and in the subsequent step, the edge obtained by this “decontraction”
is in a dotted bag); each graph in the sequence is 3-connected.

G0
∼= K4 G1 G2 G3

10.2 Minors and topological minors

A graph H is a topological minor of a graph G, and we write H ⪯t G, if
G contains some subdivision of H as a subgraph.8 The vertices of this
subdivision that correspond to the vertices of H are called branch vertices.9

For example, the graph below contains K2,4 as a topological minor (the
branch vertices are in dotted circles).

8Every graph is considered to be a subdivision of itself.
9If δ(H) ≥ 3, then branch vertices are uniquely defined. Otherwise, they need not be

uniquely defined.
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Obviously, the topological minor relation is transitive, that is, for all graphs
G1, G2, G3, if G1 ⪯t G2 and G2 ⪯t G3, then G1 ⪯t G3.

A graph H is a minor of a graph G, and we write H ⪯m G, if there exists
a family {Xv}v∈V (H) of pairwise disjoint, non-empty subsets of V (G), called
branch sets, such that

� G[Xv] is connected for all v ∈ V (H), and

� for all uv ∈ E(H), there is an edge between Xu and Xv in G.

For example, the graph below (on the right) contains K2,4 as a minor.

a b c d

u

w

Xu

Xa
Xb

Xc Xd

Xw

K2,4

Lemma 10.2.1. For all graphs G and H, the following are equivalent:

(1) H ⪯m G;

(2) G can be transformed into (an isomorphic copy of) H by a sequence
of vertex deletions, edge deletions, and edge contractions;10

(3) there exists a subgraph G′ of G such that G′ can be transformed into
(an isomorphic copy) of H by a sequence of edge contractions.11

10Possibly, G ∼= H.
11Possibly, G′ = G or G′ ∼= H.
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Proof. Fix graphs G and H. We will show that (1) implies (3), that (3)
implies (1), and that (2) and (3) are equivalent.

Suppose first that (1) holds; we must show that (3) holds. Let {Xv}v∈V (H)

be the family of branch sets of the H minor in G. Let G′ be the subgraph of

G obtained by first deleting V (G) \
(⋃

v∈V (H)Xv

)
, and then for all distinct

u, v ∈ V (H) such that uv /∈ E(H), deleting all the edges between Xu and
Xv. Let G′′ be the graph obtained from G′ by contracting each Xv into
a vertex (we contract the Xv’s one edge at a time, in any order). Clearly,
G′′ ∼= H. So, (3) holds.

Suppose now that (3) holds; we must show that (1) holds. Let G′ be a
subgraph of G such that G′ can be transformed into (an isomorphic copy)
of H by a sequence of edge contractions. Let G0, . . . , Gℓ be a sequence of
graphs such that G0 = G′, Gℓ

∼= H, and for all i ∈ {0, . . . , ℓ− 1}, Gi+1 can
be obtained from Gi by contracting one edge. We may assume that Gℓ = H
(we rename vertices if necessary). For all v ∈ V (H), we set Xℓ

v = {v}. Next,
for all i ∈ {0, . . . , ℓ − 1}, having defined the sets Xi+1

v , we define the sets
Xi

v as follows. Let u1u2 ∈ E(Gi) be the edge of Gi that was contracted to
obtain Gi+1, and let u be the vertex formed by contracting that edge.12 For
all v ∈ V (H), if u ∈ Xi+1

v , then we set Xi
v := (Xi+1

v \ {u}) ∪ {u1, u2}, and
otherwise, we set Xi

v := Xi+1
v . It then follows by an easy induction that for

all i ∈ {0, . . . , ℓ}, {Xi
v}v∈V (H) is a family of branch sets for the H minor in

Gi. In particular, {X0
v}v∈V (H) is a family of branch sets for the H minor in

G0 = G′, and therefore (since G′ is a subgraph of G) in G as well. So, (1)
holds.

It remains to show that (2) and (3) are equivalent. It is clear that (3)
implies (2). Let us show that (2) implies (3). It is clear that if a graph G2 is
obtained from a graph G1 by first contracting an edge and then deleting a
vertex or an edge, then we can also obtain G2 from G1 by first deleting one
or more vertices or edges, and then possibly contracting an edge.13 Thus, if
H can be obtained from G by a sequence of vertex deletions, edge deletions,
and edge contractions, then H can be obtained from G by first (possibly)

12So, u = vu1u2 .
13Let us prove this fully formally. Suppose that G2 is obtained from G1 by first

contracting an edge xy to a vertex vxy, and then deleting a vertex z. If z = vxy, then
G2 = G1 \ {x, y}; otherwise, G2 can be obtained from G1 by first deleting z, and then
contracting xy. Suppose now that G2 is obtained from G1 by first contracting an edge xy
to a vertex vxy, and then deleting an edge e. If vxy is an endpoint of e, say e = uvxy, then
we can obtain G2 from G1 by first deleting all edges between u and {x, y} (there is at least
one and at most two such edges) and then contracting xy; otherwise, we can obtain G2

from G1 by first deleting e and then contracting xy.
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deleting some vertices or edges (thus obtaining a subgraph G′ of G), and
then (possibly) contracting edges of G′. So, (2) implies (3).

Lemma 10.2.2. The minor relation is transitive, that is, for all graphs
G1, G2, G3, if G1 ⪯m G2 and G2 ⪯m G3, then G1 ⪯m G3.

Proof. Fix graphs G1, G2, G3 such that G1 ⪯m G2 and G2 ⪯m G3. By
Lemma 10.2.1, G1 can be obtained from G2 by a sequence of vertex deletions,
edge deletions, and edge contractions, and G2 can similarly be obtained
from G3. So, G1 can be obtained from G3 by a sequence of vertex deletions,
edge deletions, and edge contractions. So, by Lemma 10.2.1, we have that
G1 ⪯m G3.

We remark that Lemma 10.2.2 can also be proven directly, using the
definition of a minor.14

Lemma 10.2.3. For all graphs G and H, if H ⪯t G, then H ⪯m G.

Proof. Fix graphs G and H, and assume that H ⪯t G. Then G contains a
subgraph G′ that is isomorphic to a subdivision of H, and clearly, H can
be obtained from the subgraph G′ by a sequence of edge contractions. Now
Lemma 10.2.1 guarantees that H ⪯m G.

Note that the converse of Lemma 10.2.3 is false, i.e. it is possible that
H ⪯m G, but H ̸⪯t G. For example, the graph below contains K1,4 as a
minor (the branch sets are in dotted rectangles), but not as a topological
minor (this is because K1,4 contains a vertex of degree four, whereas the
maximum degree in the graph below is three).

We do, however, have the following lemma.

Lemma 10.2.4. Let G and H be graphs such that H ⪯m G and ∆(H) ≤ 3.
Then H ⪯t G.

Proof. Let G′ be a minimal subgraph of G such that H ⪯m G′,15 and let
{Xv}v∈V (H) be the corresponding branch sets in G′. Our goal is to show that

14Proof?
15So, H ⪯m G′, but for all proper subgraphs G′′ of G′, we have that H ̸⪯m G′′.
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G′ is itself a subdivision of H; by definition, this will imply that H ⪯t G. By
the minimality of G′, we know that for all distinct u, v ∈ V (H), the following
hold:

� if uv ∈ E(H), then there is exactly one edge between Xu and Xv in
G′,16

� if uv /∈ E(H), then there are no edges between Xu and Xv.
17

By the minimality of G′, G′[Xv] is a tree.18 Now, for each v ∈ V (H), we let
Tv be the graph obtained from G′[Xv] by adding to it the edges between Xv

and V (G′) \Xv (and the endpoints of those edges); see the picture below.

Xv

Tv

Clearly, for each v ∈ V (H), the graph Tv is a tree. Since ∆(H) ≤ 3,
the minimality of G′ guarantees that Tv has at most three leaves, and so
∆(Tv) ≤ 3. Moreover, Tv has at most one vertex of degree three, and if this
vertex exists, then it belongs to Xv. Now, for all v ∈ V (H), we let v′ be the
unique vertex of Tv of degree three if such a vertex exists, and otherwise,
we let v′ be any vertex in Xv. It is now clear that G′ is a subdivision of H
(vertices v′ are the branch vertices), and so H ⪯t G.

The following lemma will be of use to us in our next section, where we
shall study planar graphs and “Kuratowski’s theorem.”

Lemma 10.2.5. Let G be a graph. Then the following are equivalent:

(1) G contains at least one of K5,K3,3 as a topological minor;

16By the definition of a minor, there is at least one edge between Xu and Xv. If there is
more than one such edge, then we can contradict the minimality of G′ by deleting some
edge between Xu and Xv.

17Otherwise, we can contradict the minimality of G′ by deleting an edge between Xu

and Xv.
18Indeed, G′[Xv] is connected, and therefore has a spanning tree, call it T . If G′[Xv] ̸= T ,

then we can contradict the minimality of G′ by deleting all edges in E(G′[Xv]) \ E(T ).
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(2) G contains at least one of K5,K3,3 as a minor.

Proof. By Lemma 10.2.3, (1) implies (2). Suppose now that (2) holds; we
must show that (1) holds. If K3,3 ⪯t G, then Lemma 10.2.4 implies that
K3,3 ⪯t K3,3, and we are done. Suppose now that K5 ⪯m G. Our goal is to
show that either K5 ⪯t G or K3,3 ⪯m G.19

Let G′ be a minimal subgraph of G such that K5 ⪯m G′. Let X1, . . . , X5

be the branch sets of the K5 minor in G′.20 By the minimality of G′, we
have that G′[X1], . . . , G

′[X5] are all trees, and for all distinct i, j ∈ {1, . . . , 5},
there is exactly one edge between Xi and Xj in G′. For each i ∈ {1, . . . , 5},
let Ti be the graph obtained from G′[Xi] by adding the edges between Xi and
V (G′) \Xi (and the endpoints of those edges). Then for each i ∈ {1, . . . , 5},
Ti is a tree with exactly four leaves (each one of X1, . . . , X5, other than
Xi, contains exactly one of those four leaves), and we deduce that Ti is a
subdivision of one of the following two trees.

K1,4 T

If T1, . . . , T5 are all subdivisions of K1,4 (see the picture below, on the
left), then it is clear that G′ is a subdivision of K5, and it follows that
K5 ⪯t G. Suppose now that at least one of T1, . . . , T5 is a subdivision of T
(see the picture below, on the right); by symmetry, we may assume that T5

is a subdivision of T , and we let a, b be the two vertices of T5 of degree three
(note that a, b ∈ X5). Now let Xa

5 be the set of all vertices v ∈ X5 such that
the (unique) path between v and a in the tree T5 does not contain the vertex
b, and let Xb

5 := X5 \Xa
5 . Then a ∈ Xa

5 and b ∈ Xb
5, and it is easy to see

that G contains a K3,3 minor with branch sets X1, . . . , X4, X
a
5 , X

b
5. But now

Lemma 10.2.4 implies that K3,3 ⪯ G, and we are done.

19Note that this is enough. Indeed, if K5 ⪯t G, then we are done. And if K3,3 ⪯m G,
then Lemma 10.2.4 guarantees that K3,3 ⪯t G, and again we are done.

20So, G′[X1], . . . , G
′[X5] are connected, and for all distinct i, j ∈ {1, . . . , 5}, there is an

edge between Xi and Xj in G′.
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a b

or

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

Xa
5 Xb

5

10.3 Planar graphs

A graph is planar if it can be drawn in the plane without any edge crossings.
Obviously, a graph can be drawn in the plane without any edge crossings

if and only if it can be drawn on the sphere without any edge crossings. So,
planar graphs are precisely those that can be drawn on the sphere without
any edge crossings.

When we draw a graph in the plane without edge crossings, we divide
the plane into regions, called faces; one of the faces, called the outer face is
unbounded, and the remaining faces (called inner faces) are bounded.

inner
face

inner
face

outer
face

We can define faces on the sphere analogously, but in this case, all faces are
bounded, and we get no asymmetry between the inner faces and the outer
face. For this reason, for the purposes of proving theorems, it is often more
convenient to draw on the sphere than on a plane.

Lemma 10.3.1. If a graph is planar, then so are all its minors.
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Proof. Clearly, any graph obtained from a planar graph by deleting one vertex,
deleting one edge, or contracting one edge is planar. So, by Lemma 10.2.1,
all minors of a planar graph are planar.

A homeomorphism of the sphere is a bijection f from the sphere to itself
such that both f and f−1 are continuous. Informally, a homeomorphism of
the sphere is the result of “stretching” the sphere (and possibly also rotating
and taking mirror images).

Two graph drawings on the sphere are equivalent if some sphere homeo-
morphism transforms one drawing into the other.

Lemma 10.3.2. Graphs K5 and K3,3 are not planar. Consequently, no
planar graph contains K5 or K3,3 as a minor.

Proof. In view of Lemma 10.3.1, it suffices to show that K5 and K3,3 are not
planar. We will show that K5 is not planar. The proof is similar for K3,3,
and we leave it as an exercise.

Suppose that K5 is planar, so that we can draw it on the sphere without
any edge crossings. Let {a, b, c, d, e} be the vertex set of the K5. We first
draw the 5-cycle a, b, c, d, e, a on the sphere.

a b

c

d

e

Since edges ac and bd do not cross, we must draw them through distinct
faces created by our 5-cycle a, b, c, d, e, a, and we obtain the following.21

a b

c

d

e

21Remember, we are on the sphere! So, we have full symmetry between the two faces
produced by the 5-cycle a, b, c, d, e, a.
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There is now only one way to add the edge ce to our drawing without creating
edge crossings, as shown below.

a b

c

d

e

Further, there is only one way to add the edge ad to our drawing without
creating edge crossings, as shown below.

a b

c

d

e

But now it is not possible to add the edge be to our drawing without creating
edge crossings. So, K5 is not planar.

The following theorem is usually referred to as “Kuratowski’s theorem,”
or sometimes as the “Kuratowski-Wagner theorem.”

Theorem 10.3.3 (Kuratowski, 1930; Wagner, 1937). Let G be a graph.
Then the following are equivalent:

(a) G is planar;

(b) G contains neither K5 nor K3,3 as a minor;

(c) G contains neither K5 nor K3,3 as a topological minor.

We have already proven the “easy” part of Kuratowski’s theorem: (a)
implies (b) by Lemma 10.3.2, and (b) is equivalent to (c) by Lemma 10.2.5.
It remains to prove the “hard” part: (b) implies (a).

A path addition (sometimes called open ear addition) to a graph H is the
addition to H of a path between two distinct vertices of H in such a way
that no internal vertex and no edge of the path belongs to H. In the picture
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below, we show how the cube graph can be constructed by starting with a
cycle of length four and then repeatedly adding paths (the path added at
each step is in red).

The following was proven in section 5.3.

The Ear lemma. A graph is 2-connected if and only if it is a cycle or can
be obtained from a cycle by repeated path addition.

A plane drawing of a planar graph is a drawing of that graph in the plane
without any edge crossings.

Lemma 10.3.4. For any plane drawing of a planar 2-connected graph G,
the boundary of each face is a cycle of G.

Proof. We proceed by induction on the number of edges. Let G be a planar
2-connected graph, and assume inductively that for all planar 2-connected
graphs H such that |E(H)| < |E(G)|, in any plane drawing of H, the
boundary of each face is a cycle of H.

Now, fix a plane drawing of G. If G is a cycle, then the drawing has two
faces, and they are both bounded by the cycle G.22 Suppose now that G is
not a cycle. Then the Ear Lemma guarantees that G can be obtained from
a 2-connected graph H by adding a path P . If we erase all the edges and all
the internal vertices of P from our drawing of G, we obtain a plane drawing
of H; by the induction hypothesis, each face of this drawing is bounded by a
cycle of H.

C

P

22Actually, this is somewhat informal. The formal proof requires a theorem from topology
called the “Jordan Curve Theorem.” We omit the details.
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We now put P back into our drawing. The path P must pass through one
face of our drawing of H, and it splits this face up into two, each bounded by
a cycle of G; the other faces and their boundaries remain unchanged. This
completes the proof.

We now prove the “(b) =⇒ (a)” part of Kuratowski’s theorem for the
case when G is 3-connected. The general case is handled by Lemma 10.3.6,
and its proof relies on Lemma 10.3.5.

Lemma 10.3.5. Let G be a 3-connected graph that contains neither K5 nor
K3,3 as a minor. Then G is planar.

Proof. We may assume inductively that the lemma is true for graphs on
fewer than |V (G)| vertices, that is, that for all 3-connected graphs H with
|V (H)| < |V (G)| and K5,K3,3 ̸⪯m H, we have that H is planar.

Since G is 3-connected, we know that either G ∼= K4 or |V (G)| > 4.23 If
G ∼= K4, then it is clear that G is planar, and we are done. So assume that
|V (G)| > 4. Then Lemma 10.1.2 guarantees that G has an edge xy such that
H := G/xy is 3-connected. By Lemma 10.2.1, we know that H ⪯m G; since
K5,K3,3 ̸⪯m G, Lemma 10.2.2 guarantees that K5,K3,3 ̸⪯m H. Now H is a
3-connected graph on |V (G)| − 1 vetrices, with K5,K3,3 ̸⪯m H; so, by the
induction hypothesis, H is planar.

Fix a plane drawing of H. If we erase vxy and all the edges incident in it,
we obtain a plane drawing of H \ vxy. Now, let f be the face of this drawing
of H \vxy such that vxy is in the interior of f . Since H is 3-connected, H \vxy
is 2-connected; so, by Lemma 10.3.4, the boundary of f is a cycle of H \ vxy,
say C. (Note that C is also a cycle of H and of G.)

vxy

C

Then NH(vxy) ⊆ V (C), and consequently, NG(x) ⊆ {y}∪V (C) and NG(y) ⊆
{x}∪V (C). Since G is 3-connected, Theorem 5.1.3 guarantees that δ(G) ≥ 3,
and in particular, dG(x) ≥ 3; so, since NG(x) ⊆ {y} ∪ V (C), x has at least
two neighbors in V (C). Let x1, . . . , xk be the neighbors of x in V (C), listed

23Indeed, since G is 3-connected, we know that |V (G)| ≥ 4, and clearly, K4 is (up to
isomorphism) the only 3-connected graph on four vertices.
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in cyclical order (along the cycle C). For each i ∈ {1, . . . , k}, let Pi be the
path from xi to xi+1 (we consider xk+1 = x1) along C, as in the picture
below.

x1

P1
x2 P2 x3

xk

Pk

xi

xi+1

f1
f2

fk

fi

Pi

x

We now draw G \ y in the plane without any edge crossings, as follows.
We begin with our drawing of H = G/xy, we relabel vxy as x, and we
erase the edges between x and V (C) that do not belong to E(G). For each
i ∈ {1, . . . , k}, let fi be the face whose boundary is x, xi − Pi − xi+1, x and
that lies inside f . Our goal is to show that this drawing can be extended to
G. If for some i ∈ {1, . . . , k}, we have that NG(y) ⊆ {x} ∪ V (Pi), then we
simply place the vertex y inside the face fi, and we draw the edge xy as well
as the edges between y and its neighbors in V (Pi), and we obtain a plane
drawing of G.

So, suppose that for all i ∈ {1, . . . , k}, we have that NG(y) ̸⊆ {x}∪V (Pi).
Then either x and y have three common neighbors in V (C) (see the picture
below, on the left), or y has two neighbors a, b ∈ V (C) that are separated
in C by two neighbors of x, say xi and xj (see the picture below, on the
right).24

x

y

x

y
xi xj

a

b

In the former case, G contains K5 as a topological minor (with x, y, and
their three common neighbors in C as branch vertices), contrary to the fact
that K5 ̸⪯m G.25 In the latter case, G[{x, y} ∪ V (C)] contains K3,3 as a

24In the second case, it is possible that x is adjacent to one of both of a, b. However,
{a, b} ∩ {xi, xj} = ∅.

25We are using the fact that, by Lemma 10.2.3, K5 ⪯t G implies K5 ⪯m G.
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topological minor, with x, y, a, b, xi, xj as the branch vertices,26 contrary to
the fact that K3,3 ̸⪯m G.27

Lemma 10.3.6. Let G be a graph that contains neither K5 nor K3,3 as a
minor. Then G is planar.

Proof. We may assume inductively that for all graphs H on fewer than
|V (G)| vertices, if K5,K3,3 ̸⪯m H, then H is planar.

If |V (G)| ≤ 3, then it is clear that G is planar. From now on, we assume
that |V (G)| ≥ 4.

Suppose first thatG is disconnected, and letG1, . . . , Gt be the components
of G. Then by the induction hypothesis, G1, . . . , Gt are all planar. We obtain
a plane drawing of G by drawing G1, . . . , Gt in the plane side by side.

Next, suppose that G is connected, but not 2-connected. Then there
exists a vertex v ∈ V (G) such that G \ v is disconnected. Let A be the
vertex set of one component of G \ v, and let B := V (G) \ (A ∪ {v}). Set
GA := G[A ∪ {v}] and GB := G[B ∪ {v}]. By the induction hypothesis,
GA and GB are both planar. We draw GA in the plane without any edge
crossings, and we let f be some face of this drawing such that v lies on the
boundary of f . We then draw GB inside f , with v coinciding in the drawing
of GA and GB.

28

GA

v

GB

Suppose now that G is 2-connected, but not 3-connected. Since |V (G)| ≥ 4,
the fact that G is not 3-connected guarantees that there is a set S ⊆ V (G)
such that |S| ≤ 2 and G \ S is disconnected. Since G is 2-connected, we
in fact have that |S| = 2; set S = {x, y}. Let A be the vertex set of some
component of G \ S, and let B := V (G) \ (A ∪ S). Let GA := G[A ∪ S] + xy

26Here, {x, a, b} and {y, xi, xj} are the two sides of the bipartition of the subdivided
K3,3.

27We are using the fact that, by Lemma 10.2.3, K3,3 ⪯t G implies K3,3 ⪯m G.
28This is slightly informal. The point is that we can stretch and shrink our drawing of

GB so that it “fits” inside of f .
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and GB := G[B ∪ S] + xy.29 Now, since G is 2-connected, each of G[A ∪ S]
and G[B∪S] contains a path between x and y;30 call these paths PA and PB,
respectively. Clearly, GA ⪯t G[A∪S ∪V (PB)] and GB ⪯t G[B ∪S ∪V (PA)];
consequently, GA, GB ⪯t G, and therefore (by Lemma 10.2.3), GA, GB ⪯m G.
Since K5,K3,3 ̸⪯m G, Lemma 10.2.2 guarantees that K5,K3,3 ̸⪯m GA and
K5,K3,3 ̸⪯m GB. By the induction hypothesis, GA and GB are both planar.
We now draw GA in the plane without edge crossings, and we let f be a
face of this drawing such that the edge xy lies on the boundary of f . We
now draw GB inside f , with the edge xy coinciding in the drawing of GA

and GB.
31 This way, we obtain a drawing of G+ xy in the plane without

any edge crossings;32 it follows that G+ xy is planar, and consequently, G is
planar as well.

Finally, if G is 3-connected, then G is planar by Lemma 10.3.5.

Lemma 10.3.6 proves the “(b) =⇒ (a)” part of Kuratowski’s theorem.
This completes our proof of Kuratowski’s theorem.

10.4 Hajós’ Conjecture

In 1961, Hajós conjectured the following.

Hajós’ Conjecture. For every positive integer k, every graph of chromatic
number at least k contains Kk as a topological minor.

Hajós’ Conjecture is obviously true for k = 1 and k = 2. For k = 3,
we observe that if a graph G satisfies χ(G) ≥ 3, then G is not a forest,33

and in particular, G contains a cycle. Every cycle is a subdivision of K3,
i.e. every cycle contains K3 as a topological minor. So, if χ(G) ≥ 3, then
K3 ⪯t G. Hajós’ Conjecture is also true for k = 4, as we now show (see
Theorem 10.4.2).

A clique-cutset of a graph G is a clique C ⫋ V (G) of G such that G\C is

29So, GA is the graph with vertex set A∪S and edge set E(G[A∪S])∪{xy}; if xy ∈ E(G),
then we simply have GA = G[A ∪ S]. Similar remarks apply to GB .

30This follows from Proposition 10.1.1. (Details?)
31Again, this is slightly informal. The point is that we can stretch and shrink our drawing

of GB so that it “fits” inside of f .
32As usual, G + xy is the graph with vertex set V (G) and edge set E(G) ∪ {xy}. If

xy ∈ E(G), then we simply have that G+ xy = G.
33This is because forests are bipartite, and the chromatic number of any bipartite graph

is at most two.
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disconnected.34 In particular, if G is disconnected, then ∅ is a clique-cutset
of G.

A 6= ∅ C B 6= ∅

G

clique cutset

Lemma 10.4.1. Let G be a graph, and let C be a clique-cutset of G. Let
A1, . . . , At be the vertex sets of the components of G \ C. Then χ(G) =
max{χ(G[A1 ∪ C]), . . . , χ(G[At ∪ C])}.

Proof. To simplify notation, for all i ∈ {1, . . . , t}, set Gi := G[Ai ∪ C] and
χi := χ(Gi). We must show that χ(G) = max{χ1, . . . , χt}. It is obvious that
max{χ1, . . . , χt} ≤ χ(G). It remains to show that χ(G) ≤ max{χ1, . . . , χt}.

C

A1

At

...

For all i ∈ {1, . . . , t}, let ci : Ai ∪ C → {1, . . . , χi} be a proper coloring of
Gi. Since C is a clique of G, we know that for all i ∈ {1, . . . , t}, the coloring
ci assigns distinct colors to all vertices of C. So, after possibly permuting
colors, we may assume that c1, . . . , ct all agree on C. But now the union of
c1, . . . , ct is a proper coloring of G that uses at most max{χ1, . . . , χt} colors,
and we deduce that χ(G) ≤ max{χ1, . . . , χt}.

Theorem 10.4.2 (Dirac, 1952). Every graph of chromatic number at least 4
contains K4 as a topological minor.

Proof. Fix a graph G, and assume inductively that for all graphs G′ with
|V (G′)| < |V (G)|, if χ(G′) ≥ 4, then K4 ⪯t G

′. We assume that χ(G) ≥ 4,
and we show that K4 ⪯t G. We may assume that all proper induced

34In some texts, a clique-cutset of G is defined to be a clique C ⫋ V (G) of G such that
G \C has more components than G. However, the definition that we gave above (requiring
only that G \ C be disconnected, regardless of the number of components of G) is more
convenient for our purposes.
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subgraphs of G are 3-colorable,35 for otherwise, the result follows from the
induction hypothesis. In particular, this means that χ(G) = 4.36

Claim 1. G does not admit a clique-cutset. Furthermore, G is
2-connected.

Proof of Claim 1. The fact that G does not admit a clique-cutset readily
follows from Lemma 10.4.1. Indeed, suppose C were a clique-cutset of G, and
let A1, . . . , At be the vertex sets of G \ C. Then Lemma 10.4.1 guarantees
that χ(G) = max{χ(G[A1 ∪ C]), . . . , χ(G[At ∪ C])}. Since χ(G) = 4, it
follows that for some i ∈ {1, . . . , t}, we have that χ(G[Ai ∪C]) = 4, contrary
to the fact that all proper induced subgraphs of G are 3-colorable.

Clearly, |V (G)| ≥ χ(G) = 4. Furthermore, since G does not admit a
clique-cutset, we see that G is connected and has no cut-vertices.37 So, G is
2-connected. This proves Claim 1. ♦

Claim 2. If G is not 3-connected, then K4 ⪯t G.

Proof of the Claim. Suppose that G is not 3-connected. Clearly, |V (G)| ≥
χ(G) = 4, and so (since G is not 3-connected) there exists a set S ⊆ V (G)
such that |S| ≤ 2 and G \ S is disconnected. By Claim 1, we have that
|S| = 2 (say, S = {x, y}), and that the two vertices of S are non-adjacent. Let
A1, . . . , At (t ≥ 2) be the vertex sets of the components of G\S, and for each
i ∈ {1, . . . , t}, set Gi := G[Ai ∪ S]. Then χ(Gi) ≤ 3 for all i ∈ {1, . . . , t}.38

A1

At

...

x

y
S

Suppose first that for all i ∈ {1, . . . , t}, there exists a 3-coloring ci of Gi

that assigns distinct colors to x and y.39 After possibly permuting colors, we
may assume that for all i ∈ {1, . . . , t}, we have that ci : Ai ∪ S → {1, 2, 3},

35A graph is k-colorable if it can be properly colored with at most k colors.
36Indeed, if χ(G) ≥ 5, then we fix any v ∈ V (G), and we observe that χ(G \ v) ≥

χ(G)− 1 ≥ 4, contrary to the fact that all proper induced subgraphs of G are 3-colorable.
37A cut-vertex of a connected graphH is a vertex v ∈ V (H) such thatH\v is disconnected.

Note that if v is a cut-vertex of H, then {v} is a clique-cutset of H.
38This is because all proper induced subgraphs of G are 3-colorable.
39A k-coloring of a graph is a proper coloring of that graph that uses at most k colors.
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ci(x) = 1, and ci(y) = 2. But now the union of c1, . . . , ct is a proper coloring
of G that uses at most three colors, contrary to the fact that χ(G) = 4.

By symmetry, we may now assume that all 3-colorings of G1 assign the
same color to x and y. But then χ(G1 + xy) = 4.40 So, by the induction
hypothesis, we have that K4 ⪯t G1 + xy.

A1

At

...

x

y
S

A1
x

y
S

G
G1 + xy

Now, since G is 2-connected, we see that each of x, y has a neighbor in A2,
41

and so there exists an induced path P in G2 between x and y. But now
G[A1 ∪ V (P )] is a subdivision of G1 + xy, and so G1 + xy ⪯t G. Since
K4 ⪯t G1 + xy, we have that K4 ⪯t G. This proves Claim 2. ♦

Claim 3. If G is 3-connected, then it contains a cycle of length
at least four.

Proof of Claim 3. Assume that G is 3-connected. Then Theorem 5.1.3
guarantees that δ(G) ≥ 3. Now, fix any vertex u of G; then dG(u) ≥ δ(G) ≥ 3.
If NG(u) is a clique, then G contains K4 as a subgraph,42 and consequently, G
contains a cycle of length four. So, we may assume that some two neighbors
of u (call them u1 and u2) are non-adjacent.

u

u1

u2

P

NG(u)

40Indeed, since χ(G1) ≤ 3, it is obvious that χ(G1 + xy) ≤ 4. If χ(G1 + xy) ≤ 3, then
we fix some 3-coloring of G1 + xy, and we observe that this coloring must assign different
colors to x and y (because x and y are adjacent in G1 + xy). But now this coloring is a
3-coloring of G that assigns distinct colors to x and y, a contradiction.

41This follows from Proposition 10.1.1.
42The vertices of our K4 are u and any three of its neighbors.
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Since G is 3-connected, we know that G \ u is connected, and consequently,
G \ u contains a path P between u1 and u2. But now u, u1 − P − u2, u is a
cycle of length at least four in G.43 This proves Claim 3. ♦

In view of Claim 2, we may assume that G is 3-connected; so, by Claim 3,
G contains a cycle C of length at least four. Let u and v be some non-
consecutive vertices of C. Since G is 3-connected, we know that G \ {u, v} is
connected; let P be a shortest path in G\{u, v} between the two components
of C \ {u, v}, and let x and y be the two endpoints of P . (Note that
x, y ∈ V (C), and no internal vertex of P belongs to C. Furthermore, note
that x and y are not consecutive vertices of the cycle C.) Since G is 3-
connected, G \ {x, y} is connected; let Q be a shortest path in G \ {x, y}
between the two components of C \ {x, y}, and let w and z be the two
endpoints of Q.

u v
P

x

y

x

y

Q
w

z

Now, if P and Q do not intersect (see the picture below, on the left), then
C ∪ P ∪Q is a subdivision of K4,

44 and so K4 ⪯t G. It remains to consider
the case when P and Q do intersect (see the picture below, on the right).
Let Q′ be the subpath of Q from w to the first intersection point of P and
Q. But now C ∪ P ∪Q′ is a subdivision of K4, and so K4 ⪯t G.

P

x

y

x

y

w

z

Q

P

Q′

w

z

43We are using the fact that u1u2 /∈ E(G), and so P has at least one internal vertex.
44Here, C ∪ P ∪ Q is the graph whose vertex set is V (C) ∪ V (P ) ∪ V (Q), and whose

edge set is E(C) ∪ E(P ) ∪ E(Q).
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In 1979 Catlin proved that Hajós’ Conjecture fails for k ≥ 7, as the
example below shows.45

Indeed, the graph above has chromatic number 7, and yet it does not contain
K7 as a topological minor.46 For k ≥ 8, we can obtain a counterexample to
Hajós’ Conjecture by adding k − 7 universal vertices (i.e. vertices adjacent
to all other vertices of the graph) to the graph above. Hajós’ Conjecture is
open for k = 5 and k = 6.

10.5 Hadwiger’s Conjecture

In 1943, Hadwiger conjectured the following.

Hadwiger’s Conjecture. For every positive integer k, every graph of
chromatic number at least k contains Kk as a minor.

Since a topological minor is a special case of a minor (by Lemma 10.2.3),
Hadwiger’s Conjecture is weaker than Hajós’ Conjecture. Thus, since Hajós’
Conjecture is true for k ≤ 4, Hadwiger’s conjecture is also true for k ≤ 4.
Hadwiger’s Conjecture for k = 5 is equivalent to the famous Four Color
Theorem (proven by Appel and Haken in 1976), which states that every
planar graph is 4-colorable.47 Further, in 1993, Robertson, Seymour, and
Thomas proved that Hadwiger’s Conjecture is true for k = 6. For k ≥ 7, the
conjecture remains open.

45A line between two circles indicates that all vertices inside one of the circles are
adjacent to all vertices inside the other circle.

46Check this!
47The equivalence of Hadwiger’s Conjecture for k = 5 and the Four Color Theorem is

not entirely obvious, though, and we omit the details.
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Chapter 11

Graphs on surfaces

11.1 Surfaces

A surface is a connected 2-dimensional compact manifold with no boundary.
This definition contains several terms we have not defined, and whose formal
definition we omit. Here is an intuitive explanation:

� “2-dimensional manifold with no boundary” means that each point has
a neighborhood “homeomorphic” to an open disk (i.e. the neighborhood
can be transformed into an open disk by stretching and twisting);

� “compact” means that that the surface admits a triangulation with
finitely many triangles;

� “connected” means that there is just one piece.

The sphere and the torus are surfaces. However, the plane is not a surface
(because it is not compact). A closed disk is not a surface, either, since it
has a boundary.

In what follows, we consider two surfaces to be the “same” if they are
“homeomorphic,” that is, if there is a bijection f between them such that
both f and f−1 are continuous. So, if we can obtain one surface from the
other by stretching and twisting, then the two surfaces are the same. Thus, a
tetrahedron is simply a sphere for our purposes, but a torus is not a sphere.

Here is one way of forming a torus: we start with a rectangle (see the
picture below), and then we identify the two (directed) blue edges and the two
(directed) red edges. Importantly, the corresponding edges must be identified
in the direction represented by the arrows. (In the picture below, we first
identify the blue edges to get a “tube,” and then we identify the two red
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edges/circles to get a torus. In our picture, the four vertices of the rectangle
all get identified to the same point on the torus.) Note that the blue edges are
labeled A (for clockwise direction) and A−1 (for counterclockwise direction);
a similar labeling applies to B and B−1. Symbolically, the rectangle is
represented by the string ABA−1B−1.

A

A−1

BB−1

If we identify corresponding edges in the octagon ABA−1B−1CDC−1D−1

below, then we get a double torus (also called the “connected sum of two
tori”), as you can check.1

1Alternatively, you can watch this video: https://www.youtube.com/watch?v=G1yyfP
Shgqw (accessed September 2022).

https://www.youtube.com/watch?v=G1yyfPShgqw
https://www.youtube.com/watch?v=G1yyfPShgqw
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A

B

A−1

B−1

C

D

C−1

D−1

ABA−1B−1CDC−1D−1

double torus

The real projective plane (or simply projective plane) is the surface obtained
by starting from the sphere, and then identifying each pair of antipodal
points. The projective plane has polygonal representation AA (see below).
Here, we have two A’s (red and blue); they are to be identified in the direction
indicated.

A

A

Unlike the torus, the projective plane cannot be embedded in R3. Still, there
is a geometric interpretation. Take a rectangle shown below on the left (think
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of it as a piece of paper), twist it, and identify the two vertical edges (as
shown by the arrows). The result (on the bottom right) is called the Möbius
strip. Note that the boundary of the Möbius strip consists of just one circle,
and the Möbius strip has just one “side.”

Now, take a sphere, cut out a small disk from it, and then glue the Möbius
strip along the boundary obtained by removing the disk. The result is the
projective plane (the circle of the Möbius strip corresponds to the edge
A from our AA representation of the projective plane). Equivalently, if
we cut out a disk from the projective plane, we obtain the Möbius strip.2

The projective plane is a type of “non-orientable” surface, which roughly
means that we cannot set up a left-right distinction. Intuitively, imagine a
two-dimensional bug on the surface of the Möbius strip (which is part of the
projective plane). If the bug keeps going forward, it will eventually come
back to the same place (and facing in the same direction), but with left and
right reversed. This sort of thing is impossible on “orientable” surfaces such
as the sphere or the torus (or double torus, triple torus, etc.).

Now, any 2n-gon, with edges labeled A1, . . . , An (in any order), with
each letter appearing exactly twice on the 2n-gon, either in the form A
(for clockwise direction) or A−1 (for counterclockwise direction) can be
transformed into a surface via gluing using the rules described above.3 Some
labellings are equivalent. For example, the two octagons below obviously

2It is not necessarily obvious that these three descriptions (sphere with antipodal
points identified; polygonal AA representation; and Möbius strip with a disk) of the
projective plane are equivalent, i.e. that they yield the same surface. For an animation that
explains this, see this video: https://www.youtube.com/watch?v=u0VkikpElMo (accessed
September 2022).

3Note: AA−1 is simply the sphere.

A

A−1

https://www.youtube.com/watch?v=u0VkikpElMo
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“encode” the same surface (i.e. after gluing, we get the same surface, in this
case, the double torus). We first “cut” and then “glue” the polygon on the
left in order to obtain the polygon on the right.4

A

B

A−1

B−1

C

D

C−1

D−1
B

A−1

B−1

C

E

E−1

D

C−1

D−1

E

ABA−1B−1CDC−1D−1 BE−1DC−1D−1B−1CE

Sometimes, we have “unnecessary” letters/edges in our polygon, as the
picture below shows. Both polygons represent a torus.

A

B

C
C−1

A−1

B−1

A

A−1

BB−1

ABCC−1A−1B−1 ABA−1B−1

An argument resembling the one indicated by the pictures above yields the
following “classification theorem” (whose proof we omit).

Theorem 11.1.1. Every surface has a polygonal representation of one of
the following forms:

� AA−1;

� (A1B1A
−1
1 B−1

1 )(A2B2A
−1
2 B−1

2 ) . . . (AkBkA
−1
k B−1

k );

� (A1A1)(A2A2) . . . (AkAk).

4Note that the red pentagons have different shapes. This is due to the drawing software,
but this is not important: we are allowed to “strech” and “shrink” any way we like.
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Importantly, Theorem 11.1.1 does not state that each polygonal repre-
sentation of a surface has one of the forms from the theorem. As a matter
of fact, each surface has infinitely many polygonal representations.5 Theo-
rem 11.1.1 merely states that for each surface S, one of its representations
has a “canonical” from (i.e. one of the forms from the theorem).

We remark that the surface with polygonal representation AA−1 is sim-
ply the sphere. Further, the surface having a polygonal representation
(A1B1A

−1
1 B−1

1 )(A2B2A
−1
2 B−1

2 ) . . . (AkBkA
−1
k B−1

k ) is the “connected sum of
k tori,” i.e. a torus with k holes. This type of torus can be obtained from
a sphere by adding k “handles” to a sphere. Adding a handle to a surface
we have already constructed consists of removing two small disks from the
surface, and then connecting them via a “handle” (a tube). Spheres and
connected sums of tori are “orientable surfaces.” The genus of the sphere is
zero, and the genus of a connected sum of k tori is k.

handle

Finally, (A1A1)(A2A2) . . . (AkAk) represents the “connected sum of k real
projective planes.” We can obtain this surface by starting with a sphere,
removing k disks, and then gluing a Möbius strip along the boundary of each
removed disk in the sphere. Adding one Möbius strip in this way is called
“adding a crosscap.” So, (A1A1)(A2A2) . . . (AkAk) is the surface obtained
from the sphere by adding k crosscaps. Connected sums of projective planes
are “non-orientable surfaces.” The genus of a connected sum of k real
projective planes is k.

5Indeed, for any polygonal representation of a surface, we can obtain another polygonal
representation by adding AA−1 (where A is a “new” letter) to the end. We can repeat the
procedure arbitrarily many times, thus creating infinitely many polygonal representaitons
of the same surface.
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11.2 Graph drawing on surfaces

A “multigraph” is a graph thay may possibly have loops and parallel edges.

parallel edges

loop

Just as we can draw graphs (and multigraphs) on the sphere, we can draw
them on any other surface. Generally speaking, it is more convenient to use
polygonal representation for drawing, than to draw directly on the surface
in question. For instance, below is a drawing of K5 on the torus. (Note how
the green edge and the purple edge “wrap around” the rectangle.)

A

A−1

BB−1

Further, below is a drawing of K5 on the projective plane (once again, note
how the green edge and the purple edge wrap around).

A

A

The following was proven in Discrete Math.6

6Perhaps you saw the proof of the Euler polyhedral formula only for graphs (not
multigraphs). But note that any multigraph can be turned into a graph by edge subdivision,
which does not alter the expression V −E+F (because subdividing an edge once increases
both the number of vertices and the number of edges by one, while leaving the number of
faces unchanged). So, we can easily derive the multigraph version of the Euler polyhedral
formula from the graph version.
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Euler polyhedral formula. Let G be any connected planar multigraph.
Then for any drawing of G on the sphere (without edge crossings), we have
that

V − E + F = 2,

where V is the number of vertices, E the number of edges, and F the number
of faces of the drawing.

A net on a surface is a multigraph drawing on that surface (with no edge
crossings) in which every face is homeomorphic to an open disk. Note that
the net (or rather, the multigraph whose drawing it is) must be connected.
Our next theorem is a generalization of the Euler polyhedral formula for
surfaces of arbitrary genus. Before stating and proving the theorem, we make
an observation. If G is a net on a surface S, then subdividing an edge ℓ times
does not change the value of V −E + F (because both V and E increase by
ℓ, and F remains unchanged). Further, adding an edge between two existing
vertices and passing through a face of the net does not change V − E + F
(because both E and F increase by one, and V remains unchanged; here, we
are using the fact that each face is homeomorphic to a disk, and so adding
an edge between two existing vertices necessarily “splits” an existing face
into two).

Theorem 11.2.1. Let G be a net on an (orientable or non-orientable)
surface S of genus k. Let V be the number of vertices, E the number of
edges, and F the number of faces of this net. Then:

(a) if S is orientable, then V − E + F = 2− 2k;

(b) if S is non-orientable, then V − E + F = 2− k.

Proof. (a) Assume that S is orientable. If k = 0, then S is the sphere, and
we are done by the Euler polyhedral formula. So, we may assume that k ≥ 1.
Then S is the connected sum of k tori, and it has a polygonal representation
(A1B1A

−1
1 B−1

1 ) . . . (AkBkA
−1
k B−1

k ).

A1
B1

A−1
1

B−1
1

B−1
k

A−1
k

Bk

Ak
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Note that the 4k vertices of this polygon all correspond to the same point of
the surface S; we may assume that this point is a vertex of G (if not, just
“move” the net a bit until it is). Next, we will assume that G intersects the
boundary of the polygon in only finitely many points;7 we turn each point of
intersection of the net and the polygon boundary into a vertex (this is just
edge subdivision, and so V − E + F does not change). Finally, we turn the
boundary of the polygon into edges (subdivided according to the vertices
that appear on the boundary); this produces 2k (potentially subdivided)
loops in our net,8 and it does not alter V −E +F . We still call the resulting
net G, and we let V be the number of vertices, E the number of edges, and
F the number of faces of the net.9

Now, our net G on the surface S can be “translated” into a plane drawing
in the natural way: we simply place our polygon in the plane. Let Vp be
the number of vertices of G on S that lie in the interior of the edges of
the polygon (so, in our plane drawing, this turns into 2Vp vertices, because
each such vertex “doubles”), and let Ep be the number of edges of G on S
that lie on the polygon (so, in our plane drawing, this turns into 2Ep edges,
because each such edge “doubles”). Further, one vertex of G got turned
into 4k vertices (the vertices of the polygon) in our plane drawing. So, the
plane drawing has 4k + 2Vp + (V − 1 − Vp) = V + Vp + 4k − 1 vertices,
2Ep + (E − Ep) = E + Ep edges, and F + 1 faces (because of the exterior
face). Now, the Euler polyhedral formula gives us

(V + Vp + 4k − 1)− (E + Ep) + (F + 1) = 2,

and therefore,

(V − E + F ) + (Vp − Ep) = 2− 4k.

But note that Ep = Vp + 2k.10 So, V − E + F − 2k = 2− 4k, and therefore
V − E + F = 2− 2k, which is what we needed.

(b) Assume that S is non-orientable; then S is the connected sum of k
projective planes. Let (A1A1) . . . (AkAk) be the polygonal representation of

7This part is a bit informal: a full justification of our assumption requires somewhat
sophisticated topology.

8We have 4k edges on the boundary of the polygon, but after identification, they turn
into 2k loops.

9Technically, we have produced a new net G′, with corresponding (new) V ′, E′, and
F ′, and we have that V ′ − E′ + F ′ = V − E + F . However, for the sake of notational
simplicity, we just write G,V,E, F instead. Importantly, V − E + F has not changed.

10Indeed, the polygon has 4k edges, which correspond to 2k loops on the surface S. Each
time we subdivide an edge, we increase both the number of vertices and the number of
edges by one.
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the surface S. The proof is now almost identical to that of part (a), except
that we have a 2k-gon, rather than a 4k-gon, and so the computation yields
V − E + F = 2− k.11

Corollary 11.2.2. Let G be a multigraph drawing (with no edge crossings)
on a surface S of genus k.12 Let V be the number of vertices, E the number
of edges, and F the number of faces of this net. Then:

(a) if S is orientable, then V − E + F ≥ 2− 2k;

(b) if S is non-orientable, then V − E + F ≥ 2− k.

Proof. We keep adding edges (possibly loops) to G without creating edge
crossings, until we obtain a net.13 The result is a net, and so the result
follows from Theorem 11.2.1.

The Euler characteristic of a surface S, denoted by ec(S), is the number
V −E+F , where V , E, and F are, respectively, the number of vertices, edges,
and faces of some net on S.14 By Theorem 11.2.1, this is well defined, i.e. the
number ec(S) depends only on the surface S, and not on the particular choice
of a net. Moreover, Theorem 11.2.1 states that if S is an orientable surface
of genus k, then ec(S) = 2− 2k; on the other hand, if S is a non-orientable
surface of genus k, then ec(S) = 2− k.15 Moreover, Corollary 11.2.2 implies
that if G is a multigraph drawing on a surface S, then V −E + F ≥ ec(S),
where V , E, and F are the number of vertices, edges, and faces of the
drawing.

Note that the following corollary only holds for graphs (and not for
multigraphs). In the remainder of this chapter, for emphasis, we refer to
graphs without loops and parallel edges as simple graphs.

Corollary 11.2.3. Let G be a (simple) graph on at least two edges, drawn on
an (orientable or non-orientable) surface S (without edge crossings). Then

|E(G)| ≤ 3|V (G)| − 3ec(S).

Consequently, the average degree of G is at most 6− 6ec(S)
|V (G)| .

11Check the details!
12Note: G need not be a net, that is, it is possible that not all faces are homeomorphic

to a disk.
13Note that this may possibly decrease the value of V −E +F , but it cannot increase it.
14The Euler characteristic of a surface S is usually denoted by χ(S). However, some

texts use ec(S), to avoid confusion with the chromatic number. Here, we will use the
notation ec(S).

15So, the Euler characteristic of the sphere is 2, and the Euler characteristic of the torus
is 0. The Euler characteristic of the projective plane is 1.
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Proof. For each face f , we define ℓ(f) to be the number of edges incident
with f , with each edge incident with f on both sides counting twice. Since
G is simple and |E(G)| ≥ 2, we see that ℓ(f) ≥ 3 for all faces f . If F (G) is
the set of all faces, we get

2|E(G)| =
∑

f∈F (G)

ℓ(f) ≥ 3|F (G)|,

and therefore,
|F (G)| ≤ 2

3 |E(G)|

Now we compute

|E(G)| ≤ |V (G)|+ |F (G)| − ec(S) by Corollary 11.2.2

≤ |V (G)|+ 2
3 |E(G)| − ec(S),

and so
|E(G)| ≤ 3|V (G)| − 3ec(S).

Finally, since the average degree of G is 2|E(G)|
|V (G)| , the inequality above imme-

diately implies that the average degree of G is at most 6− 6ec(S)
|V (G)| .

11.3 The Heawood number

For an integer c ≤ 2, we define the Heawood number as follows:

H(c) :=
⌊
7+

√
49−24c
2

⌋
.

We remark that for the case when S is a sphere, the proof of our next
theorem uses the (highly non-trivial) Four Color Theorem, which states that
every planar graph is 4-colorable, i.e. has chromatic number at most four. If
S is any other surface, then the proof is relatively elementary.

Theorem 11.3.1. If a (simple) graph G can be drawn without edge crossings
on an (orientable or non-orientable) surface S, then χ(G) ≤ H(ec(S)).

Proof. Fix a surface S and a graph G that can be drawn on S without
edge crossings. To simplify notation, set c := ec(S). We must show that
χ(G) ≤ H(c).

Suppose first that S is the sphere, so that G is a planar graph and
c = 2. By the Four Color Theorem, G is 4-colorable. On the other hand,
H(c) = H(2) = 4. So, χ(G) ≤ 4 = H(c).



Chapter 11. Graphs on surfaces 193

From now on, we may assume that S is not a sphere, so that c ≤ 1.
Suppose that there exists a graph G that can be drawn on S without edge
crossings, but satisfies χ(G) > H(c); we may assume that G was chosen with
as few vertices as possible. Set n := |V (G)|; clearly, n ≥ χ(G) ≥ H(c) + 1.
Moreover, δ(G) ≥ H(c), for otherwise, we fix a vertex v ∈ V (G) such that
dG(v) ≤ H(c)− 1, we color G \ v with H(c) colors (this is possible by the
minimality of n), and then we extend this coloring to a proper coloring of G
using at most H(c) colors by assigning to v a color not used on any of its
neighbors.16 On the other hand, by Corollary 11.2.3, the average degree in
G is at most 6− 6c

n .
17 So,

H(c) ≤ 6− 6c
n .

Since H(1) = 6, the inequality above does not hold if c = 1. So, c ≤ 0. Since
n ≥ H(c) + 1 > 0, it follows that −6c

n ≤ − 6c
H(c)+1 , and consequently,

H(c) ≤ 6− 6c
H(c)+1 .

Since H(c) > 0, the above is equivalent to

H(c)2 − 5H(c) + 6(c− 1) ≤ 0.

By solving the corresponding quadratic equation, we now get that

5−
√
49−24c
2 ≤ H(c) ≤ 5+

√
49−24c
2 .

But from the definition of H(c), we have that

H(c) =
⌊
7+

√
49−24c
2

⌋
> 7+

√
49−24c
2 − 1 = 5+

√
49−24c
2 ,

a contradiction.

The Klein bottle is the surface with polygonal representation AABB or
ABAB−1.18 Note that the Klein bottle is non-orientable (and therefore
cannot be embedded in R3);19 it has genus 2 and Euler characteristic 0.

16This contradicts our assumption that χ(G) > H(c).
17Since χ(G) ≥ H(c)+1 > 2, we see that G has at least two edges, and so the hypotheses

of Corollary 11.2.3 are indeed satisfied.
18Check that these are equivalent!
19However, a geometric representation of the Klein bottle is possible in R3, provided we

allow the surface to intersect itself. The key is to remember that the intersection is not
“really” there, but is simply a feature of our attempt to represent the surface in R3. For a
video, see here: https://www.youtube.com/watch?v=yaeyNjUPVqs (accessed September
2022).
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Theorem 11.3.2 (Ringel and Youngs). If S is a surface other than the
Klein bottle, then the complete graph KH(ec(S)) can be drawn on S (without
edge crossings).

We omit the proof of Theorem 11.3.2. Note, however, that Theorem 11.3.2
proves that the bound established in Theorem 11.3.1 is best possible, except
when S is the Klein bottle. For the Klein bottle, we can get a better bound.
Recall that the Euler characteristic of the Klein bottle is 0, and note that
H(0) = 7. However, as we shall see, the maximum chromatic number of a
graph that can be drawn on the Klein bottle without edge crossings is 6 (see
Theorem 11.3.4). We begin with the following Lemma, whose proof we omit.

Lemma 11.3.3. K6 can be drawn on the Klein bottle (without edge crossings),
but K7 cannot.

We will also need Brooks’ theorem (stated below), whose proof will be
given in chapter 12. As usual, ∆(G) is the maximum degree of a graph G,
i.e. ∆(G) := max{dG(v) | v ∈ V (G)}.

Brooks’ theorem. Let G be a connected graph that is neither a complete
graph nor an odd cycle. Then χ(G) ≤ ∆(G).

Theorem 11.3.4. Let G be a graph that can be drawn on the Klein bottle
(without edge crossings). Then χ(G) ≤ 6.

Proof. Suppose otherwise, i.e. suppose χ(G) ≥ 7. We may assume that,
among all graphs that can be drawn on the Klein bottle but are not 6-
colorable, G has the smallest possible number of vertices. Note that this
means that δ(G) ≥ 6.20 On the other hand, since the Klein bottle has Euler
characteristic 0, Corollary 11.2.3 guarantees that G has average degree at
most 6. But this is possible only if G is 6-regular. Now, by the minimality
of |V (G)|, we know that G is connected.21 Since χ(G) ≥ 7, Brooks’ theorem
guarantees that G ∼= K7. But this contradicts Lemma 11.3.3.

20Indeed, suppose G has a vertex v of degree at most five. Then G \ v is 6-colorable (by
the minimality of |V (G)|). We then fix a proper coloring of G with at most six colors, and
we extend it to a proper coloring of G with at most six colors by assigning to v a color not
used on any of its neighbors. This contradicts our assumption that χ(G) ≥ 7.

21Otherwise, we take H to be a component of G such that χ(H) = χ(G), and we observe
that H contradicts the minimality of |V (G)|.
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Chapter 12

Vertex and edge coloring:
Brooks’ theorem and Vizing’s
theorem

12.1 Vertex coloring: Brooks’ theorem

Recall that a proper vertex-coloring (or simply proper coloring) of a graph
G is an assignment of colors to the vertices of G in such a way that no two
adjacent vertices receive the same color. For an integer k, a k-vertex-coloring
(or simply k-coloring) of G is a proper coloring c : V (G) → C, where C is
some set of k colors (typically, C = {1, . . . , k}). G is k-colorable if it admits
a k-coloring. The chromatic number of G, denoted by χ(G), is the smallest
integer k such that G is k-colorable. An optimal vertex-coloring (or simply
optimal coloring) of G is a proper coloring of G that uses only χ(G) colors.

12.1.1 A lower bound for the chromatic number

Recall that a clique of G is a set of pairwise adjacent vertices of G, and a
stable set (or independent set) of G is a set of pairwise non-adjacent vertices
of G. The clique number of G, denoted by ω(G), is the maximum size of any
clique of G. The stability number (or independence number) of G, denoted
by α(G), is the maximum size of a stable set of G.

Note that any proper coloring of a graph G can be thought of as a
partition of V (G) into stable sets (“color classes”). Indeed, if c : V (G) →
{1, . . . , k} is a proper coloring of G, then for each i ∈ {1, . . . , k}, we set
Si := {v ∈ V (G) | c(v) = i}, and we observe that (S1, . . . , Sk) is a partition
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of V (G) into stable sets. Conversely, any partition (S1, . . . , Sk) of V (G)
corresponds to a proper coloring of G (indeed, for each i ∈ {1, . . . , k}, we
assign color i to all vertices in Si).

Proposition 12.1.1. Every graph G satisfies1

χ(G) ≥ max{ω(G),
⌈
|V (G)|
α(G)

⌉
}.

Proof. Fix a graph G, and set k := χ(G). Fix an optimal coloring c : V (G) →
{1, . . . , k} of G.

We first show that χ(G) ≥ ω(G). Fix a clique K of G of size ω(G). Since
K is a clique, c assigns a different color to each vertex of K, and in particular,
c uses at least |K| many colors. So, χ(G) = k ≥ |K| = ω(G).

It remains to show that χ(G) ≥
⌈
|V (G)|
α(G)

⌉
. For each i ∈ {1, . . . , k}, set

Si := {v ∈ V (G) | c(v) = i}. Then (S1, . . . , Sk) is a partition of G into stable
sets, and it follows that

|V (G)| = |S1 ∪ · · · ∪ Sk| =
k∑

i=1
|Si|

(∗)
≤ kα(G) = χ(G)α(G),

where (*) follows from the fact that S1, . . . , Sk are all stable sets, and are

therefore of size at most α(G). It now follows that χ(G) ≥ |V (G)|
α(G) ; since χ(G)

is an integer, we deduce that χ(G) ≥
⌈
|V (G)|
α(G)

⌉
.

12.1.2 Greedy coloring and an upper bound for the chromatic
number

A greedy coloring of a graph G with vertex ordering V (G) = {v1, . . . , vn} is a
coloring of G obtained as follows: for each i ∈ {1, . . . , n}, we assign to vi the
smallest positive integer that was not used on any smaller-indexed neighbor
of vi.

For example, the greedy coloring applied to the graph below, with the
ordering v1, v2, v3, v4, yields the coloring c(v1) = 1, c(v2) = 1, c(v3) = 2, and
c(v4) = 3.

v1

v4

v3

v2

1Note that we are implicitly assuming that G is non-null (i.e. has at least one vertex),

for otherwise,
⌈

|V (G)|
α(G)

⌉
is not defined (we cannot divide by zero).
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Note that the greedy coloring of a graph G always produces a proper coloring
of G, but the coloring need not be optimal, i.e. it may use more than χ(G)
colors (indeed, this was the case in the example above).

As usual, for a graph G, ∆(G) is the maximum degree of G, i.e. ∆(G) :=
max{dG(v) | v ∈ V (G)}.

Lemma 12.1.2. Every graph G satisfies χ(G) ≤ ∆(G) + 1.

Proof. A greedy coloring of a graph G (using any ordering of V (G)) produces
a proper coloring of G that uses at most ∆(G) + 1 colors; so, χ(G) ≤
∆(G) + 1.

If G is a complete graph or an odd cycle, then it is easy to see that
χ(G) = ∆(G) + 1, i.e. the inequality from Lemma 12.1.2 is an equality.
However, as we shall see, if G is a connected graph other than a complete
graph or odd cycle, then the inequality from Lemma 12.1.2 is strict, i.e.
χ(G) ≤ ∆(G). We prove this in our next section.

12.1.3 Brooks’ theorem

We begin with a technical lemma. (Recall that a graph is regular if all its
vertices are of the same degree.)

Lemma 12.1.3. If G is connected and not regular, then χ(G) ≤ ∆(G).

Proof. Let G be a connected graph that is not regular, and fix a vertex
v ∈ V (G) such that dG(v) ≤ ∆(G) − 1. We order V (G) according to the
distance from v, that is, we list v first, then we list all vertices at distance
one from v (in any order), then we list all vertices at distance two from v (in
any order), etc. Let v1, . . . , vn be the resulting ordering of G. We now color
G greedily using the ordering vn, . . . , v1.

2 By construction, every vertex in
the ordering vn, . . . , v1, other than the vertex v1, has at least one neighbor
to the right of it, and therefore at most ∆(G)− 1 neighbors to the left of it.
But since dG(v) ≤ ∆(G)− 1, we see that v1 = v also has at most ∆(G)− 1
neighbors to the left of it in the ordering vn, . . . , v1. So, our coloring of G
uses at most ∆(G) colors, and we deduce that χ(G) ≤ ∆(G).

Brooks’ theorem. Let G be a connected graph that is neither a complete
graph nor an odd cycle. Then χ(G) ≤ ∆(G).

2Technically, we are applying the greedy coloring algorithm to the graph G with the
ordering u1, . . . , un, where ui = vn−i+1 for all i ∈ {1, . . . , n}. So, “smaller indexed” from
the description of the greedy coloring algorithm refers to the indices of the ui’s, not the
vi’s.
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Proof. To simplify notation, we set ∆ := ∆(G). We must show that χ(G) ≤
∆. Since G is connected and not complete, we see that ∆ ≥ 2. Suppose first
that ∆ = 2. Since G is connected, it follows that G is either a path on at
least three vertices or a cycle. But by hypothesis, G is not an odd cycle, and
so G is either a path on at least three vertices or an even cycle. It is now
obvious that χ(G) = 2 = ∆.

From now on, we assume that ∆ ≥ 3. Note that this implies that
|V (G)| ≥ 4.3 We may further assume that G is regular,4 for otherwise, we
are done by Lemma 12.1.3.

Claim 1. If G has a clique-cutset (i.e. a clique C ⫋ V (G) such
that G \ C is disconnected), then χ(G) ≤ ∆.

Proof of Claim 1. Suppose that G has a clique-cutset, and let C be a
minimal clique-cutset of G. Let A1, . . . , At (t ≥ 2) be the vertex sets of
the components of G \ C. For all i ∈ {1, . . . , t}, let Gi := G[Ai ∪ C]. By
Lemma 10.4.1, we have that

χ(G) = max{χ(G1), . . . , χ(Gt)}.

Now, since G is connected, we know that C is non-empty. Further, by
the minimality of C, we know that each vertex of C has a neighbor in
each of A1, . . . , At. This implies that G1, . . . , Gt are all connected and not
regular.5 But now Lemma 12.1.3 guarantees that χ(Gi) ≤ ∆(Gi) ≤ ∆ for all
i ∈ {1, . . . , t}. Consequently, χ(G) ≤ ∆. This proves Claim 1. ♦

Claim 2. If G is not 3-connected, then χ(G) ≤ ∆.

Proof of Claim 2. Assume that G is not 3-connected; we must show that
χ(G) ≤ ∆. Since |V (G)| ≥ 4, but G is not 3-connected, we see that there
exists some S ⊆ V (G) such that |S| ≤ 2 and G \ S is disconnected. By
Claim 1, we may assume that G does not admit a clique-cutset. So, S is
not a clique, and it follows that |S| = 2 and that the two vertices of S (call
them s1 and s2) are non-adjacent. Let (A,B) be a partition of V (G) \S into
non-empty sets such that there are no edges between A and B.

3Indeed, consider a vertex of degree ∆, plus all its neighbors.
4So, G is ∆-regular, i.e. all vertices of G are of degree ∆.
5Indeed, for all i ∈ {1, . . . , t} and ai ∈ Ai, we have that dGi(a) = dG(a) = ∆, whereas

each c ∈ C has a neighbor in V (G)\V (Gi) and consequently satisfies dGi(c) ≤ dG(c)−1 ≤
∆− 1. So, Gi is not regular.
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s1

s2

A BS

By Proposition 10.1.1, each vertex of S has a neighbor both in A and in B.6

Furthermore, since s1s2 /∈ E(G), and since G is ∆-regular, with ∆ ≥ 3, we
see that each of s1, s2 has at least two neighbors in at least one of A,B. So,
by symmetry, there are two cases to consider:

(i) s1 has at least two neighbors in A, and s2 has at least two neighbors in
B;

(ii) s1, s2 each have exactly one neighbor in A.

Suppose first that (i) holds. Set GA := G[A∪S]+ s1s2 and GB := G[B ∪
S]+s1s2.

7 Then both GA and GB are connected,8 with ∆(GA),∆(GB) = ∆.9

Furthermore, note that dGA
(s2) ≤ dG(s2) − 1 = ∆ − 1, and so GA is not

regular; thus, Lemma 12.1.3 guarantees that χ(GA) ≤ ∆(GA) = ∆, and
similarly, χ(GB) ≤ ∆. Now, note that S is a clique-cutset of G + s1s2.
Lemma 10.4.1 now implies that χ(G+ s1s2) = max{χ(GA), χ(GB)} ≤ ∆,10

and it follows that χ(G) ≤ ∆.

s1

s2

A BS

GA GB

6G is a connected graph on at least four vertices, and it does not admit a clique-cutset.
So, G is 2-connected, and we see that the hypotheses of Proposition 10.1.1 are satisfied.

7Thus, GA is obtained from G[A ∪ S] by adding an edge between s1 and s2. Similarly,
GB is obtained from G[B ∪ S] by adding an edge between s1 and s2.

8Note that we are using Proposition 10.1.1.
9Indeed, for any a ∈ A, we have that dGA(a) = dG(a) = ∆, and dGA(s1), dGA(s2) ≤ ∆;

so, ∆(GA) = ∆, and similarly, ∆(GB) = ∆.
10We are using the fact that A is the union of the vertex sets of some components

of G \ S = (G + s1s2) \ S, whereas B is the union of the vertex sets of the remaining
components of G \ S = (G+ s1s2) \ S.



Chapter 12. Vertex and edge coloring: Brooks’ theorem and Vizing’s
theorem 200

Suppose now that (ii) holds. Note that this implies that each of s1, s2
has at least two neighbors in B. Let s′1 be the unique neighbor of s1 in A.
Set S′ := {s′1, s2}, A′ := A \ {s′1}, and B′ := B ∪ {s1}. Since G is ∆-regular,
with ∆ ≥ 3, we know that s′1 has at least three neighbors in G; since all
neighbors of s′1 are in A ∪ S, and |S| = 2, we see that s′1 has a neighbor in
A. It follows that A′ ≠ ∅. Now S′ separates A′ ̸= ∅ from B′ ̸= ∅. Further, if
s′1s2 ∈ E(G), then S′ is a clique-cutset of G, a contradiction. So, we may
assume that s′1s2 /∈ E(G). Since s′1 has at least three neighbors, and they all
belong to A ∪ S, we deduce that s′1 in fact has at least two neighbors in A′.
But now if we consider S′, A′, B′ instead of S,A,B, we are back in case (i),
and so an argument analogous to the one above guarantees that χ(G) ≤ ∆.
This proves Claim 2. ♦

In view of Claim 2, we may now assume that G is 3-connected. Since
G is connected and not complete, G has two vertices, call them u and v, at
distance two from each other; let w be a common neighbor of u and v.11

Since G is 3-connected, we know that G′ := G \ {u, v} is connected. We now
order V (G′) according to the distance from w, that is, we list w first, then we
list all vertices at distance one from w in G′ (in any order), then we list all
vertices at distance two from w in G′ (in any order), etc. Finally, we list u, v
at the end of our list. This produces an ordering v1, . . . , vn of V (G) (with
v1 = w, vn−1 = u, and vn = v). We now color G greedily using the ordering
vn, . . . , v1. All vertices in the ordering vn, . . . , v1 other than the vertex v1
have at least one neighbor to the right, and therefore at most ∆−1 neighbors
to the left; so, all vertices other than v1 get a color from the set {1, . . . ,∆}.
But v1 has exactly ∆ neighbors, and two of those (namely, vn−1 = u and
vn = v) got assigned the same color (namely, color 1) by our greedy coloring.
So, v1 also got assigned a color from the color set {1, . . . ,∆}. Thus, our
coloring of G uses at most ∆ colors, and it follows that χ(G) ≤ ∆.

12.2 Eulerian graphs

An Euler circuit (or Eulerian circuit) of a graph G is a walk in the graph that
passes through every edge exactly once and comes back to the origin vertex.
A graph is Eulerian if it has an Eulerian circuit. The following theorem was
proven in Discrete Mathematics.

11Let us prove that such u, v, w exist. Since G is not complete, it contains a pair of
non-adjacent vertices, call them u and u′. Since G is connected, there exists an induced
path P = p0, . . . , pt, with p0 = u and pt = u′; since u and u′ are non-adjacent, we have
that t ≥ 2. Now set w := p1 and v := p2.
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Theorem 12.2.1. A connected graph is Eulerian if and only if all its vertices
are of even degree.

12.3 Vizing’s theorem

A k-edge-coloring of a graph G is a mapping c : E(G) → C, with |C| = k.
Elements of C are called colors. An edge-coloring is proper if for any two
distinct edges e and f that share an endpoint, we have that c(e) ̸= c(f).

A graph G is k-edge-colorable if it has a proper k-edge-coloring.
The edge chromatic number (or chromatic index) of a graph G, denoted

by χ′(G), is the minimum integer k such that G is k-edge-colorable.
Clearly, in any proper edge-coloring of a graph G, all edges incident with

the same vertex must receive a different color; consequently, χ′(G) ≥ ∆(G).
Note that any (not necessarily proper) k-edge-coloring c : E(G) →

{1, . . . , k} of a graph G can be represented by a partition C = (E1, . . . , Ek) of
E(G), where Ei denotes the subset of E(G) assigned color i. (Sets E1, . . . , Ek

are called color classes.) A proper k-edge-coloring is one where each Ei is a
matching.

Lemma 12.3.1. Every graph G satisfies χ′(G)ν(G) ≥ |E(G)|.12 Conse-

quently, if G has at least one edge, then χ′(G) ≥
⌈
|E(G)|
ν(G)

⌉
.

Proof. Let G be a graph, and let k = χ′(G). Let (E1, . . . , Ek) be a proper
edge-coloring of G. Then

|E(G)| =
k∑

i=1
|Ei| because (E1, . . . , Ek) is a partition of E(G)

≤
k∑

i=1
ν(G) because E1, . . . , Ek are matchings of G

= kν(G)

= χ′(G)ν(G).

This proves that χ′(G)ν(G) ≥ |E(G)|. If G has at least one edge, then clearly,

ν(G) ≥ 1, and we deduce that χ′(G) ≥ |E(G)|
ν(G) ; since χ′(G) is an integer, it

follows that χ′(G) ≥
⌈
|E(G)|
ν(G)

⌉
.

12Recall that ν(G) is the matching number of G, i.e. the maximum size of a matching in
G.
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Given a (not necessarily proper) edge-coloring of a graph G, we say that
color i is represented at a vertex v of G if some edge incident with v has
color i.

Lemma 12.3.2. Let G be a connected graph that is not an odd cycle. Then
G has a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.

Proof. We may assume that ∆(G) ≥ 2, for otherwise there is nothing to
show. By hypothesis, G is connected and not an odd cycle; consequently, if
G is 2-regular, then G is an even cycle.

Suppose first that G is Eulerian. Then (by Theorem 12.2.1) all vertices
of G are of even degree. If G has a vertex of degree at least four, then let
v0 be such a vertex, and otherwise let v0 be any vertex. (Note that in the
latter case, G is 2-regular, and therefore, by the above, G is an even cycle.)
Let v0, e1, v1, e2, v2, . . . , v0 be an Euler circuit of G. Let E1 be the set of
odd-indexed edges, and let E2 the set of even-indexed edges. If G is an even
cycle, then clearly, the edge-coloring (E1, E2) satisfies the lemma. Otherwise,
v0 is of degree at least four, and the edge-coloring (E1, E2) has the desired
property since each vertex of G is an internal vertex of v0, e1, v1, e2, v2, . . . , v0.

So, we may assume that G is not Eulerian. Let G∗ be the graph ob-
tained from G by adding a new vertex v∗ to G, and joining v∗ to each
odd-degree vertex of G. Then by Theorem 12.2.1, G∗ is Eulerian.13 Now, let
v0, e1, v1, e2, v2, . . . , v0, with v0 = v∗, be an Euler circuit of G∗. Let E1 be the
set of odd-indexed edges, and let E2 the set of even-indexed edges. Then the

edge-coloring
(
E1 ∩E(G), E2 ∩E(G)

)
of G has the desired property.14

Given a (not necessarily proper) k-edge-coloring C and a vertex v of G,
we denote by cC(v) the number of distinct colors represented at v. Note that
cC(v) ≤ dG(v) for all v ∈ V (G). Furthermore, C is a proper k-edge-coloring of
G if and only if cC(v) = dG(v) for every vertex v ∈ V (G). A k-edge-coloring
C′ of G is an improvement of C if∑

v∈V (G)

cC′(v) >
∑

v∈V (G)

cC(v).

13Since G is connected and not Eulerian, we know that G has at least one vertex of odd
degree. On the other hand, since

∑
v∈V (G)

dG(v) = 2|E(G)|, we know that
∑

v∈V (G)

dG(v) is

even, and consequently, G has an even number of vertices of odd degree. So, in G∗, v∗

has even degree, strictly greater than zero. We now see that G∗ is connected, and that all
vertices of G∗ have even degree. So, by Theorem 12.2.1, G∗ is Eulerian.

14Details?
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An unimprovable k-edge-coloring is one that cannot be improved.15

Note that any proper edge-coloring of a graph G is unimprovable, but the
converse does not hold in general. We note, however, that for any graph G
and positive integer k, there exists at least one unimprovable k-edge-coloring
of G.16

Lemma 12.3.3. Let C = (E1, . . . , Ek) be an unimprovable k-edge-coloring
of a graph G. If there is a vertex u of G and colors i and j such that i is not
represented at u and j is represented at least twice at u, then the component
of G[Ei ∪ Ej ] that contains u is an odd cycle.17

Proof. Let H be the component of G[Ei ∪Ej ] that contains u. Suppose that
H is not an odd cycle. Then by Lemma 12.3.2, H has a 2-edge-coloring
in which both colors are represented at every vertex of degree at least 2 in
H. Recolor the edges of H with colors i and j in this way to get a new
k-edge-coloring C′ = (E′

1, . . . , E
′
k) of G. To simplify notation, set c = cC

and c′ = cC′ . By construction, we have that c(v) ≤ c′(v) ≤ c(v) + 1 for all
v ∈ V (G), and that c′(u) = c(u)+1. It follows that

∑
v∈V (G)

c′(v) >
∑

v∈V (G)

c(v),

that is, C′ is an improvement of C. But this contradicts the assumption that
C is unimprovable.

Theorem 12.3.4. If G is a bipartite graph, then χ′(G) = ∆(G).

Proof. Let G be a bipartite graph, and let ∆ := ∆(G). Clearly, χ′(G) ≥ ∆,
and we need only show that χ′(G) ≤ ∆. Let C = (E1, . . . , E∆) be an
unimprovable ∆-edge-coloring of G. Suppose that C is not a proper edge-
coloring of G. Then there exists a vertex u ∈ V (G) such that some color
j is represented at least twice at u, and (consequently) some color i is not
represented at u. But now by Lemma 12.3.3, the component of G[Ei ∪Ej ]
that contains u is an odd cycle, contrary to the fact that bipartite graphs
contain no odd cycles. So, C is a proper ∆-edge-coloring of G, and it follows
that χ′(G) ≤ ∆.

Vizing’s theorem. Every graph G satisfies χ′(G) ≤ ∆(G) + 1.18

15Note that improvability and unimprovability are defined with respect to a fixed k.
16Indeed, G has at least one k-edge-coloring (e.g. the one that assigns color 1 to all edges

of G), but up to a renaming of colors, G only has finitely many k-edge-colorings. So, some
k-edge-coloring of G is unimprovable.

17Here, G[Ei ∪ Ej ] is the graph with vertex set V (G) and edge set Ei ∪ Ej .
18We emphasize that Vizing’s theorem holds only for simple graphs (i.e. graphs with no

loops and no parallel edges). Vizing’s theorem fails for multigraphs!
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Proof. Let ∆ = ∆(G). Suppose that χ′(G) > ∆+1. Let C = (E1, . . . , E∆+1)
be an unimprovable (∆+ 1)-edge-coloring, and set c = cC . Since no vertex of
G has degree greater than ∆, and since we have ∆ + 1 colors, we know that
for each vertex of G, at least one of our ∆ + 1 colors is not represented at
that vertex. On the other hand, since χ′(G) > ∆+ 1, we know that C is not
a proper edge-coloring of G, and consequently, at some vertex of G, some
color is represented at least twice.

Let vertex u ∈ V (G) and colors i0, i1 ∈ {1, . . . ,∆+ 1} be such that i0
is not represented at u, and i1 is represented at least twice at u. Let uv1
have color i1, and let i2 be a color that is not represented at v1. (Clearly,
i1 ̸= i2.) Color i2 must be represented at u, since otherwise, recoloring uv1
with i2 would yield an improvement of C. So some edge uv2 has color i2; let
i3 be a color that is not represented at v2. (Clearly, i2 ̸= i3.) Color i3 must
be represented at u, since otherwise recoloring uv1 with i2 and uv2 with i3
would yield an improvement of C. So some edge uv3 has color i3. Now, we
have only a finite number of colors at our disposal, and so continuing in this
way, we eventually start to repeat colors. More formally, we can construct a
sequence v1, v2, . . . , vℓ of vertices and a sequence i1, i2, . . . , iℓ, iℓ+1 of colors
such that all the following are satisfied:

(a) color i1 is represented at least twice at u;

(b) for all j ∈ {1, . . . , ℓ}, edge uvj has color ij ;

(c) for all j ∈ {1, . . . , ℓ}, color ij+1 is not represented at vj ;

(d) colors i1, . . . , iℓ are pairwise distinct;

(e) there exists some k ∈ {1, . . . , ℓ} such that ik = iℓ+1.

u v1

v2

v3vk

v`

i1

i2
color i2 not
represented

color i3 not
represented

i3ik

i`

color i`+1 = ik
not represented

color i4 not
represented

color ik+1 not
represented

color i0 not represented, and
color i1 represented at least twice

...

. . .
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Note that (b) and (c) imply that ij ̸= ij+1 for all j ∈ {1, . . . , ℓ}; in particular,
k ≤ ℓ − 1. Further, (b) and (d) imply that vertices v1, . . . , vℓ are pairwise
distinct.

Let C′ = (E′
1, . . . , E

′
∆+1) be the following recoloring of G: for j =

1, . . . , k − 1, recolor uvj with ij+1.
19 Set c′ = cC′ . Then c′(v) ≥ c(v) for

every v ∈ V (G); thus, since C is an unimprovable (∆ + 1)-edge-coloring of
G, so is C′. Further, by construction, under the coloring C′, color i0 is not
represented at u, and color ik is represented at least twice at u. (Note that
if k = 1, then C′ = C and ik = i1. In this case, ik = i1 is still represented
twice at u, by the choice of i1.) Let H ′ be the component of G[E′

i0
∪ E′

ik
]

that contains u. By Lemma 12.3.3, H ′ is an odd cycle.

u v1

v2

vk−1vk

v`

i1
C′→ i2

i2
C′→ i3

ik−1
C′→ ik

ik

i`

... . . .

H ′

Let C′′ = (E′′
1 , . . . , E

′′
∆+1) be the following recoloring of G: for j = 1, . . . , ℓ,

recolor uvj with ij+1; since iℓ+1 = ik, we see that uvℓ was recolored with
ik. Set c′′ = cC′′ . Then c′′(v) ≥ c(v) for every v ∈ V (G); thus, since C is
an unimprovable (∆ + 1)-edge-coloring of G, so is C′′. Further, under the
coloring C′, color i0 is not represented at u, and color ik is represented at
least twice at u. Let H ′′ be the component of G[E′′

i0
∪ E′′

ik
] that contains u.

By Lemma 12.3.3, H ′′ is an odd cycle.

u v1

v2

vk−1vk

v`

i1
C′′→ i2

i2
C′′→ i3

ik−1
C′′→ ikik

C′′→ ik+1

i`
C′′→ i`+1︸ ︷︷ ︸

=ik

... . . .

H ′′

Note that the colorings C′ and C′′ disagree only on edges uvk, . . . , uvℓ−1, uvℓ.
Further, exactly one edge (namely, uvk) from uvk, . . . , uvℓ−1, uvℓ belongs to

19If k = 1, then C′ = C.
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the cycle H ′, and exactly one edge (namely, uvℓ) from uvk, . . . , uvℓ−1, uvℓ
belongs to the cycle H ′′. It now follows that H ′ − uvk = H ′′ − uvℓ, which is
impossible, since two cycles cannot differ in exactly one edge.

Corollary 12.3.5. Every graph G satisfies ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

We note that it is NP-complete to decide whether χ′ = ∆ (even when
∆ = 3). We omit the details.

Finally, we remark that there is a relationship between vertex coloring
and edge-coloring, as follows. Given a graph G, the line graph of G, denoted
by L(G), is the graph with vertex set E(G), in which distinct e, f ∈ E(G)
are adjacent if and only if they share an endpoint in G. An example is shown
below.

e1

e2 e3

e4
e5

e1

e2

e4

e3

e5

G L(G)

f1

f2

f1

f2

Obviously, χ(L(G)) = χ′(G).
Recall that for a graph G, the clique number of G, denoted by ω(G), is

the maximum size of a clique in G.

Lemma 12.3.6. Every graph G satisfies χ(L(G)) ≤ ω(L(G)) + 1.

Proof. Let G be a graph. Then clearly, χ(L(G)) = χ′(G). Furthermore, for
any vertex v, the set of all edges incident with v in G is a clique of size dG(v)
in L(G); consequently, ω(L(G)) ≥ ∆(G). But now

χ(L(G)) = χ′(G)

≤ ∆(G) + 1 by Vizing’s theorem

≤ ω(L(G)) + 1.
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Chapter 13

Chordal graphs

13.1 Triangle-free graphs of arbitrarily large chro-
matic number

Clearly, every graph G satisfies χ(G) ≥ ω(G).1 So, the simplest way to
construct a graph of large chromatic number is to construct a graph that has
a large clique number. However, as we shall see, it is possible to construct
graphs of small clique number and large chromatic number.

A triangle in a graph G is a clique of size three. A graph is triangle-free
if it contains no triangles. So, a graph is triangle-free if and only if its clique
number is at most two. Our goal in this section is to construct a family of
triangle-free graphs of arbitrarily large chromatic number. There are several
known constructions; here, we give the one due to Mycielski (1955).

The Mycielski graphs {Mk}∞k=2 are defined recursively, as follows. First,
let M2 := K2. Next, fix an integer k, and suppose Mk has been constructed.
We construct Mk+1 as follows. Let V = {v1, . . . , vn} be the vertex set of Mk.
Let U = {u1, . . . , un} (where the ui’s are “new” vertices; we think of ui as a
“duplicate” of vi), and let w be another “new” vertex. Let Mk+1 have vertex
set V ∪ U ∪ {w} and adjacency as follows:

� adjacency between the vi’s is inherited from Mk, that is, Mk+1[V ] =
Mk;

� for all i ∈ {1, . . . , n}, ui is non-adjacent to vi;

� for all distinct i, j ∈ {1, . . . , n}, ui is adjacent to vj in Mk+1 if and only
if vi is adjacent to vj in Mk;

1As usual, ω(G) is the clique number of G, i.e. the maximum size of a clique in G.
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� U is a stable set in Mk+1;

� w is adjacent to all vertices in U and non-adjacent to all vertices in V .

The first three Mycielski graphs are represented below.

M2 M3 M4

v1 v2

u1 u2

w

v1 v2

v3v5

v4

u1 u2

u3
u4

u5

w

Lemma 13.1.1. For all integers k ≥ 2, Mk satisfies ω(Mk) = 2 and
χ(Mk) = k.

Proof. We proceed by induction on k. Clearly, ω(M2) = 2 and χ(M2) = 2.
Next, fix an integer k ≥ 2, and assume inductively that ω(Mk) = 2 and
χ(Mk) = k. We must show that ω(Mk+1) = 2 and χ(Mk+1) = k + 1. Let
V = {v1, . . . , vn}, U = {u1, . . . , un}, and w be as in the definition of Mk+1.

We first show that ω(Mk+1) = 2. Since ω(Mk) = 2, and Mk is a subgraph
of Mk+1, it is clear that ω(Mk+1) ≥ 2. It remains to show that Mk+1 is
triangle-free. Suppose otherwise, and let T be a triangle in Mk+1. Since
U is a stable set of G, we see that |T ∩ U | ≤ 1. Since NMk+1

(w) = U ,
and since U is a stable set, we further see that w /∈ T . Finally, since
Mk+1[V ] = Mk, and since Mk is triangle-free (by the induction hypothesis),
we see that T ̸⊆ V . It now follows that |T ∩ U | = 1 and |T ∩ V | = 2.
Let p, q, r ∈ {1, . . . , k} (with q ̸= r) be such that T = {up, vq, vr}. By the
construction of Mk+1, upvp /∈ E(Mk+1); since T is a triangle, it follows
that p /∈ {q, r}. Since upvq ∈ E(Mk+1), it follows from the construction of
Mk+1 that vpvq ∈ E(Mk); similarly, vpvr ∈ E(Mk). But now {vp, vq, vr} is
a triangle in Mk, a contradiction. So, Mk+1 is triangle-free, and we deduce
that ω(Mk+1) = 2.

We now show that χ(Mk+1) = k + 1. Let us first show that χ(Mk+1) ≤
k + 1. First, we properly color Mk with colors 1, . . . , k (this is possible
because χ(Mk) = k). Next, for each i ∈ {1, . . . , n}, we assign to ui the same
color as to vi. Finally, we assign color k + 1 to w. Clearly, this is a proper
coloring of Mk+1, and it follows that χ(Mk+1) ≤ k + 1.

Finally, we show that χ(Mk+1) ≥ k + 1. Suppose otherwise, that is,
suppose that χ(Mk+1) ≤ k. Fix a proper coloring c : V (Mk+1) → {1, . . . , k}
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of Mk+1. We will use the coloring c of Mk+1 to construct a proper (k − 1)-
coloring of Mk, which will contradict the fact that χ(Mk) = k. By symmetry,
we may assume that c(w) = k. Since w is adjacent to every vertex in U , it
follows that c does not assign color k to any vertex in U . Now, let Vk be the
set of all vertices in V to which c assigns color k. Since c is a proper coloring
of Mk+1, we know that Vk is a stable set in Mk+1 (and therefore, in Mk as
well). Now, define c′ : V → {1, . . . , k − 1} as follows:

� c′ ↾ (V \ Vk) = c ↾ (V \ Vk);
2

� for all vi ∈ Vk+1, set c
′(vi) = c(ui).

Let us check that c′ is a proper coloring of Mk. Fix distinct i, j ∈ {1, . . . , n},
and suppose that vi is adjacent to vj inMk. We must show that c′(vi) ̸= c′(vj).
Since Vk is a stable set, we know that at most one of vi, vj belongs to Vk.
If vi, vj ∈ V \ Vk, then it follows from the construction of c′, and from the
fact that c is a proper coloring of Mk+1, that c

′(vi) = c(vi) ̸= c(vj) = c′(vj).
It remains to consider the case when exactly one of vi, vj belongs to Vk; by
symmetry, we may assume that vi ∈ Vk and vj ∈ V \Vk. By the construction
of Mk+1, ui is adjacent to vj in Mk+1, and so c(ui) ̸= c(vj). But now by the
construction of c′, we have that c′(vi) = c(ui) ̸= c(vj) = c′(vj), which is what
we needed to show. Thus, c′ is a proper (k − 1)-coloring of Mk, contrary to
the fact that χ(Mk) = k.

As an immediate corollary of Lemma 13.1.1, we get the following.

Theorem 13.1.2. There exist triangle-free graphs of arbitrarily large chro-
matic number. More precisely, for every positive integer k, there exists a
graph G such that ω(G) = 2 and χ(G) ≥ k.

Proof. This follows from Lemma 13.1.1.

We remark that Erdős (1961) applied the probabilistic method to demon-
strate the existence of graphs of arbitrarily high girth and chromatic number
(the girth of a graph G that has at least one cycle is the length of the shortest
cycle in G). Graphs of high girth are triangle-free, and so this result of Erdős
is stronger than Theorem 13.1.2.

2This means that c′(vi) = c(vi) for all vi ∈ V \ Vk.
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13.2 Perfect graphs

In the previous section, we saw that there exist graphs of small clique number,
but large chromatic number. At the other extreme, we might consider graphs
for which χ = ω. This, however, turns out not to be a very interesting
question. Indeed, suppose H is any graph at all, and let G be the disjoint
union of H and Kχ(H); then χ(G) = ω(G), but we can say very little about
the structure of G (since G was built starting from an arbitrary graph H).

Here is a more interesting definition. A graph is perfect if all its induced
subgraphs H satisfy χ(H) = ω(H).3

Since every graph is an induced subgraph of itself, we see that every
perfect graph G satisfies χ(G) = ω(G). Importantly, though, in a perfect
graph, χ = ω should hold not only for the graph itself, but also for all its
induced subgraphs.

13.3 Chordal graphs

In this section, we consider a particular subclass of perfect graphs, called
“chordal” graphs. A graph is chordal (or triangulated) if every cycle of length
strictly greater than three has a chord (a chord of a cycle is an edge joining
two non-consecutive vertices of the cycle). In other words, a graph is chordal
if it contains no induced cycles of length at least four. For example, in the
picture below, the graph on the left is not chordal (because it contains an
induced cycle of length four, in red), whereas the one on the right is chordal
(this graph contains a cycle of length four, but the cycle is not induced).

not chordal chordal

3A graph H is an induced subgraph of a graph G if V (H) ⊆ V (G), and for all distinct
u, v ∈ V (H), we have that uv ∈ E(H) if and only if uv ∈ E(G).
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Note that all induced subgraphs of a chordal graph are chordal.
Chordal graphs were one of the first classes of graphs to be recognized

as perfect; the study of chordal graphs can be seen as the beginning of the
theory of perfect graphs. As we shall see, there are efficient algorithms for
recognizing chordal graphs and for solving the vertex coloring and related
optimization problems on chordal graphs. In many practical applications of
vertex-coloring, the graphs that appear are actually chordal.

In this section, a cutset of a graph is a set of vertices whose deletion yields
a disconnected graph. More precisely, a cutset of a graph G is a (possibly
empty) set S ⫋ V (G) such that G \ S is disconnected.4 A clique-cutset is
a cutset that is a clique, that is, a clique-cutset of a graph G is a clique
C ⫋ V (G) of G such that G \ C is disconnected.5

For a graph G and non-adjacent vertices x, y ∈ V (G), an (x, y)-separator
ofG is a set S ⊆ V (G)\{x, y} such that x and y belong to distinct components
of G \ S; an (x, y)-separator S of G is minimal if no proper subset of S is an
(x, y)-separator of G. Note that any (x, y)-separator of G is a cutset of G.

13.3.1 Characterizing chordal graphs

Lemma 13.3.1. Let G be a chordal graph that is not complete, let x and y
be non-adjacent vertices of G, and let S be a minimal (x, y)-separator of G.
Then S is a clique of G.

Proof. Let Cx be the component of G \ S that contains x, and let Cy be the
component of G \ S that contains y. By the minimality of S, every vertex of
S has a neighbor both in Cx and in Cy. Now, suppose that S is not a clique,
and fix distinct, non-adjacent vertices u, v ∈ S. Let Px be a minimum-length
path between u and v in G[V (Cx)∪ {u, v}], and let Py be a minimum-length
path between u and v in G[V (Cy) ∪ {u, v}].6

4Sometimes, a cutset is defined to be a set of vertices whose deletion increases the
number of components, but that definition is inconvenient in this context.

5In particular, if G is disconnected, then ∅ is a clique-cutset of G.
6G[V (Cx) ∪ {u, v}] is connected because Cx is connected, and both u and v have a

neighbor in Cx. Similarly, G[V (Cy) ∪ {u, v}] is connected. So, Px and Py exist.
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u

v

SCx Cy

Px

Py

By the minimality of Px and Py, we see that both Px and Py are induced
paths of G, and since u and v are non-adjacent, we see that each of them has
at least two edges. Since the interior of Px belongs to Cx, and the interior
of Py belongs to Cy, we see that there are no edges between the interiors of
Px and Py. Thus, Px ∪ Py is an induced cycle of length at least four in G, a
contradiction.

Theorem 13.3.2. If G is a chordal graph, then either G is a complete graph
or G admits a clique-cutset.

Proof. Let G be a chordal graph that is not complete. Let x and y be
non-adjacent vertices of G, and let S be a minimal (x, y)-separator of G.7

By Lemma 13.3.1, S is a clique. So, S is a clique-cutset of G.

Corollary 13.3.3. Chordal graphs are perfect.

Proof. Since every induced subgraph of a chordal graph is chordal, it is
enough to show that every chordal graph G satisfies χ(G) = ω(G).8 So,
fix a chordal graph G, and assume inductively that all chordal graphs G′

on fewer than |V (G)| vertices satisfy χ(G′) = ω(G′). We must show that
χ(G) = ω(G). If G is a complete graph, then it is clear that χ(G) = ω(G).
So, assume that G is not complete. Then by Theorem 13.3.2, G admits
a clique-cutset, call it C. Let A1, . . . , At (t ≥ 2) be the vertex sets of the
components of G \ C.

7To see that S exists, we first observe that V (G) \ {x, y} is an (x, y)-separator of G,
and in particular, an (x, y)-separator of G exists. Of all (x, y)-separators of G, we can
choose S to be one of minimum size.

8Indeed, suppose we have shown that all chordal graphs G satisfy χ(G) = ω(G). Now,
fix a chordal graph G, and let H be an induced subgraph of G. Then H is chordal, and so
χ(H) = ω(H). So, G is perfect.
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C

A1

At

...

For all i ∈ {1, . . . , t}, let Gi := G[Ai ∪ C]. Note that every clique of
G is in fact a clique of one of G1, . . . , Gt,

9 and it follows that ω(G) =
max{ω(G1), . . . , ω(Gt)}. On the other hand, by Lemma 10.4.1, we have that
χ(G) = max{χ(G1), . . . , χ(Gt)}. Finally, for all i ∈ {1, . . . , t}, the induction
hypothesis guarantees that χ(Gi) = ω(Gi). So,

χ(G) = max{χ(G1), . . . , χ(Gt)}

= max{ω(G1), . . . , ω(Gt)}

= ω(G),

which is what we needed to show.

13.3.2 Simplicial vertices

A vertex x of a graph G is simplicial if NG(x) is a clique of G.10

Theorem 13.3.4 (Dirac, 1961). Every chordal graph has a simplicial vertex.
Moreover, every chordal graph that is not complete has (at least) two non-
adjacent simplicial vertices.

Proof. We proceed by induction on the number of vertices. Let G be a
chordal graph, and assume inductively that the claim holds for chordal
graphs on fewer than |V (G)| vertices.11 We must show that the claim holds
for G. If G is a complete graph, then clearly, any vertex of G is simplicial.
So assume that G is not complete (and in particular, |V (G)| ≥ 2). By
Theorem 13.3.2, G admits a clique-cutset, call it C. Let A and B be the
vertex sets of two distinct components of G, and set GA = G[A ∪ C] and
GB = G[B ∪ C].

9This is because there are no edges between any two of the sets A1, . . . , At, and so no
clique of G intersects more than one of A1, . . . , At.

10NG(x) may possibly be empty, i.e. isolated vertices are simplicial.
11More precisely, we assume inductively that for every chordal graph G′ such that

|V (G′)| < |V (G)|, G′ has a simplicial vertex, and furthermore, if G′ is not a complete
graph, then G′ has two non-adjacent simplicial vertices.
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Claim. A contains a vertex that is simplicial in GA, and B
contains a vertex that is simplicial in GB.

Proof of the Claim. By symmetry, it suffices to show this for A. If GA is
complete, then any vertex in A is simplicial in GA. Otherwise, by the induc-
tion hypothesis, GA contains two non-adjacent simplicial vertices; since C is
a clique, C may contain at most one of these two vertices, and consequently,
A contains the other (possibly, A contains both of them). This proves the
Claim. ♦

Now, using the Claim, we let a ∈ A be a simplicial vertex of GA, and we
let b ∈ B be a simplicial vertex of GB. Clearly, a and b are non-adjacent.
Furthermore, we have that NG(a) = NGA

(a) and NG(b) = NGB
(b), and we

deduce that a and b are simplicial vertices of G.

A simplicial elimination ordering (sometimes also called a perfect elimi-
nation ordering) of a graph G is an ordering v1, . . . , vn of its vertices such
that for all i ∈ {1, . . . , n}, vi is simplicial in the graph G[vi, . . . , vn]. For
instance, v1, . . . , v6 is a simplicial elimination ordering of the graph G in the
picture below.

v1

v2

v3

v4

v5

v6
G

Indeed, consider the picture below. Clearly, for each i ∈ {1, . . . , 6}, vi is
simplicial in G[vi, . . . , v6].
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v1

v2

v3

v4

v5

v6 v2

v3

v4

v5

v6

v3

v4

v5

v6 v4

v5

v6

v5

v6 v6

G[v1, v2, v3, v4, v5, v6] G[v2, v3, v4, v5, v6]

G[v3, v4, v5, v6] G[v4, v5, v6] G[v5, v6] G[v6]

Theorem 13.3.5 (Fulkerson and Gross, 1965). For a graph G, the following
statements are equivalent:

(i) G is chordal;

(ii) G has a simplicial elimination ordering;

(iii) for all non-adjacent vertices x and y of G, every minimal (x, y)-
separator of G is a clique.

Proof. (i) ⇒ (iii): This follows from Lemma 13.3.1.
(iii) ⇒ (i): We prove the contrapositive: if (i) if false, then (iii) is

false. So, assume that (i) is false, that is, that G is not chordal. Let C be
an induced cycle of length at least four in G, let x and y be non-adjacent
vertices of C, and let P1 and P2 be the two paths between x and y in C;
clearly, each of P1, P2 has at least two edges, and in particular, V (P1)\{x, y}
and V (P2) \ {x, y} are non-empty. Let S be a minimal (x, y)-separator of G.
Clearly, S must intersect both V (P1)\{x, y} and V (P2)\{x, y}. But since C
is an induced cycle, we know that there are no edges between V (P1) \ {x, y}
and V (P2) \ {x, y}, and it follows that S is not a clique. Thus, (iii) is false.

(i) ⇒ (ii): We proceed by induction on the number of vertices. Clearly,
the claim holds for one-vertex graphs. Now, fix a positive integer n, and
assume that the claim holds for all chordal graphs on n vertices. Let H be
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a chordal graph on n+ 1 vertices. By Theorem 13.3.4, H has at least one
simplicial vertex, call it x0. Then H \x0 is a chordal graph on n vertices, and
so by the induction hypothesis, H \ x0 has a simplicial elimination ordering,
say x1, . . . , xn. But now x0, x1, . . . , xn is a simplicial elimination ordering of
H.

(ii) ⇒ (i): Suppose that v1, . . . , vn is a simplicial elimination ordering
of G; we claim that G is chordal. Let C be an induced cycle of G; we must
show that C is a triangle. Let x = vi be the lowest-indexed vertex from our
simplicial elimination ordering that belongs to the cycle C, and let y, z be the
two neighbors of x in C. Since x = vi is simplicial in G[vi, vi+1, . . . , vn], since
y, z are distinct neighbors of x, and since (by the minimality of i) we have
that y, z ∈ {vi+1, . . . , vn}, we see that yz ∈ E(G). Since C is an induced
cycle, it follows that C is a triangle. This proves that G is chordal.

Note that Theorem 13.3.5 gives an O(n4) time recognition algorithm for
chordal graphs (we repeatedly search for simplicial vertices). In fact, chordal
graphs can be recognized in O(n+m) time using the so called Lexicographic
breadth-first-search (LexBFS) due to Rose, Tarjan, and Lueker (1976), but
we omit the details.

13.3.3 Efficient optimization algorithms for chordal graphs

In this subsection, G is a chordal graph on n vertices, and v1, . . . , vn is a
simplicial elimination ordering on G.12 For each i ∈ {1, . . . , n}, set Xi :=
NG[vi] ∩ {vi, . . . , vn};13 so, Xi is the closed neighborhood of vi in the graph
G[vi, . . . , vn].

Lemma 13.3.6. X1, . . . , Xn are all cliques of G. Furthermore, for every
maximal clique C of G,14 there exists some i ∈ {1, . . . , n} such that C = Xi.

15

Proof. The fact that the sets Xi are cliques follows immediately from the
definition of a simplicial elimination ordering and the construction of the
sets Xi. Now, let C be a maximal clique of G. Let i ∈ {1, . . . , n} be minimal
with vi ∈ C. Then clearly, C ⊆ Xi. Since C is a maximal clique, and Xi is a
clique, it follows that C = Xi.

12By Theorem 13.3.5, every chordal graph has a simplicial elimination ordering, and
clearly, we can find such an ordering in polynomial time.

13As usual, for a graph G and a vertex x ∈ V (G), we denote by NG(x) the set of all
neighbors of x in G, and we set NG[x] = {x}∪NG(x). So, NG(x) is the open neighborhood
(or simply neighborhood) of x in G, and NG[x] is the closed neighborhood of x in G.

14As usual, “maximal” means “inclusion-wise maximal.”
15However, not all Xi’s need be maximal cliques.
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Lemma 13.3.7 (Fulkerson and Gross, 1965). G has at most n maximal
cliques. Furthermore, equality holds if and only if G is edgeless.

Proof. The fact that G has at most n maximal cliques follows immediately
from Lemma 13.3.6. Clearly, if G is edgeless, then G has precisely n maximal
cliques (indeed, each one-vertex subset of V (G) is a maximal clique of G).
Suppose now that G has at least one edge; let i ∈ {1, . . . , n} be the largest
index such that vi has a neighbor in G. Let vj be a neighbor of vi in G; by
the maximality of i, we have that j < i. Then Xi = {vi} and {vj , vi} ⊆ Xj ,
and so Xi ⫋ Xj . By Lemma 13.3.6, both Xi and Xj are cliques. So, Xi is
not a maximal clique of G, and Lemma 13.3.6 implies that G has fewer than
n maximal cliques.

A clique cover of a graph H is a partition of V (H) into cliques. The
clique cover number of H, denoted by χ(H), is the smallest size of a clique
cover of H; a minimum clique cover of H is a clique cover of size precisely
χ(H). Note that every graph H satisfies α(H) ≤ χ(H).16 Moreover, since
proper colorings correspond to partitions of the vertex set into stable sets
(color classes), it is clear that every graph H satisfies χ(H) = χ(H).

We define a (finite) sequence i1, . . . , it as follows. First, let i1 := 1. Once
i1, . . . , ij−1 have been defined, we either terminate or extend the sequence, as
follows. If V (G) = Xi1 ∪ · · · ∪Xij−1 , then we set t = j − 1, and we terminate
the sequence; otherwise, we let ij ∈ {1, . . . , n} be the smallest index such
that vij /∈ Xi1 ∪ · · · ∪ Xij−1 . Set Y1 := Xi1 , and for all j ∈ {2, . . . , t}, set
Yj := Xij \ (Y1 ∪ · · · ∪ Yj−1).

Theorem 13.3.8 (Gavril, 1972). The set {vi1 , . . . , vit} is a maximum stable
set of G, and (Y1, . . . , Yt) is a minimum clique cover of G.

Proof. First of all, note that i1 < · · · < it. Suppose that vpvq ∈ E(G) for
some p, q ∈ {i1, . . . , ij}, with p < q; then vq ∈ Xp, contrary to the choice of
q. Thus, {vi1 , . . . , vit} is a stable set of size t, and we deduce that t ≤ α(G).

Further, it is clear that Y1, . . . , Yt are pairwise disjoint cliques.17 It is
also clear that V (G) = Y1 ∪ · · · ∪ Yt, for otherwise, we could extend the
sequence i1, . . . , it.

18 Thus, (Y1, . . . , Yt) is a clique cover of G, and it follows
that χ(G) ≤ t.

16This is because a clique and a stable set can intersect in at most one vertex. So, if the
vertex set of a graph can be partitioned into k cliques, then no stable set of that graph has
more than k vertices.

17Indeed, for all j ∈ {1, . . . , t}, we have that Yj ⊆ Xij , and by Lemma 13.3.6, Xij is
a clique. The fact that Y1, . . . , Yt are pairwise disjoint follows from the construction of
Y1, . . . , Yt.

18We are using the fact that Y1 ∪ · · · ∪ Yt = Xi1 ∪ · · · ∪Xit .
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We now have that t ≤ α(G) ≤ χ(G) ≤ t, and it follows that α(G) =
χ(G) = t. Thus, {y1, . . . , yt} is a maximum stable set of G, and (Y1, . . . , Yt)
is a minimum clique cover of G.

We remind the reader that the greedy coloring algorithm was discussed
in section 12.1.

Lemma 13.3.9. G can be optimally colored (i.e. properly colored using
precisely χ(G) colors) by applying the greedy coloring algorithm to G with
the ordering vn, . . . , v1.

19

Proof. Clearly, the greedy coloring algorithm produces a proper coloring of G.
If we apply the greedy coloring algorithm to G with the ordering vn, . . . , v1,
then when we reach a vertex vi, the neighbors of vi that have already been
colored are precisely those from the clique Xi \ {vi}, and consequently, at
most ω(G)− 1 neighbors of vi have already been colored.20 Thus, the greedy
coloring algorithm applied to G with this ordering uses no more than ω(G)
colors. Since every graph H satisfies χ(H) ≥ ω(H), it follows that the greedy
coloring algorithm used precisely ω(G) colors, and that the coloring that it
produced is optimal.

Clearly, Lemma 13.3.6, Theorem 13.3.8, and Lemma 13.3.9 yield polyno-
mial time algorithms for finding a maximum clique, a maximum stable set, a
minimum clique-cover, and an optimal coloring of a chordal graph.

19So, we are using the reverse of our simplicial elimination ordering.
20Indeed, Xi is a clique, and the size of this clique is at most ω(G). So, |Xi \ {vi}| ≤

ω(G)− 1.
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Chapter 14

Perfect graphs

Remark: Recall that “maximal” means “inclusion-wise maximal,” and
“maximum” means “of maximum possible cardinality.” This applies (for
example) to cliques, stable sets, chains, and antichains.1

14.1 The Perfect Graph Theorem

Recall that a graph H is an induced subgraph of a graph G if V (H) ⊆ V (G)
and for all distinct u, v ∈ V (H), we have that uv ∈ E(H) if and only if
uv ∈ E(G).

Recall that a graph is perfect if all its induced subgraphs H satisfy
χ(H) = ω(H). A graph is imperfect if it is not perfect.

We note that in the study of perfect graphs, it is often useful to think
of proper colorings as partitions of the vertex set into stable sets (see the
discussion in subsection 12.1.1).

In 1961, Berge conjectured that a graph is perfect if and only if its
complement is perfect (this conjecture is known as the “Weak Perfect Graph
Conjecture”).2 In 1972, Lovász proved the conjecture, which is now known
as the Perfect Graph Theorem. Our goal in this section is to prove this
theorem.

Duplicating a vertex x of a graph G produces a supergraph G ◦ x by
adding to G a vertex x′ and making it adjacent to all the neighbors of x in

1Chains and antichains are defined in section 14.2.
2Recall that for a graph G, the complement of G, denoted by G, is the graph whose

vertex set is V (G), and in which any two distinct vertices are adjacent if and only if they
are non-adjacent in G.



Chapter 14. Perfect graphs 220

G, and to no other vertices of G (in particular, x and x′ are non-adjacent in
G ◦ x). An example is shown below.

x x

x′

G G ◦ x

Note that if G′ is a proper induced subgraph of G◦x (i.e. an induced subgraph
of G ◦ x that is not equal to G ◦ x), then we have the following:

� if V (G′) contains at most one of x, x′, then G′ is isomorphic to an
induced subgraph of G;

� if V (G′) contains both x and x′, then there exists a proper induced
subgraph H of G such that G′ = H ◦ x.

The above observation is key for inductive proofs involving G ◦ x (see the
proofs of Claims 1 and 2 of Lemma 14.1.1).

Vertex multiplication of a graph G with vertex set V (G) = {x1, . . . , xn}
by a non-negative integer vector h = (h1, . . . , hn) is the graph G◦h having hi
pairwise non-adjacent copies of xi, such that copies of xi and xj are adjacent
in G ◦ x if and only if xixj ∈ E(G). An example is shown below.

G

x1

x2 x3

x4

x5

h = (1, 0, 3, 2, 1) G ◦ h

Recall that a clique cover of a graph G is a partition of V (G) into cliques.
The clique cover number of G, denoted by χ(G), is the smallest size of a
clique cover of G; a minimum clique cover of G is a clique cover of size
precisely χ(G). Clearly, χ(G) = χ(G) and α(G) ≤ χ(G).

Initially, Berge defined two types of perfection, called “χ-perfection” and
“α-perfection.”3

3By the Perfect Graph Theorem, χ-perfection and α-perfection are equivalent. However,
we have not proven this yet.
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� A graph G is χ-perfect if every induced subgraph H of G satisfies
χ(H) = ω(H).4

� A graph G is α-perfect if every induced subgraph H of G satisfies
χ(H) = α(H).

Obviously, a graph is χ-perfect (i.e. perfect) if and only if its complement is
α-perfect.

Lemma 14.1.1. [Berge, 1961] Vertex multiplication preserves χ-perfection
and α-perfection.5

Proof. We begin by proving a couple of claims, which (as we shall see) easily
imply the lemma.

Claim 1. Vertex duplication preserves χ-perfection.

Proof of Claim 1. Let G be a χ-perfect graph, and assume inductively that
any graph obtained by duplicating one vertex of a χ-perfect graph on fewer
than |V (G)| vertices is χ-perfect. Let x ∈ V (G); we must show that G ◦ x
is χ-perfect. Let x′ be the “duplicate” of x in G ◦ x. It suffices to show
that χ(G ◦ x) = ω(G ◦ x), for the rest follows from the induction hypothesis.
Clearly, we can extend an optimal coloring of G to a proper coloring of
G ◦ x, by giving x′ the same color as x. So, χ(G ◦ x) = χ(G). Further, no
clique contains both x and x′, and it readily follows that ω(G ◦ x) = ω(G).
Since G is χ-perfect, we have that χ(G) = ω(G), and we now see that
χ(G ◦ x) = χ(G) = ω(G) = ω(G ◦ x). This proves Claim 1. ♦

Claim 2. Vertex duplication preserves α-perfection.

Proof of Claim 2. Let G be an α-perfect graph, and assume inductively that
any graph obtained by duplicating one vertex of an α-perfect graph on fewer
than |V (G)| vertices is α-perfect. Let x ∈ V (G); we must show that G ◦ x is
α-perfect. Let x′ be the “duplicate” of x in G ◦ x. It suffices to show that
χ(G ◦ x) = α(G ◦ x), for the rest follows from the induction hypothesis.

4In other words, χ-perfection is, by definition, the same as perfection.
5This means that for every graph G with vertex set V (G) = {x1, . . . , xn}, and every

non-negative integer vector h = (h1, . . . , hn), we have the following:

� if G is χ-perfect, then so is G ◦ h;
� if G is α-perfect, then so is G ◦ h.
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Suppose first that x belongs to a maximum stable set of G. Then
α(G ◦ x) = α(G) + 1.6 Since χ(G) = α(G) (because G is α-perfect), we can
obtain a clique cover of size α(G) + 1 by adding {x′} as a one-vertex clique
to some set of χ(G) cliques covering G. This is enough because now we
have that χ(G) + 1 = α(G) + 1 = α(G ◦ x) ≤ χ(G ◦ x) ≤ χ(G) + 1, and so
χ(G ◦ x) = α(G ◦ x).

We may now assume that x does not belong to any maximum stable set
of G. Then α(G◦x) = α(G). Let Q be the clique containing x in a minimum
clique cover of G. Since χ(G) = α(G), Q intersects every maximum stable
set of G.7 Since x belongs to no maximum stable set, Q′ = Q \ {x} also
intersects every maximum stable set, and hence α(G \Q′) = α(G)− 1. Since
G is α-perfect, χ(G \ Q′) = α(G \ Q′). To a set of α(G) − 1 many cliques
covering G \Q′, add the clique Q′ ∪ {x′} to obtain a set of α(G) = α(G ◦ x)
many cliques covering G ◦ x; we now have that χ(G ◦ x) = α(G ◦ x). This
proves Claim 2. ♦

Let G be a graph with vertex set V (G) = {x1, . . . , xn}, and let h =
(h1, . . . , hn) be a non-negative integer vector. Let A be the set of vertices xi
for which hi > 0. Clearly, if G is χ-perfect (resp. α-perfect), then G[A] is
also χ-perfect (resp. α-perfect). Now, G ◦ h can be obtained from G[A] by
a sequence of vertex duplications: if every hi is 0 or 1 then G ◦ h = G[A],
and otherwise, G ◦ h can be obtained from G[A] by repeatedly duplicating
vertices until there are hi copies of each xi. Since vertex duplication preserves
χ-perfection and α-perfection (by Claims 1 and 2), an easy induction now
guarantees that if G is χ-perfect (resp. α-perfect), then G◦h is also χ-perfect
(resp. α-perfect). This completes the argument.

The Perfect Graph Theorem (Lovász, 1972). A graph is perfect if and
only if its complement is perfect.

Proof. Obviously, it is enough to prove that if a graph is perfect, then so is its
complement. For this, it is in fact enough to prove that every α-perfect graph
is χ-perfect, for then we will have the following sequence of implications for

6Indeed, if S is a stable set of G of size α(G), and such that x ∈ S, then S ∪ {x′} is a
stable set of size α(G) + 1 in G ◦ x.

7Let us check this. Let S be a maximum stable set of G, i.e. a stable set of G such that
|S| = α(G). Let {Q1, . . . , Qt} be any optimal clique cover of G, i.e. t = χ(G). Since a clique
and a stable set can have at most one vertex in common, we see that S intersects each of
Q1, . . . , Qt in at most one vertex. But since S ⊆ Q1 ∪ · · · ∪Qt and |S| = α(G) = χ(G) = t,
it follows that S intersects each of Q1, . . . , Qt in exactly one vertex. Since Q belongs to
some optimal clique-cover of G, we deduce that |Q ∩ S| = 1.
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a graph G:

G is (χ-)perfect =⇒ G is α-perfect =⇒ G is (χ-)perfect,

which is what we need.8

Now, fix an α-perfect graph G, and assume inductively that all α-perfect
graphs on fewer than |V (G)| vertices are χ-perfect. We must show that G
is χ-perfect. In view of the induction hypothesis, it suffices to show that
χ(G) = ω(G).9 We may assume that ω(G) ≥ 2, for otherwise, G is edgeless
and the result is immediate.

Suppose first that G has a stable set S that intersects every maximum
clique of G. Then by the minimality of G, χ(G \ S) = ω(G \ S) = ω(G)− 1.
But now χ(G) = ω(G), since we can properly color G \ S with ω(G) − 1
colors, and then color all vertices of S with the same new color.

From now on, we assume that every stable set S of G misses (i.e. has
an empty intersection with) some maximum clique Q(S); our goal is to
derive a contradiction. Set V (G) = {x1, . . . , xn}, and let S = {S1, . . . , St}
be the set of all maximal stable sets of G. For every vertex xj , let hj be the
number of stable sets S in S such that xj ∈ Q(S). Set h := (h1, . . . , hn). By
Lemma 14.1.1, H := G ◦ h is α-perfect, and so χ(H) = α(H).

Let A = [ai,j ]t×n be a 0,1-matrix of the incidence relation between the
set of Q(S)’s for S ∈ S and V (G). So, ai,j = 1 if and only if xj ∈ Q(Si).

x1 . . . xj . . . xn

Q(S1)
...

Q(Si)
...

Q(St)

ai,j

By construction, hj is the number of 1’s in column j of A, and |V (H)| is the
total number of 1’s in A.

Since each row contributes ω(G) many 1’s, we have |V (H)| = ω(G)|S|.
Since vertex duplication cannot enlarge cliques, we have ω(H) ≤ ω(G).

Therefore, χ(H) ≥ |V (H)|
ω(H) ≥ |V (H)|

ω(G) = |S|.
Every stable set of H consists of copies of elements in some stable set

of G; so, a maximum stable set of H consists of all copies of all vertices in

8The first of the implications above (“G is χ-perfect =⇒ G is α-perfect”) follows
straight from the definition of χ-perfection and α-perfection.

9Indeed, suppose that H is a proper induced subgraph of G. Then H is an α-perfect
graph on fewer than |V (G)| vertices, and consequently, H is χ-perfect. So, χ(H) = ω(H).
Thus, to show that G is χ-perfect, it suffices to show that χ(G) = ω(G).
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some maximal stable set of G. Consequently,

α(H) = max
T∈S

∑
j:xj∈T

hj .

The sum above counts the 1’s in A that appear in the columns indexed by
the vertices of T . If we count these 1’s by rows, we get

α(H) = max
T∈S

∑
S∈S

|T ∩Q(S)|.

Since T is a stable set, it has at most one vertex in each chosen clique Q(S).
Also, T ∩Q(T ) = ∅. So, |T ∩Q(S)| ≤ 1 for every S ∈ S, and |T ∩Q(T )| = 0.
It follows that α(H) ≤ |S| − 1. Therefore, α(H) < χ(H), contrary to the
fact that H is α-perfect.

14.2 Dilworth’s theorem and comparability graphs

Recall that a partial order of a set X is a binary relation on X that is
reflexive, antisymmetric, and transitive.10 A partially ordered set (or poset)
is an ordered pair (X,⪯) such that X is a set and ⪯ is a partial order on
X. A maximal element of (X,⪯) is x ∈ X such that no y ∈ X \ {x} satisfies
x ⪯ y.11 Similarly, a minimal element of (X,⪯) is x ∈ X such that no
y ∈ X \ {x} satisfies y ⪯ x.12 We say that x, y ∈ X are comparable with
respect to ⪯ if either x ⪯ y or y ⪯ x; two elements of X are incomparable
with respect to ⪯ if they are not comparable with respect to ⪯. A chain
in (X,⪯) is a set C ⊆ X such that any two elements of C are comparable
with respect to ⪯. A chain decomposition of (X,⪯) is a partition of X into
chains of (X,⪯). An antichain in (X,⪯) is a set A ⊆ X such that no two
elements of A are comparable with respect to ⪯.

10A binary relation ⪯ on a set X is

� reflexive if for all x ∈ X, we have that x ⪯ x;

� antisymmetric if for all x, y ∈ X, we have that if x ⪯ y and y ⪯ x, then x = y;

� transitive if for all x, y, z ∈ X, we have that if x ⪯ y and y ⪯ z, then x ⪯ z.

11A partially ordered set may or may not contain a maximal element. Furthermore, if a
partially ordered set does contain a maximal element, then this maximal element may or
may not be unique.

12A partially ordered set may or may not contain a minimal element. Furthermore, if a
partially ordered set does contain a minimal element, then this minimal element may or
may not be unique.
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Dilworth’s theorem. In any finite partially ordered set (X,⪯),13 the
maximum size of an antichain is equal to the minimum size of a chain
decomposition of (X,⪯).14

Proof. Let (X,⪯) be a finite partially ordered set, and assume inductively
that the theorem is true for smaller partially ordered sets.15 We may assume
that X ̸= ∅, for otherwise, the result is immediate. First, it is clear that if
(X,⪯) has an antichain of size k, then no chain decomposition of (X,⪯) is
of size smaller than k (this is because no chain can contain more than one
element of an antichain).16 It remains to exhibit an antichain of (X,⪯) and
a chain decomposition of (X,⪯) of the same size.17

Since (X,⪯) is a non-empty, finite poset, we see that (X,⪯) has a
maximal element, say x0. Set X0 := X \ {x0}, and let A0 be a maximum
antichain in (X0,⪯);18 set k := |A0|. By the induction hypothesis, (X0,⪯)
has a chain decomposition of size k, say {C1, . . . , Ck}.

Claim 1. Any antichain of size k in (X0,⪯) intersects each of
C1, . . . , Ck in exactly one element.

Proof of Claim 1. Let B be an antichain of size k in (X0,⪯). Since B is
an antichain and C1, . . . , Ck are chains in (X0,⪯), we see that B intersects
each of C1, . . . , Ck in at most one element. But since B ⊆ C1 ∪ · · · ∪ Ck and
|B| = k, we see that B intersects each of C1, . . . , Ck in exactly one element.
This proves Claim 1. ♦

Now, for all i ∈ {1, . . . , k}, let C ′
i be the set of all elements of Ci that

belong to some antichain of (X0,⪯) of size k; then C ′
i ̸= ∅ (because, by

Claim 1, we have that Ci ∩ A0 ̸= ∅), and we deduce that C ′
i has a unique

maximal element, call it xi.
19

Claim 2. {x1, . . . , xk} is an antichain in (X0,⪯).20

13Here, “finite” simply means that X is finite.
14The size of a chain decomposition is the number of chains in it.
15So, we are assuming that for all finite partially ordered sets (X ′,⪯′) such that |X ′| <

|X|, the maximum size of an antichain is equal to the minimum size of a chain decomposition
of (X ′,⪯′).

16Thus, the maximum size of an antichain in (X,⪯) is no greater than the minimum
size of a chain decomposition of (X,⪯).

17This will imply that the maximum size of an antichain in (X,⪯) is no smaller than
the minimum size of a chain decomposition of (X,⪯).

18That is: A0 is an antichain in (X0,⪯) of largest possible cardinality.
19Since C′

i ⊆ Ci, and Ci is a chain, we know that C′
i is a chain. Furthermore, since X0 is

finite, C′
i is finite, and we already saw that C′

i is non-empty. So, C′
i is a non-empty, finite

chain in (X0,⪯), and it follows that it has a unique maximal element.
20Obviously, this means that {x1, . . . , xk} is an antichain in (X,⪯) as well.
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Proof of Claim 2. We may assume that k ≥ 2, for otherwise, this is immediate.
By symmetry, it suffices to show that x1 and x2 are incomparable. Let A1

be an antichain of size k in (X0,⪯) such that x1 ∈ A1 ∩ C1.
21 By Claim 1,

|A1 ∩ C2| = 1; set A1 ∩ C2 = {x′2}. Then x′2 ∈ C ′
2, and so (since x2 is a

maximal element of the chain C ′
2) we have that x′2 ⪯ x2.

22 Now, if x2 ⪯ x1,
then by the transitivity of ⪯, we have that x′2 ⪯ x1, which is impossible
since x1 and x′2 are distinct elements of the antichain A1.

23 So, x2 ̸⪯ x1.
An analogous argument establishes that x1 ̸⪯ x2. Thus, x1 and x2 are
incomparable. This proves Claim 2. ♦

Suppose first that {x0, x1, . . . , xk} is an antichain in (X,⪯). Then this
antichain is of size k + 1, and {C1, . . . , Ck, {x0}} is a chain decomposition of
(X,⪯) of size k+1, and we are done. So, we may assume that {x0, x1, . . . , xk}
is not an antichain in (X,⪯). By Claim 2, and by symmetry, we may assume
that x0 and x1 are comparable; since x0 is a maximal element of (X,⪯), we
see that x1 ⪯ x0. Now, set D1 := {x0} ∪ {x ∈ C1 | x ⪯ x1}; since C1 is
a chain, and x1 ⪯ x0, the transitivity of ⪯ guarantees that D1 is a chain
in (X,⪯). Further, by Claim 1, and by the choice of x1, we know that
(X \D1,⪯) does not have an antichain of size k. Since {x2, . . . , xk} is an
antichain of size k − 1 in (X \ D1,⪯), we deduce that the maximum size
of an antichain in (X \D1,⪯) is k − 1. Then by the induction hypothesis,
(X \D1,⪯) has a chain decomposition of size k− 1, say {E1, . . . , Ek−1}. But
now {D1, E1, . . . , Ek−1} is a chain decomposition of size k in (X,⪯), and we
are done.

A comparability graph (or a transitively orientable graph) is a graph G
such that there exists a partial order ⪯ on V (G) such that for all distinct
x, y ∈ V (G), we have that xy ∈ E(G) if and only if x and y are comparable
with respect to ⪯.24 Equivalently,25 G is a comparability graph if there exists
an orientation G⃗ = (V (G), A(G)) of G such that for all −→uv,−→vw ∈ A(G), we
have that −→uw ∈ A(G).

Corollary 14.2.1. Every comparability graph is perfect. The complement
of any comparability graph is perfect.

21Such an A1 exists because x1 ∈ C′
1.

22Since C′
2 is a chain, we know that x′

2, x2 are comparable. Since x2 is maximal in C2,
we have that x′

2 ⪯ x2.
23The fact that x1 ̸= x′

2 follows from the fact that x1 ∈ C1, x
′
2 ∈ C2, and C1 ∩ C2 = ∅.

24Note that in a comparability graph, cliques correspond to chains, and stable sets
correspond to antichains.

25Check that this is really equivalent!
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Proof. In view of the Perfect Graph Theorem, it suffices to show that the
complement of any comparability graph is perfect. So, fix a comparability
graph G, and assume inductively that for all comparability graphs G′ on
fewer than |V (G)| vertices, the graph G′ is perfect. We must show that G is
perfect. Clearly, it suffices to show that χ(G) = ω(G), for the rest follows
from the induction hypothesis.26

Let ⪯ be a partial order on V (G) such that for all distinct x, y ∈ V (G),
we have that xy ∈ E(G) if and only if x and y are comparable with respect
to ⪯. Let A be a maximum antichain in (V (G),⪯), and let (C1, . . . , Ck) be a
chain decomposition of minimum size in (V (G),⪯). By Dilworth’s theorem,
we have that |A| = k. Now, note that A is a stable set in G, and therefore a
clique in G; so, ω(G) ≥ |A| = k. On the other hand, C1, . . . , Ck are cliques
in G, and therefore stable sets in G; thus, {C1, . . . , Ck} is a partition of
V (G) into stable sets (“color classes”) of G, and it follows that χ(G) ≤ k.
So, χ(G) ≤ k ≤ ω(G). But obviously, χ(G) ≥ ω(G), and we deduce that
χ(G) = ω(G). This completes the argument.

14.3 Some further examples of perfect graphs

Lemma 14.3.1. Every bipartite graph is perfect.

Proof. Since all induced subgraphs of a bipartite graph are bipartite, it
suffices to show that every bipartite graph G satisfies χ(G) = ω(G). But this
is obvious: if G is an edgeless bipartite graph, then χ(G) = ω(G) = 1, and if
G is a bipartite graph that has at least one edge, then χ(G) = ω(G) = 2.

Lemma 14.3.2. The complement of any bipartite graph is perfect.

Proof. This follows immediately from Lemma 14.3.1 and the Perfect Graph
Theorem.

Recall that the line graph of a graph G, denoted by L(G), is the graph
with vertex set E(G), in which distinct e, f ∈ E(G) are adjacent if and only
if they share an endpoint in G. An example is shown below.

26Indeed, suppose that H is a proper induced subgraph of G. Then H is a comparability

graph, and so by the induction hypothesis, H = H is perfect. Thus, χ(H) = ω(H). It only
remains to show that χ(G) = ω(G).
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Lemma 14.3.3. The line graph of any bipartite graph is perfect.

Proof. Let G be a bipartite graph, and let H = L(G). We must show that
H is perfect. Consider any induced subgraph H ′ = H[M ] of H. So, we have
that M ⊆ V (H), and therefore, M ⊆ E(G). Let G′ be a subgraph of G with
vertex set V (G) and edge set M . Since H ′ is an induced subgraph of H, it
follows that H ′ = L(G′), and consequently, χ(H ′) = χ′(G′). On the other
hand, since G′ is bipartite, Theorem 12.3.4 guarantees that χ′(G′) = ∆(G′).
Clearly, ∆(G′) ≤ ω(H ′), and so it follows that

χ(H ′) = χ′(G′) = ∆(G′) ≤ ω(H ′).

Since we also know that χ(H ′) ≥ ω(H ′), we deduce that χ(H ′) = ω(H ′). It
follows that H is perfect.

Lemma 14.3.4. The complement of the line graph of any bipartite graph is
perfect.

Proof. This follows immediately from Lemma 14.3.3 and the Perfect Graph
Theorem.

14.4 The Strong Perfect Graph Theorem

A hole in a graph G is an induced cycle of length at least four.27 An antihole
in G is an induced subgraph H of G such that H is a hole in G. An odd
hole (resp. odd antihole) is a hole (resp. antihole) that has an odd number of
vertices. Even holes and even antiholes are defined analogously. A graph is
Berge if it contains no odd holes and no odd antiholes.

The Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour,
Thomas, 2002). A graph is perfect if and only if it is Berge.

27Note that this means that chordal graphs are precisely the graphs that contain no
holes.
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Clearly, a graph is Berge if and only if its complement is Berge. So,
the Strong Perfect Graph Theorem immediately implies the Perfect Graph
Theorem.

One direction of the Strong Perfect Graph Theorem (“every perfect graph
is Berge”) is an easy exercise. Indeed, it is easy to check that for each integer
n ≥ 2, we have that

� ω(C2n+1) = 2 and χ(C2n+1) = 3;

� ω(C2n+1) = n and χ(C2n+1) = n+ 1.

So, odd holes and antiholes are imperfect, and therefore, no perfect graph
contains an odd hole or an odd antihole. Thus, every perfect graph is Berge.

What about the other direction (“every Berge graph is perfect”)? It relies
on a “decomposition theorem” for Berge graphs, which, roughly, states that
every Berge graph either is “basic” or admits a “decomposition.” (The proof
of this decomposition theorem is by far the most complicated part of the
proof of the Strong Perfect Graph Theorem, and it is over 100 pages long.)
The “basic” graphs are bipartite graphs and their complements, line graphs
of bipartite graphs, complements of line graphs of bipartite graphs, and
“double split” graphs (we omit the definition). All basic graphs are perfect:
we proved this for the first four types of basic graphs, and the proof for
double split graphs is easy. There are several “decompositions” (we omit the
definitions), and it can be shown that no imperfect Berge graph of minimum
possible order admits any of these decompositions. It now follows that all
Berge graphs are perfect.

14.5 Algorithmic considerations

In 2005, Chudnovsky, Cornuéjols, Liu, Seymour, and Vušković constructed
an O(n9) time recognition algorithm for Berge graphs. By the Strong Perfect
Graph Theorem, it follows that perfect graphs can be recognized in O(n9)
time.

Further, Grötschel, Lovász, and Schrijver (1981) showed that the fol-
lowing optimization problems can be solved in polynomial time for perfect
graphs: Maximum Clique, Maximum Stable Set, Graph Coloring
(i.e. Vertex Coloring), and Minimum Clique Cover. In fact, weighted
versions of these problems can also be solved in polynomial time.
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Chapter 15

The Tutte polynomial

15.1 Multigraphs

A multigraph is an ordered pair G = (V (G), E(G)) such that V (G) and E(G)
are finite sets (called the vertex set and edge set, respectively), and each edge
(i.e. element of E(G)) is associated with two (possibly identical) vertices (i.e.
elements of V (G)), called its endpoints. If an edge has only one endpoint
(i.e. its two endpoints are the same), then this edge is called a loop. If two
distinct edges have the same endpoints, then those edges are parallel. An
edge is incident with a vertex, if that vertex is an endpoint of the edge. The
degree of a vertex in a multigraph is the number of edges that it is incident
with, with loops counting twice. (In the example below, all vertices are of
degree four.) A multigraph is loopless if it has no loops.

parallel edges

loop

A proper (vertex) coloring of a loopless multigraph G is an assignment of
colors to the vertices of G in such a way that, whenever two distinct vertices
are joined by an edge (i.e. are the endpoints of the same edge), they receive
different colors. If a multigraph has a loop, then it has no proper colorings.1

A proper k-coloring (or simply k-coloring) of a loopless multigraph G is a
proper coloring of G that uses colors 1, . . . , k (not all of these colors need be

1Here, the idea is that if e is a loop, then its unique endpoint is adjacent to itself.
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used); G is k-colorable if it admits a k-coloring. The chromatic number of a
loopless multigraph G, denoted by χ(G), is the smallest integer k such that
G is k-colorable.

As usual, for an edge e of a multigraph G, we denote by G − e the
multigraph obtained by deleting e from G.

If e is a non-loop edge of a multigraph G, then the multigraph G/e
obtained by contracting e is the multigraph obtained by first deleting e, and
then identifying its endpoints to a single vertex. (Note that edges parallel to
e become loops, and it is also possible that new parallel edges are created).
An example is shown below.

e

G G/e

The topic of this chapter are graph polynomials, or more precisely,
multigraph polynomials (for recursive purposes, it is convenient to allow
loops and parallel edges). There are a number of such polynomials. Here,
we consider two: the chromatic polynomial and the Tutte polynomial.

15.2 The chromatic polynomial

Lemma 15.2.1. For each multigraph G, there exists a unique polynomial πG
such that for any non-negative integer k, πG(k) is the number of k-colorings
of G. Moreover, the (unique) polynomial πG is of degree at most |V (G)| and
has integer coefficients.

Proof. We proceed by induction on the number of edges. Fix a multigraph
G, and assume inductively that the lemma is true for multigrpahs with fewer
than |E(G)| edges.2

Uniqueness follows immediately from the fact that any two polynomials
that agree on infinitely many points are identical. It remains to prove
existence. If G is edgeless, then πG(x) = x|V (G)| is the polynomial that we

2So, we assume inductively that for all multigraphs G′ such that |E(G′)| < |E(G)|,
there exists a unique polynomial πG′ such that for any non-negative integer k, πG′(k) is
the number of k-colorings of G′, and moreover, the degree of this (unique) polynomial is
at most |V (G′)| and its coefficients are integers.
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need.3 If G has at least one loop, then πG(x) = 0 is the polynomial we need.4

From now on, we assume that G is loopless and has at least one edge, say e.
The induction hypothesis applied to G− e and G/e yields polynomials πG−e

and πG/e of degree at most |V (G)|, and having the desired properties. Set

πG := πG−e − πG/e.

By the induction hypothesis, πG is of degree at most |V (G)| and has integer
coefficients. Now, fix a non-negative integer k. We must show that there
are precisely πG(k) many k-colorings of G. Clearly, every k-coloring of G is
also a proper coloring of G− e. On the other hand, a k-coloring of G− e is
a k-coloring of G if and only if the two endpoints of e have different colors.
Further, k-colorings of G− e in which both endpoints of e receive the same
color correspond to k-colorings of G/e in the natural way. So, the number of
k-colorings of G is equal to πG−e(k) − πG/e(k) = πG(k), which is what we
needed.

The chromatic polynomial of a multigraph G is the polynomial πG from
the statement of Lemma 15.2.1. Note that the proof of that lemma in fact
gives us a recursive formula for πG, as follows:

� if G is edgeless, then πG(x) = x|V (G)|;

� if G has a loop, then πG(x) = 0;

� if G is loopless and has at least one edge, say e, then

πG(x) = πG−e(x)− πG/e(x).

Note that G− e and G/e have fewer edges than G, and so our formula really
is recursive.

We remark that if G is a loopless multigraph, then χ(G) is equal to the
smallest non-negative integer k such that πG(k) ̸= 0. Note that this implies
that computing the chromatic polynomial is NP-hard. However, in some
special cases, the chromatic polynomial is easy to compute. For example:

� πKn(x) = x(x− 1)(x− 2) . . . (x− n+ 1);

� πT (x) = x(x− 1)n−1, for any tree T on n vertices.

3Indeed, if G is edgeless, then for any non-negative integer k, there are k|V (G)| many
k-colorings of G (we simply assign colors from the set {1, . . . , k} independently to the
vertices of G).

4Indeed, if G has at least one loop, then G has no proper colorings.
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15.3 The Tutte polynomial

For a multigraph G, let k(G) be the number of components of G; for a set A ⊆
E(G), let kG(A) be the number of components of the multigraph on vertex
set V (G) and edge set A. Note that kG(A) ≥ max{k(G), |V (G)| − |A|},5
and set rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|.6 For
example, in the multigraph below (with the edges of A in red), we have
that k(G) = 1, kG(A) = 3, |A| = 5, and |V (G)| = 6; so, rG(A) = 2 and
cG(A) = 2.

Now, the Tutte polynomial TG(x, y) of a multigraph G is defined by

TG(x, y) :=
∑

A⊆E(G)

(x− 1)rG(A)(y − 1)cG(A).

5Let us check this. Since adding edges to a multigraph cannot increase the number of
components, it is clear that kG(A) ≥ k(G). It remains to show that kG(A) ≥ |V (G)| − |A|,
or equivalently, that |V (G)| ≤ kG(A) + |A|. Set t := kG(A), and let C1, . . . , Ct be the
components of the multigraph with vertex set V (G) and edge set A. For each i ∈ {1, . . . , t},
let Ti be a spanning tree of Ci, so that |V (Ci)| = |V (Ti)| = |E(Ti)|+ 1. We now have that

|V (G)| = |V (C1) ∪ · · · ∪ V (Ct)|

=
t∑

i=1

|V (Ci)|

=
t∑

i=1

(|E(Ti)|+ 1)

= t+
t∑

i=1

|E(Ti)|

= t+ |E(T1) ∪ · · · ∪ E(Tt)|

≤ t+ |A|,

which is what we needed to show.
6Note that rG(A) and cG(A) are both non-negative.
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As we shall see, the Tutte polynomial is more “general” than the chromatic
polynomial, i.e. if we know the Tutte polynomial, we can easily compute
the chromatic polynomial (see section 15.4 below). Since it is NP-hard to
compute the chromatic polynomial, it is NP-hard to compute the Tutte
polynomial.

Clearly, if G is edgeless, then TG(x, y) = 1. Otherwise, we can get a
recursive formula for TG(x, y), as follows. (A bridge in a multigraph G is an
edge e of G such that G− e has more components than G.)

Lemma 15.3.1. Let e be an edge of a multigraph G. Then

TG(x, y) =


xTG/e(x, y) if e is a bridge of G

yTG−e(x, y) if e is a loop of G

TG−e(x, y) + TG/e(x, y) otherwise

Proof.

Claim 1. If e is a bridge of G, then TG(x, y) = xTG/e(x, y).

Proof of Claim 1. Assume that e is a bridge ofG. Then for anyA ⊆ E(G)\{e},
we have the following:

(1) rG(A)− 1
(∗)
= rG(A ∪ {e}) (∗∗)

= rG/e(A),

(2) cG(A ∪ {e}) (∗)
= cG(A)

(∗∗)
= cG/e(A),

where, in both (1) and (2), (*) follows from the fact that e is a bridge of G,
and (**) follows from the fact that contracting an edge does not change the
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number of components. We now compute:

TG(x, y)

=
∑

A⊆E(G)

(x− 1)rG(A)(y − 1)cG(A)

=
∑

A⊆E(G)\{e}

(
(x− 1)rG(A)(y − 1)cG(A) + (x− 1)rG(A∪{e})(y − 1)cG(A∪{e})

)
(1)&(2)
=

∑
A⊆E(G/e)

(
(x− 1)rG/e(A)+1(y − 1)cG/e(A) + (x− 1)rG/e(A)(y − 1)cG/e(A)

)
= x

∑
A⊆E(G/e)

(x− 1)rG/e(A)(y − 1)cG/e(A)

= xTG/e(x, y).

This proves Claim 1. ♦

Claim 2. If e is a loop of G, then TG(x, y) = yTG−e(x, y).

Proof of Claim 2. Assume that e is a loop of G. Deleting e does not affect
the number of components, and so for each A ⊆ E(G) \ {e}, we have the
following:

(1) rG(A) = rG(A ∪ {e}) = rG−e(A),

(2) cG(A ∪ {e})− 1 = cG(A) = cG−e(A).
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We now compute:

TG(x, y)

=
∑

A⊆E(G)

(x− 1)rG(A)(y − 1)cG(A)

=
∑

A⊆E(G)\{e}

(
(x− 1)rG(A)(y − 1)cG(A) + (x− 1)rG(A∪{e})(y − 1)cG(A∪{e})

)
(1)&(2)
=

∑
A⊆E(G−e)

(
(x− 1)rG−e(A)(y − 1)cG−e(A) + (x− 1)rG−e(A)(y − 1)cG−e(A)+1

)
= y

∑
A⊆E(G−e)

(x− 1)rG−e(A)(y − 1)cG−e(A)

= yTG−e(x, y).

This proves Claim 2. ♦

Claim 3. If e is neither a bridge nor a loop of G, then TG(x, y) =
TG−e(x, y) + TG/e(x, y).

Proof of Claim 3. Assume that e is neither a bridge nor a loop of G. Then
k(G − e) = k(G/e) = k(G), and it follows that for all A ⊆ E(G) \ {e}, we
have the following:

(1) rG(A) = rG−e(A),

(2) rG(A ∪ {e}) = rG/e(A),

(3) cG(A) = cG−e(A),

(4) cG(A ∪ {e}) = cG/e(A).
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We now compute:

TG(x, y)

=
∑

A⊆E(G)

(x− 1)rG(A)(y − 1)cG(A)

=
∑

A⊆E(G)\{e}

(
(x− 1)rG(A)(y − 1)cG(A) + (x− 1)rG(A∪{e})(y − 1)cG(A∪{e})

)
(1)−(4)
=

∑
A⊆E(G)\{e}

(
(x− 1)rG−e(A)(y − 1)cG−e(A) + (x− 1)rG/e(A)(y − 1)cG/e(A)

)
= TG−e(x, y) + TG/e(x, y).

This proves Claim 3. ♦

By Claims 1, 2, and 3, we are done.

Further, it turns out that the Tutte polynomial is “multiplicative” in a
certain sense, as the following lemma shows.

Lemma 15.3.2. If multigraphs G1 and G2 have at most one vertex and no
edges in common, then TG1∪G2 = TG1TG2.

Proof. We prove this by induction on the number of edges, using Lemma 15.3.1.
So, fix multigraphs G1 and G2 that have at most one vertex and no edges
in common, set G := G1 ∪ G2, and assume inductively that the lemma is
true for multigraphs with fewer than |E(G)| edges.7 If G is edgeless then
so are G1 and G2, and we have that TG(x, y) = TG1(x, y) = TG2(x, y) = 1,
and we are done. So, we may assume that G has at least one edge, say e.
By symmetry, we may assume that e ∈ E(G2). Note that this means that
G− e = G1 ∪ (G2 − e) and (if e is not a loop) G/e = G1 ∪ (G2/e).

7So, we are assuming inductively that for all multigraphs G′
1 and G′

2 that have at most
one vertex and no edges in common, if the multigraph G′

1 ∪ G′
2 has fewer than |E(G)|

edges, then TG′
1∪G′

2
= TG′

1
TG′

2
.
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Suppose first that e is a bridge of G (and therefore of G2 as well). Then

TG(x, y) = xTG/e(x, y) by Lemma 15.3.1

= xTG1∪(G2/e)(x, y)

= xTG1(x, y)TG2/e(x, y) by the induction

hypothesis

= TG1(x, y)
(
xTG2/e(x, y)

)
= TG1(x, y)TG2(x, y) by Lemma 15.3.1.

Next, suppose that e is a loop of G (and therefore of G2 as well). Then

TG(x, y) = yTG−e(x, y) by Lemma 15.3.1

= yTG1∪(G2−e)(x, y)

= yTG1(x, y)TG2−e(x, y) by the induction
hypothesis

= TG1(x, y)
(
yTG2−e(x, y)

)
= TG1(x, y)TG2(x, y) by Lemma 15.3.1.

Finally, suppose that e is neither a bridge nor a loop of G; then e is an
edge of G2 that is neither a bridge nor a loop of G2. Then

TG(x, y) = TG−e(x, y) + TG/e(x, y) by Lemma 15.3.1

= TG1∪(G2−e)(x, y) + TG1∪(G2/e)(x, y)

= TG1(x, y)TG2−e(x, y)+ by the
+TG1(x, y)TG2/e(x, y) induction

hypothesis

= TG1(x, y)
(
TG2−e(x, y) + TG/e(x, y)

)
= TG1(x, y)TG2(x, y) by Lemma 15.3.1

This completes the argument.
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Note that Lemma 15.3.2 guarantees that the Tutte polynomial of a
multigraph G is the product of the Tutte polynomials of its blocks.8

15.4 The relationship between the chromatic poly-
nomial and the Tutte polynomial

As our next lemma shows, the Tutte polynomial is more general than the
chromatic polynomial, i.e. if we know the Tutte polynomial of a multigraph,
we can easily compute the chromatic polynomial of that multigraph.

Lemma 15.4.1. Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1− x, 0).

Proof. We proceed by induction on the number of edges. Fix a multigraph
G, and assume inductively that the statement is true for all multigraphs on
fewer than |E(G)| edges.

Suppose first that G is edgeless. Then by section 15.2, we have that
πG(x) = x|V (G)|. Further, by the definition of the Tutte polynomial, we have
that TG(x, y) = 1, and so TG(1− x, 0) = 1. Moreover, k(G) = |V (G)|, and
so (−1)|V (G)|−k(G) = 1. But now it is clear that

πG(x) = x|V (G)|

= (−1)|V (G)|−k(G) · x|V (G)| · 1 because

(−1)|V (G)|−k(G) = 1

= (−1)|V (G)|−k(G) xk(G) TG(1− x, 0) because
TG(1− x, 0) = 1,

8A block of a multigraph G is a maximal connected subgraph of G that has no cut-
vertices. (However, not all such subgraphs are blocks! We need maximality.) For example,
the (disconnected) graph below has six blocks, in dotted bags.

Note that a (multi)graph can be built from its blocks by repeatedly taking disjoint unions
and gluing along single vertices. In the case of graphs (with no loops and no parallel
edges), blocks are the maximal 2-connected subgraphs, bridges (with their endpoints),
and components on at most two vertices. In the multigraph case, a loop (with its unique
endpoint) is considered a block.
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which is what we needed.
From now on, we assume that G has at least one edge, say e. We consider

three cases: when e is a bridge, when e is a loop, and when e is neither a
bridge nor a loop.

Suppose first that e is a bridge of G. Then either G− e and G/e have
exactly the same blocks, or G− e can be obtained from G/e by adding an
isolated vertex. Since TK1(x, y) = 1, Lemma 15.3.2 now guarantees that
TG−e = TG/e. We now compute:

πG(x) = πG−e(x)− πG/e(x) by section 15.2

= (−1)|V (G−e)|−k(G−e) xk(G−e) TG−e(1− x, 0)− by the

−(−1)|V (G/e)|−k(G/e) xk(G/e) TG/e(1− x, 0) induction

hypothesis

= (−1)|V (G)|−k(G)−1 xk(G)+1 TG−e(1− x, 0)− since e is a

−(−1)|V (G)|−k(G)−1 xk(G) TG/e(1− x, 0) bridge of G

= (−1)|V (G)|−k(G)−1 xk(G)(
xTG−e(1− x, 0)− TG/e(1− x, 0)

)
= (−1)|V (G)|−k(G) xk(G) (1− x)TG/e(1− x, 0) because

TG−e = TG/e

= (−1)|V (G)|−k(G) xk(G) TG(1− x, 0) by Lemma 15.3.1,

which is what we needed.
Next, suppose that e is a loop. Then by section 15.2, πG(x) = 0. On

the other hand, by Lemma 15.3.1, we have that TG(x, y) = yTG−e(x, y), and
consequently, TG(1− x, 0) = 0. It then immediately follows that

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1− x, 0).
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Finally, suppose that e is neither a bridge nor a loop. We then compute:

πG(x) = πG−e(x)− πG/e(x) by section 15.2

= (−1)|V (G−e)|−k(G−e) xk(G−e) TG−e(1− x, 0)− by the

−(−1)|V (G/e)|−k(G/e) xk(G/e) TG/e(1− x, 0) induction

hypothesis

= (−1)|V (G)|−k(G) xk(G) TG−e(1− x, 0)−
−(−1)|V (G)|−k(G)−1 xk(G) TG/e(1− x, 0)

= (−1)|V (G)|−k(G) xk(G) TG−e(1− x, 0)+

+(−1)|V (G)|−k(G) xk(G) TG/e(1− x, 0)

= (−1)|V (G)|−k(G) xk(G)(
TG−e(1− x, 0) + TG/e(1− x, 0)

)
= (−1)|V (G)|−k(G) xk(G) TG(1− x, 0) by Lemma 15.3.1

which is what we needed. This completes the argument.

15.5 Some special points of the Tutte polynomial

In this section, we give a combinatorial interpretation of the Tutte polynomial
evaluated at some special points.

Proposition 15.5.1. For all multigraphs G, TG(2, 2) = 2|E(G)|.

Proof. By the definition of the Tutte polynomial, we have that

TG(2, 2) =
∑

A⊆E(G)

(2− 1)rG(A)(2− 1)cG(A) =
∑

A⊆E(G)

1.

So, TG(2, 2) is equal to the number of subsets A of E(G), which is precisely
2|E(G)|.

A spanning subgraph of a multigraph G is a multigraph H such that
V (H) = V (G) and E(H) ⊆ E(G). A multigraph is acyclic if it has no cycles;
in particular, acyclic multigraphs have no loops and no parallel edges, and
so an acyclic (multi)graph is simply a forest.
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Proposition 15.5.2. For all multigraphs G, TG(2, 1) is the number of acyclic
spanning subgraphs of G.9

Proof. By the definition of the Tutte polynomial, we have that

TG(2, 1) =
∑

A⊆E(G)

(2− 1)rG(A)(1− 1)cG(A) =
∑

A⊆E(G)

0cG(A)

Now, 0cG(A) = 1 if cG(A) = 0, and 0cG(A) = 0 otherwise. So, TG(2, 1)
is equal to the number of subsets A of E(G) such that cG(A) = 0, i.e.
kG(A) + |A| − |V (G)| = 0, which is equivalent to kG(A) = |V (G)| − |A|. But
this last equality holds precisely when the multigraph (V (G), A) is a forest.
The result is now immediate.

Proposition 15.5.3. If G is a connected multigraph, then TG(1, 2) is the
number of connected spanning subgraphs of G.

Proof. Let G be a connected multigraph. Then by the definition of the Tutte
polynomial, we have that

TG(1, 2) =
∑

A⊆E(G)

(1− 1)rG(A)(2− 1)cG(A) =
∑

A⊆E(G)

0rG(A)

Now, 0rG(A) = 1 if rG(A) = 0, and 0rG(A) = 0 otherwise. So, TG(1, 2)
is equal to the number of subsets A of E(G) such that rG(A) = 0, i.e.
kG(A) − k(G) = 0. Since G is connected, we have that k(G) = 1, and so
TG(1, 2) is equal to the number of subsets A of E(G) such that kG(A) = 1,
i.e. to the number of connected spanning subgraphs of G.

Proposition 15.5.4. If G is a connected multigraph, then TG(1, 1) is the
number of spanning trees of G.

Proof. Let G be a connected multigraph. Then by the definition of the Tutte
polynomial, we have that

TG(1, 1) =
∑

A⊆E(G)

(1− 1)rG(A)(1− 1)cG(A) =
∑

A⊆E(G)

0rG(A)+cG(A)

Now, 0rG(A)+cG(A) = 1 if rG(A)+ cG(A) = 0, and 0rG(A)+cG(A) = 0 otherwise.
So, TG(1, 1) is the number of subsets A of E(G) such that rG(A) = cG(A) =

9As a terminological matter, a spanning acyclic subgraph is not quite the same thing
as a spanning forest. The term “spanning forest” is generally reserved for forests whose
components are spanning trees of the components of the original (multi)graph, which is a
more restricted notion. So, TG(2, 1) need not be the number of spanning forests of G.
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0. But rG(A) = 0 if and only if the multigraph (V (G), A) is connected
(as in the proof of Proposition 15.5.3), and cG(A) = 0 if the multigraph
(V (G), A) is if and only if acyclic (as in the proof of Proposition 15.5.2).
So, rG(A) = cG(A) = 0 if and only if (V (G), A) is a tree (equivalently: a
spanning tree of G).
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Chapter 16

Hamiltonian graphs

16.1 Hamiltonian graphs and t-toughness

A Hamiltonian path (or a Hamilton path) of a graph G is a path of G that
passes through all vertices of G. An example is shown below (the Hamiltonian
path is in red.)

A Hamiltonian cycle (or a Hamilton cycle) of a graph G is a cycle of
G that passes through all vertices of G. An example is shown below (the
Hamiltonian cycle is in red.)

A graph is Hamiltonian if it has a Hamiltonian cycle.
We remark that it is NP-hard to determine whether a graph is Hamilto-

nian. This is in contrast with Eulerian graphs: to check if a graph is Eulerian,
we need only check if it is connected and whether all its vertices are of even
degree, which can obviously be done in polynomial time. Nevertheless, there
are a number sufficient conditions for Hamiltonicity, which can easily be
checked in polynomial time (see section 16.2 below).
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For a real number t > 0, a graph G is t-tough if for every set S ⫋ V (G),

the graph G \ S has at most max{1, |S|t } many components.1

Conjecture 16.1.1 (Chvátal). There exists some t > 0 such that every
t-tough graph is Hamiltonian.

The conjecture above remains open. We do have the following simple
proposition, though.

Proposition 16.1.2. Every Hamiltonian graph is 1-tough.

Proof. Let G be a Hamiltonian graph, and let S ⫋ V (G). Since G is
Hamiltonian, it is connected; so, if S = ∅, then G \ S = G has only one
component, and we are done. We may now assume that S ̸= ∅. Let C be a
Hamiltonian cycle in G. Clearly, C \ S is the disjoint union of at most |S|
many paths, and so C \ S has at most |S| many components. Since C is a
spanning subgraph of G,2 it is clear that G\S has no more components than
C \ S does.3 So, G \ S has at most |S| many components, and the result
follows.

16.2 Hamiltonian graphs and vertex degrees

As usual, for non-adjacent vertices x and y of a graph G, we denote by G+xy
the graph obtained from G by adding an edge between x and y.

Lemma 16.2.1. Let G be a graph, and let x and y be distinct, non-adjacent
vertices of G that satisfy dG(x) + dG(y) ≥ |V (G)|. Then G is Hamiltonian
if and only if G+ xy is Hamiltonian.

Proof. It is clear that if G is Hamiltonian, then so is G+ xy.4

Suppose now that G + xy is Hamiltonian; we must show that G is
Hamiltonian. Let C be a Hamiltonian cycle of G + xy. If xy /∈ E(C),
then C is a Hamiltonian cycle of G, and we are done. So, assume that
xy ∈ E(C). Now, consider the path C − xy = c1, . . . , cn, with c1 = x and
cn = y.5 Let Sx := {i | 1 ≤ i ≤ n − 1, xci+1 ∈ E(G)} and Sy := {i | 1 ≤

1Equivalently, for a real number t > 0, a graph G is t-tough if for every set S ⫋ V (G),

the graph G \ S either is connected or has at most |S|
t

many components.
2A spanning subgraph of a graph G is a subgraph of G that contains all vertices of G.
3Indeed, G \ S can be obtained from C \ S by possibly adding edges, and adding edges

cannot increase the number of components.
4Indeed, any Hamiltonian cycle of G is also a Hamiltonian cycle of G+ xy.
5Since C is a Hamiltonian cycle of G+ xy, we have that V (G) = V (C) = {c1, . . . , cn}.
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i ≤ n − 1, yci ∈ E(G)}. Note that |Sx| + |Sy| = dG(x) + dG(y) ≥ |V (G)|,
whereas |Sx ∪ Sy| ≤ |V (G)| − 1. So, Sx ∩ Sy ̸= ∅. Fix i ∈ Sx ∩ Sy. Since
x = c1 and y = cn are non-adjacent in G, we see that 2 ≤ i ≤ n−2. But now
x︸︷︷︸

=c1

, c2, . . . , ci, y︸︷︷︸
=cn

, cn−1, . . . , ci+1, x︸︷︷︸
=c1

is a Hamiltonian cycle of G, and so

G is Hamiltonian.

x = c1 y = cn

ci+1ci

The Chvátal closure of a graph G is the graph obtained by iteratively
adding edges between non-adjacent vertices x, y such that d(x) + d(y) ≥
|V (G)|, until no more such edges can be added. It is easy to see that the
Chvátal closure of a graph is uniquely defined (i.e. the order in which edges
are added does not matter).6

Theorem 16.2.2. A graph is Hamiltonian if and only if its Chvátal closure
is Hamiltonian.

Proof. This follows from Lemma 16.2.1 by an easy induction.

Theorem 16.2.3 (Ore). Let G be a graph on at least three vertices. Assume
that for all distinct, non-adjacent vertices x, y of G, we have that dG(x) +
dG(y) ≥ |V (G)|. Then G is Hamiltonian.

Proof. The Chvátal closure of G is the complete graph on |V (G)| vertices,
which (since |V (G)| ≥ 3) is clearly Hamiltonian. So, by Theorem 16.2.2, G
is also Hamiltonian.

Theorem 16.2.4 (Dirac). Let G be a graph on at least three vertices. If

δ(G) ≥ |V (G)|
2 , then G is Hamiltonian.

Proof. This is an immediate corollary of Theorem 16.2.3.

6Details?
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Let a = (a1, . . . , an) be a list (vector) of integers such that 0 ≤ a1 ≤
· · · ≤ an ≤ n− 1. A graph G on n vertices dominates a if for some ordering
v1, . . . , vn of the vertices of G, we have that dG(v1) ≥ a1, . . . , dG(vn) ≥ an.
We say that a is Hamiltonian if every n-vertex graph that dominates a is
Hamiltonian.

Theorem 16.2.5. Let n ≥ 3 be an integer, and let a = (a1, . . . , an) be a
sequence of integers such that 0 ≤ a1 ≤ · · · ≤ an ≤ n− 1. Then the following
are equivalent:

(a) for all indices i < n
2 , if ai ≤ i, then an−i ≥ n− i;

(b) a is Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose otherwise.
Then there exists a graph on n vertices that dominates a, but is not Hamil-
tonian; among all such graphs, let G be one with as many edges as possible.
Since G has at least three vertices and is not Hamiltonian, we see that G
is not complete. Fix distinct, non-adjacent vertices u, v ∈ V (G) such that
dG(u)+dG(v) is maximum; by symmetry, we may assume that dG(u) ≤ dG(v).
Then G + uv dominates a and has more edges than G, and so G + uv is
Hamiltonian. Let C be a Hamiltonian cycle in G + uv. Then uv ∈ E(C),
for otherwise, C would be a Hamiltonian cycle in G, contrary to the fact
that G is not Hamiltonian. We now consider the path C − uv = x1, . . . , xn,
with x1 = u and xn = v. Let S := {i | 1 ≤ i ≤ n − 1, uxi+1 ∈ E(G)};
clearly, s := |S| = dG(u). If there exists some i ∈ S such that vxi ∈ E(G),7

then x1︸︷︷︸
=u

, x2, . . . , xi, xn︸︷︷︸
=v

, xn−1, . . . , xi+1, x1︸︷︷︸
=u

is a Hamiltonian cycle in G,

contrary to the fact that G is not Hamiltonian.

u = x1 v = xn

xi+1xi

So, no such i exists, and it follows that dG(v) ≤ n − 1 − s. But now
dG(u) + dG(v) ≤ s+ (n − 1 − s) = n − 1; since dG(u) ≤ dG(v), we deduce
that dG(u) <

n
2 , and so s < n

2 . Further, by the maximality of dG(u) + dG(v),

7Note that 2 ≤ i ≤ n− 2, since uv /∈ E(G).
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we see that for all i ∈ S, we have that dG(xi) ≤ dG(u) = s.8 So, at least s
vertices of G (i.e. all the xi’s with i ∈ S) have degree at most s < n

2 in G,
and it follows that a1, . . . , as ≤ s < n

2 .
9 But since as ≤ s < n

2 , (a) guarantees
that an−s ≥ n − s; but now n − s ≤ an−s ≤ · · · ≤ an, i.e. at least s + 1
vertices of G have degree at least n − s. Since dG(u) = s, we see that u
is non-adjacent to at least one of these s + 1 vertices, call it y. But now
dG(u) + dG(y) ≥ s+ (n− s) = n > n− 1 ≥ dG(u) + dG(v), contrary to the
maximality of dG(u) + dG(v). So, (b) holds.

Suppose now that (a) does not hold; we must show that (b) does not hold
either.10 Since (a) does not hold, there exists some index i < n

2 such that
ai ≤ i and an−i ≤ n− i− 1. Let G be the graph with vertex set {v1, . . . , vn},
with adjacency as follows:

� {vi+1, . . . , vn} is a clique;

� {v1, . . . , vi} is complete to {vn−i+1, . . . , vn};11

� there are no other edges in G.

The graph G is represented below.

vi+1

vn−i

vn−i+1

vn

v1

vi

...

...

...

stable set clique

Then

� dG(v1) = · · · = dG(vi) = i ≥ ai ≥ · · · ≥ a1;

� dG(vi+1) = · · · = dG(vn−i) = n− i− 1 ≥ an−i ≥ · · · ≥ ai+1;

8Here, we are using the fact that v is non-adjacent to all vertices xi with i ∈ S.
9We are using the fact that a1 ≤ · · · ≤ an, and that G dominates a.

10So, we must exhibit an n-vertex graph that dominates a and is not Hamiltonian.
11This means that all possible edges between {v1, . . . , vi} and {vn−i+1, . . . , vn} are

present.
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� dG(vn−i+1) = · · · = dG(vn) = n− 1 ≥ an ≥ · · · ≥ an−i+1.

So, G dominates a. On the other hand, G \ {vn−i+1, . . . , vn} has i + 1
components, and so G is not 1-tough; so, by Proposition 16.1.2, G is not
Hamiltonian, and it follows that (b) does not hold.

16.3 Number of Hamiltonian cycles

Lemma 16.3.1. Let G be a graph in which all vertices are of odd degree.
Then every edge of G belongs to an even number of Hamiltonian cycles.12 In
particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at
least two Hamiltonian cycles.

Proof. Let e = xy be an edge of G; we must show that e belongs to an even
number of Hamiltonian cycles of G.

A lollipop is a connected subgraph H of G such that V (H) = V (G),13

e ∈ E(H), and H satisfies one of the following:

(1) H is a cycle;

(2) dH(x) = 1, H has one vertex of degree three, and all other vertices of
H are of degree two.

Note that lollipops satisfying (1) are precisely the Hamiltonian cycles of G
that contain the edge e. On the other hand, in case (2), H consists of a
cycle, plus a path that has exactly one vertex in common with the cycle,
and furthermore, x is the endpoint of this path that does not belong to the
cycle. The two types of lollipop are represented below (the edge e = xy is in
blue).14

12It is possible that an edge of G does not belong to any Hamiltonian cycles of G, and
indeed, it is possible that G is not Hamiltonian: zero is an even number.

13So, H is a spanning subgraph of G.
14In case (2), it is possible that y is in fact the unique vertex of H of degree three.
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x

y

x

y

(1) (2)

e

e

If H is a lollipop that satisfies (1), then H has a unique tail, namely the
unique edge of H incident with x and distinct from e. On the other hand, if
H is a lollipop that satisfies (2), then H has two tails, namely, the two edges
of the unique cycle of H that are incident with the unique vertex of degree
three in H. (In the picture above the tails are in red.)

We now form an auxiliary graph L, as follows. The vertices of L are the
lollipops. Two lollipops, H1 and H2, are adjacent in L if and only if there
exist tails e1 of H1 and e2 of H2 such that H1 − e1 = H2 − e2.

15

Our goal is to show that the odd-degree vertices of the auxiliary graph L
are precisely the lollipops satisfying (1). This is enough because the number
of odd-degree vertices in L is even,16 and the lollipops satisfying (1) are

15For example, in the picture below, if Hi (for i ∈ {1, 2}) consists of the blue and black
edges, plus the red edge ei (but not the edge e3−i), then lollipops H1 and H2 are adjacent
in L.

x

y

e1

e2

e

16Indeed, every graph has an even number of odd-degree vertices. This follows from the
fact that the sum of degrees in any graph is even (because it is equal to twice the number
of edges).
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precisely the Hamiltonian cycles of G that contain the edge e.
Suppose that H = x, y, u1, . . . , ut, z, x (t ≥ 0) is a lollipop satisfying (1),

i.e. H is a Hamiltonian cycle of G containing e. Then xz is the unique tail of
H, and the neighbors of H in L are precisely the graphs that can be obtained
from H − xz by adding an edge between z and a vertex in NG(z) \NH(z).
So, dL(H) = |NG(z) \NH(z)| = dG(z)− 2; since dG(z) is odd,

17 so is dL(H).
Suppose now that H is a lollipop satisfying (2); let z, u1, . . . , ut, z (t ≥ 2)

be the unique cycle of H, where z is the unique vertex of degree three in H.
Then the lollipop H has two tails, namely zu1 and zut, and the neighbors of
H in L are precisely the graphs that an be obtained in one of the following
two ways:

� by starting with H − zu1, and then adding an edge between u1 and
NG(u1) \ {z, u2};

� by starting with H − zut, and then adding an edge between ut and
NG(ut) \ {z, ut−1}.

So, dL(H) = (dG(u1)− 2) + (dG(ut)− 2) = dG(u1) + dG(ut)− 4. Since all
vertices of G have odd degree, we deduce that dL(H) is even.

We have now shown that the odd-degree vertices of our auxiliary graph
L are precisely the lollipops satisfying (1). This completes the argument.

Theorem 16.3.2. Let G be a Hamiltonian graph, all of whose vertices are
of odd degree. Then G has at least three Hamiltonian cycles.

Proof. Let C1 be a Hamiltonian cycle of G, and let e be some edge of C1.
Then by Lemma 16.3.1, there exists a Hamiltonian cycle C2 ̸= C1 that
also contains the edge e. Since C1, C2 are distinct Hamiltonian cycles, we
see that there exists an edge e1 ∈ E(C1) \ E(C2); but then Lemma 16.3.1
guarantees that there exists a Hamiltonian cycle C3 ̸= C1 that contains e1.
Since e1 ∈ E(C3) \ E(C2), we see that C3 ̸= C2. But now C1, C2, C3 are
pairwise distinct Hamiltonian cycles of G.

We note that the bound from Theorem 16.3.2 is best possible: indeed, K4

has precisely three Hamiltonian cycles (see the picture below; the Hamiltonian
cycles are in red).

17By hypothesis, all vertices of G are of odd degree.
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Chapter 17

Burnside’s lemma and
applications

17.1 Groups

A group is a set G, together with a binary operation ◦, satisfying the following
properties:

� ◦ is associative, i.e. for all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3);

� there exists some e ∈ G, called the identity element, such that for all
g ∈ G, e ◦ g = g ◦ e = g;

� for all g ∈ G, there exists some g′ ∈ G, called the inverse of g, such
that g ◦ g′ = g′ ◦ g = e.

Usually, for g1, g2 ∈ G, we write “g1g2” instead of “g1 ◦ g2.” It is easy to
show that the identity element is unique;1 typically, this identity element is
denoted by 1G, or simply 1. Furthermore, it can be shown that each element

1Indeed, suppose e1, e2 are identity elements of G. Then e1e2 = e1 (because e2 is an
identity element), and e1e2 = e2 (because e1 is an identity element). So, e1 = e2.
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of G has a unique inverse;2 the unique inverse of an element g ∈ G is usually
denoted by g−1.

For a set X, Sym(X) is the group of all permutations of X;3 the group
operation is the composition of functions, and the identity element is the
identity function on X, denoted by IdX .4 For a positive integer n, the group
of permutations of the set {1, . . . , n} is denoted by Sym(n) or Symn. A
permutation π ∈ Sym(n) can be denoted by(

1 2 . . . n
π(1) π(2) . . . π(n)

)
.

Recall that each permutation in Sym(n) can be represented as a composition
of disjoint cycles. For example, the following permutation in Sym(5)(

1 2 3 4 5
4 5 1 3 2

)
can be represented as (143)(25). Cycles of length one are usually omitted
(when n is clear from context). For example, in Sym(5), instead of (124)(3)(5),
we typically write simply (124).

17.2 Group actions and Burnside’s lemma

A left action (or simply action) of a group G on a set X is a function
a : G×X → X that satisfies the following two properties:

� for all x ∈ X, a(1G, x) = x.

� for all g1, g2 ∈ G and x ∈ X, a(g1, a(g2, x)) = a(g1g2, x).

2Indeed, fix g ∈ G, and suppose that g1, g2 ∈ G are inverses of g. Then

g1 = g11G because 1G is the identity element

= g1(gg2) because g2 is an inverse of g

= (g1g)g2 because ◦ is associative

= 1Gg2 because g1 is an inverse of g

= g2 because 1G is an identity element,

which is what we needed.
3A permutation of X is a bijection from X to itself.
4That is, IdX : X → X satisfies IdX(x) = x for all x ∈ X.
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Often, instead of a(g, x), we write simply g · x. So, using this notation, the
axioms above become:

� for all x ∈ X, 1G · x = x.

� for all g1, g2 ∈ G and x ∈ X, g1 · (g2 · x) = (g1g2) · x.

Note that these axioms imply that, for all g ∈ G and x, y ∈ X, if g · x = y,
then g−1 · y = x.5

Example 17.2.1. Any group G acts on itself in a natural way: for all g ∈ G
and x ∈ G,6 we set g · x = gx.

Given an action a : G×X → X of a group G on a set X, and an element
g ∈ G, we define a function ag : X → X by setting ag(x) = a(g, x) for
all x ∈ X. As our next proposition shows, ag is simply a permutation of
X. So, we can think of group action as a collection of permutations (one
permutation of the set X for each member g of the group G), which must
satisfy certain additional properties (as in the definition of group action).

Proposition 17.2.2. Let a : G×X → X be an action of a group G on a
set X. Then for all g ∈ G, the function ag is a permutation of X.

Proof. Fix g ∈ G, and consider its inverse g−1. Then for all x ∈ X, we have
that

ag−1 ◦ ag(x) = a(g−1, a(g, x))

= a(g−1g, x)

= a(1G, x)

= x,

and so ag−1 ◦ ag = IdX . A completely analogous argument shows that
ag ◦ ag−1 = IdX . So, ag : X → X is a bijection with inverse ag−1 , and the
result follows.

We remark that a converse of sorts of Proposition 17.2.2 also holds: for
any set X and any permutation π of X, there is a group G, an action a of G
on X, and an element g ∈ G such that ag = π. Indeed, for fixed X and π,
we set G := Sym(X) (the group operation is the composition of functions),

5Indeed, if g · x = y, then g−1 · y = g−1 · (g · x) = (g−1g) · x = 1G · x = x.
6Here, X = G.
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we define a : G × X → X by (σ, x) 7→ σ(x), and we set g := π. Then for
all x ∈ X, we have that ag(x) = aπ(x) = a(π, x) = π(x), and so ag = π.
So, the study of group actions is essentially the same as the study of set
permutations.

Example 17.2.3. Consider a cube in R3, and let Rcube be the group of
rotations of R3 that map this cube to itself. (Here, the group operation is the
composition of functions/rotations, and the identity element is the identity
function on R3.) The group Rcube acts on the faces of the cube in a natural
way: for each rotation r ∈ Rcube and each face f of the cube, r · f is the face
of the cube to which the rotation r maps/moves the face f . We note that
|Rcube| = 24. Indeed, the rotations in Rcube are as follows:

� the identity function;

� nine rotations about an axis passing though centers of opposite faces of
the cube (there are three choices of axis, and for each choice, we can
rotate by 90◦, 180◦, or 270◦);

� six rotations about an axis passing through centers of opposite edges
of the cube (there are six choices of axis, and for each choice, we can
rotate only by 180◦);
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� eight rotations around axes passing through opposite vertices of the
cube (there are four choices of axis, and in each case, we can rotate by
120◦ or 240◦).

We now need a few definitions. Suppose that a is an action of a group G
on a set X. Then

� for each g ∈ G, a fixed point of g is any x ∈ X such that g · x = x, and
we set Xg := {x ∈ X | g · x = x};7

� for each x ∈ X, we define the stabilizer of x to be Gx := {g ∈ G |
g · x = x};

� for each x ∈ X, we define the orbit of x to be G · x := {g · x | g ∈ G}.8

Proposition 17.2.4. Let a be an action of a group G on a set X. Then

� for all x ∈ X, we have that x ∈ G · x;
7So, Xg is the set of all fixed points of g (with respect to the action a).
8So, the orbit of x is the set of all elements of x that G can “move” x to.
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� the orbits of the action a form a partition of X.

Proof. First, since 1G · x = x, we see that x ∈ G · x. In particular, each
element of X belongs to some orbit. It remains to show that any two distinct
orbits are disjoint. So, fix x1, x2 ∈ X; we must show that G · x1 and G · x2
are either equal or disjoint. Suppose that G · x1 and G · x2 are not disjoint;
we claim that G · x1 = G · x2. We will show that G · x1 ⊆ G · x2; the
proof of the reverse inclusion is analogous. Fix some y ∈ (G · x1) ∩ (G · x2).
Then there exist g1, g2 ∈ G such that y = g1 · x1 and y = g2 · x2; so,
g1 · x1 = g2 · x2. But then x1 = (g−1

1 g2) · x2.9 Now, for all g ∈ G, we have
that g · x1 = g · ((g−1

1 g2) · x2) = (gg−1
1 g2) · x2, and so g · x1 ∈ G · x2. Thus,

G · x1 ⊆ G · x2, and we are done.

Given an action a of a group G on a set X, we denote by X/G the
partition of X into orbits of a. So, |X/G| is the number of orbits of a.

Next, given an action a of a group G on a set X, and given x, y ∈ X,
we set Ma(x, y) := {g ∈ G | g · x = y}. Note that Ma(x, x) = Gx, and that
Ma(x, y) ̸= ∅ if and only if y ∈ G · x.

Lemma 17.2.5. Let a be an action of a finite group G on a finite set X,
and let x ∈ X. Then for all y ∈ G · x, we have that |Ma(x, y)| = |Gx|.

Proof. Fix y ∈ G · x, and fix any gy ∈ G such that gy · x = y. We now define
a function f : G → G by setting f(g) = gyg for all g ∈ G; since G is a group,
f is one-to-one. Now, our goal is to show that f [Gx] = Ma(x, y); since f is
one-to-one, this will imply that |Ma(x, y)| = |f [Gx]| = |Gx|, which is what
we need.

First, fix g ∈ Gx. Then f(g) · x = (gyg) · x = gy · (g · x) = gy · x = y, and
so f(g) ∈ Ma(x, y). Thus, f [Gx] ⊆ Ma(x, y).

On the other hand, fix any g′ ∈ Ma(x, y). Then g′ · x = y, and so
(g−1

y g′) · x = g−1
y · (g′ · x) = g−1

y · y = g−1
y · (gy · x) = (g−1

y gy) · x = 1G · x = x;
consequently, g−1

y g′ ∈ Gx. But f(g
−1
y g′) = gy(g

−1
y g′) = (gyg

−1
y )g′ = 1Gg

′ =
g′, and so Ma(x, y) ⊆ f [Gx].

We have now shown that f [Gx] = Ma(x, y), and we are done.

As an easy corollary of Lemma 17.2.5, we get the following theorem.

The orbit-stabilizer theorem. Let a be an action of a finite group G on
a finite set X. Then for all x ∈ X, we have that |G · x| = |G|

|Gx| .

9Indeed, x1 = 1G · x1 = (g−1
1 g1) · x1 = g−1

1 · (g1 · x1) = g−1
1 · (g2 · x2) = (g−1

1 g2) · x2.
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Proof. Fix x ∈ X, and note that sets of the form Ma(x, y), with y ∈ G · x,
form a partition of G,10 and so

|G| = |
⋃

y∈G·x
Ma(x, y)|

=
∑

y∈G·x
|Ma(x, y)|

=
∑

y∈G·x
|Gx| by Lemma 17.2.5

= |G · x||Gx|,

and the result follows.

Lemma 17.2.6. Let a be an action of a finite group G on a finite set X.
Then

|X/G| =
∑
x∈X

1
|G·x| .

Proof. Set t := |X/G|, and let O1, . . . , Ot be the orbits of the action a. Then
by Proposition 17.2.4, we have that

� (O1, . . . , Ot) is a partition of X;

� for all i ∈ {1, . . . , t} and x ∈ Oi, G · x = Oi.
11

We now compute

∑
x∈X

1
|G·x| =

t∑
i=1

∑
x∈Oi

1
|G·x| =

t∑
i=1

∑
x∈Oi

1
|Oi| = t,

which is what we needed.

We are now ready to state and prove Burnside’s lemma, which (roughly)
states that the number of orbits of an action is equal to the average number
of fixed points.

10That is: for all distinct y1, y2 ∈ G · x, we have that Ma(x, y1) ∩Ma(x, y2) = ∅, and⋃
y∈G·x Ma(x, y) = G.
11Indeed, by definition, G · x is equal to one of the orbits O1, . . . , Ot. Since (O1, . . . , Ot)

form a partition of X (by Proposition 17.2.4), it suffices to show that G · x and Oi have
a non-empty intersection. But by Proposition 17.2.4 and the choice of Oi, we have that
x ∈ (G · x) ∩Oi, and so (G · x) ∩Oi ̸= ∅.
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Burnside’s lemma. Let a be an action of a finite group G on a finite set
X. Then

|X/G| = 1
|G|
∑
g∈G

|Xg|.

Proof. Let F := {(g, x) ∈ G×X | g · x = x}. We will count |F | in two ways.
On the one hand, for all g ∈ G and x ∈ X, we have that (g, x) ∈ F if

and only if x ∈ Xg; so,
|F | =

∑
g∈G

|Xg|.

On the other hand, for all g ∈ G and x ∈ X, we have that (g, x) ∈ F if
and only if g ∈ Gx, and so

|F | =
∑
x∈X

|Gx|

=
∑
x∈X

|G|
|G·x| by the orbit-stabilizer theorem

= |G|
∑
x∈X

1
|G·x| .

But now
|G|

∑
x∈X

1
|G·x| = |F | =

∑
g∈G

|Xg|,

and consequently, ∑
x∈X

1
|G·x| = 1

|G|
∑
g∈G

|Xg|.

But by Lemma 17.2.6, |X/G| =
∑
x∈X

1
|G·x| , and the result follows.

17.3 Applications of Burnside’s lemma

Example 17.3.1. Let Rcube be the group of rotations of the cube, as in
Example 17.2.3, and let k be a positive integer. Let Bk be the set of all
colorings of the faces of the cube using the color set {1, . . . , k}. Then Rcube

acts on the set Bk in the natural way: a rotation r ∈ Rcube maps each element
of Bk to an appropriately rotated coloring. Two colorings of the cube are
equivalent if one can be transformed into the other by a rotation in Rcube.
Compute the number of non-equivalent colorings of the cube using the color
set {1, . . . , k}.
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Solution. Two colorings of the cube using the color set {1, . . . , k} are equiva-
lent if and only if they belong to the same orbit of our group action. So, the
number of non-equivalent colorings of the cube using the color set {1, . . . , k}
is precisely equal to the number of orbits of our action of Rcube on Bk, which
we will compute using Burnside’s lemma. We know that |Rcube| = 24 (see
Example 17.2.3), and for each r ∈ Rcube, we compute |Br

k|, the number of
fixed points of the rotation r, as follows.

� If r is the identity rotation, then |Br
k| = |Bk| = k6.

� If r is a rotation by 90◦ or 270◦ about an axis passing though the center
of opposite faces (there are a total of six such r’s), then r fixes precisely
the colorings in which the faces not pierced by the axis have the same
color. So, we choose one of k colors for one of the faces pieced by the
axis, one of k colors for the other face pierced by the axis, and one of
k colors for all the remaining four faces. In total, we get |Br

k| = k3.

� If r is a rotation by 180◦ about an axis passing though the center of
opposite faces (there are a total of three such r’s), then r fixes exactly
the the colorings for which the opposite faces that are not pierced by
the axis have the same color. There are two pairs of opposite faces not
pierced by our axis, and it follows that |Br

k| = k4.

� If r is a rotation by 180◦ about an axis passing though the center of
opposite edges (there are a total of six such r’s), then r fixes exactly
the colorings for which the two opposite faces not incident with the
edges pierced by the axis have the same color, and in which, for each
pierced edge, the two faces incident with this edge have the same color.
So, |Br

k| = k3.

� Finally, if r is a rotation by 120◦ or 240◦ about an axis passing though
opposite vertices (there are a total of eight such r’s), then r fixes exactly
the colorings for which the three incident faces with each of the pierced
vertices have the same color. So, |Br

k| = k2.

So, by Burnside’s lemma and Example 17.2.3, the total number of orbits of
our action (and therefore, the total number of non-equivalent colorings) is

1
|Rcube|

∑
r∈Rcube

|Br
k| = k6+6k3+3k4+6k3+8k2

24 = k6+3k4+12k3+8k2

24 .
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We now need a definition. For a graph G, a vertex x ∈ V (G), and a set
Y ⊆ V (G) \ {x}, we say that x is complete (resp. anticomplete) to Y in G
provided that x is adjacent (resp. non-adjacent) to all vertices of Y in G.
For a graph G and disjoint sets X,Y ⊆ V (G), we say that X is complete
(resp. anticomplete) to Y in G provided that every vertex of X is complete
(resp. anticomplete) to Y in G.12

Example 17.3.2. Find the number of non-isomorphic graphs on five vertices.

Solution. Let X be the set of all graphs on the vertex set {1, . . . , 5}. We let
Sym(5) act on X in the natural way: given a graph G ∈ X and a permutation
π ∈ Sym(5), we let π ·G be the graph with vertex set {1, . . . , 5}, in which
distinct vertices i, j ∈ {1, . . . , 5} are adjacent if and only if π−1(i) and π−1(j)
are adjacent in G.13 An example is shown below.

π = (123)(45)

1

2 3

4

5

G

2

3 1

5

4

π ·G

Clearly, two graphs in X are isomorphic if and only if they belong to the
same orbit of this action. So, the number of non-isomorphic graphs on five
vertices is equal to the number of orbits of our action. We will compute the
number of orbits using Burnside’s lemma.

Clearly, |Sym(5)| = 5!. We compute the number of fixed points of a
permutation π ∈ Sym(5) according to the cycle structure of π.

� If π is the identity function, then π fixes all elements of X, i.e. |Xπ| =
|X| = 2(

5
2) = 210.

� If π = (ab), for distinct a, b ∈ {1, . . . , 5} (note: there are
(
5
2

)
= 10 such

π’s), then π fixes precisely the graphs G ∈ X such that NG(a) \ {b} =
NG(b) \ {a}. So, we can freely select the neighbors of a (the neighbors
of b are then forced), and we can choose adjacency between vertices in
{1, . . . , 5}\{a, b} arbitrarily. There are 24 ways to choose the neighbors

12So, if X is complete to Y , then all possible edges between X and Y are present; if X
is anticomplete to Y , then there are no edges between X and Y .

13Equivalently: π ·G has the same vertex set as G; each edge ij of G turns into an edge
π(i)π(j) of π ·G; and each non-edge ij of G turns into a non-edge π(i)π(j) of π ·G.
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of a, and there are 2(
3
2) = 23 ways to choose adjacency between vertices

in {1, . . . , 5} \ {a, b}. So, |Xπ| = 24 · 23 = 27.

� If π = (ab)(cd) for pairwise distinct a, b, c, d ∈ {1, . . . , 5} (note: there
are 15 such π’s), then π fixes precisely the graphs G ∈ X satisfying the
following three properties:

– ac is an edge if and only if bd is an edge,

– ad is an edge if and only if bc is an edge,

– the fifth vertex ofG (i.e. the unique vertex in {1, . . . , 5}\{a, b, c, d})
is adjacent to a if and only if it is adjacent to b, and is adjacent
to c if and only if it is adjacent to d.

So, |Xπ| = 26.

� If π = (abc), for pairwise distinct a, b, c ∈ {1, . . . , 5} (note: there are
20 such π’s), then π fixes precisely the graphs G ∈ X in which {a, b, c}
is either a clique or a stable set, and each of the remaining two vertices
(i.e. vertices in {1, . . . , 5} \ {a, b, c}) is either complete or anticomplete
to {a, b, c}. So, |Xπ| = 24.

� If π = (abc)(de), for pairwise distinct a, b, c, d, e ∈ {1, . . . , 5} (note:
there are 20 such π’s), then π fixes precisely the graphs G ∈ X in
which {a, b, c} is either a clique or a stable set, and {a, b, c} is either
complete or anticomplete to {d, e}. So, |Xπ| = 23.

� If π = (abcd), for pairwise distinct a, b, c, d ∈ {1, . . . , 5} (note: there
are 30 such π’s), then π fixes precisely the graphs G ∈ X in which all
the following hold:

– ab, bc, cd, da are either all edges or all non-edges,

– ac and bd are either both edges or both non-edges,

– the fifth vertex ofG (i.e. the unique vertex in {1, . . . , 5}\{a, b, c, d})
is either complete or anticomplete to {a, b, c, d}.

So, |Xπ| = 23.

� If π = (abcde), for pairwise distinct a, b, c, d, e (note: there are 24
such π’s), then π fixes precisely the graphs G ∈ X in which both the
following hold:

– ab, bc, cd, de, ea are either all edges or all non-edges,
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– ac, bd, ce, da, eb are either all edges or all non-edges.

So, |Xπ| = 22.

Now, by Burnside’s lemma, we see that the number of orbits of our action is

|X/Sym(5)| = 1
|Sym(5)|

∑
π∈Sym(5)

|Xπ|

= 1
5!

(
210 + 10 · 27 + 15 · 26 + 20 · 24 + 20 · 23 + 30 · 23 + 24 · 22

)
= 34.

So, there are 34 non-isomorphic graphs on five vertices.

17.4 Pólya enumeration theorem

Our goal in this section is to compute the number of different colorings of
certain objects, up to symmetry. The symmetry will be determined by an
appropriate group action.

A subgroup of a group G is a subset of G that is a group under the
operation inherited from G. Note that every group is a subgroup of itself, as
is the one-element group consisting only of the identity element.

Let X be a set of size n, and let G be a subgroup of Sym(X). Each
element of G can be represented as a composition of disjoint cycles, the sum
of whose lengths is n. Now, for g ∈ G and k ∈ {1, . . . , n}, we denote by
jk(g) the number of cycles of length k, when g is written as a composition

of disjoint cycles.14 For g ∈ G, we set xcs(g) := x
j1(g)
1 x

j2(g)
2 . . . x

jn(g)
n . Finally,

the cycle index of the group G is

ZG(x1, . . . , xn) := 1
|G|
∑
g∈G

xcs(g).

Example 17.4.1. Compute cycle index of the group Sym(2).

Solution. Here, using the notation from the definition of a cycle index, we
have that X = {1, 2} and n = 2. Moreover, we have that Sym(2) =
{(1)(2), (12)}, and clearly,

� xcs
(
(1)(2)

)
= x21x

0
2 = x21;

14For example, if n = 7 and g = (124)(35)(6)(7), then j1(g) = 2, j2(g) = 1, j3(g) = 1,
and j4(g) = j5(g) = j6(g) = j7(g) = 0. Do not forget to count cycles of length one!
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� xcs
(
(12)
)
= x01x

1
2 = x2.

So,

ZSym(2)(x1, x2) =
x2
1+x2

2 .

Example 17.4.2. Compute cycle index of the group Sym(3).

Solution. Here, using the notation from the definition of a cycle index, we
have that X = {1, 2, 3} and n = 3. Sym(3) has one element that is a
composition of three 1-cycles; it has three elements that are a composition
of one 2-cycle and one 1-cycle; and it has two elements that consist of one
3-cycle. So,

ZSym(3)(x1, x2, x3) =
x3
1+3x1x2+2x3

6 .

Recall that for a set X,
(
X
2

)
is the set of all 2-element subsets of X.

For each positive integer n and permutation π ∈ Sym(n), we define a
permutation π′ on the set

({1,...,n}
2

)
by setting π′({i, j}) = {π(i), π(j)}, and

we set Sym′(n) = {π′ | π ∈ Sym(n)}. It is easy to check that Sym′(n) is a

subgroup of Sym
(({1,...,n}

2

))
. In particular, every permutation in Sym′(n)

can be represented as a composition of disjoint cycles, the sum of whose
lengths is

(
n
2

)
.

Example 17.4.3. Compute the cycle index of the group Sym′(5).

Solution. We remark that
(
5
2

)
= 10, and so each permutation in Sym′(5) can

be represented as a composition of disjoint cycles, the sum of whose lengths
is 10.

We analyze the cycle structure of permutations in Sym(5): given the
cycle structure of a permutation π ∈ Sym(5), we describe the cycle structure
of π′. If we, in addition, keep track of the number of permutations of each
type in Sym(5), we can easily find the cycle index of Sym′(5).

� There is one permutation π in Sym(5) (namely, the identity permuta-
tion) of the form (a)(b)(c)(d)(e). For such a π, we have that π′ is the
composition of ten cycles of length one. So, xcs(π

′) = x101 .

� There are 10 permutations π in Sym(5) of the form (ab)(c)(d)(e). For
such a π, we see that π′ has three cycles of the length two (these cycles
are of the form ({a, x}, {b, x}), with x /∈ {a, b}), and it has four cycles
of length one. So, xcs(π

′) = x41x
3
2.
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� There are 15 permutation π in Sym(5) of the form (ab)(cd)(e). For
such a π, we see that π′ has exactly two cycles of length one (namely,
({a, b}) and ({c, d})), and the remaining cycles of π′ (four of them) are
of length two. So, xcs(π

′) = x21x
4
2.

� There are 20 permutations π in Sym(5) of the form (abc)(d)(e). For
such a π, we see that π′ has one cycle of length one (namely, ({d, e})),
and the remaining cycles of π′ (three of them) are of length three. So,
xcs(π

′) = x1x
3
3.

� There are 20 permutations π in Sym(5) of the form (abc)(de). For
such a π, we see that π′ has one cycle of length one (namely, ({d, e})),
one cycle of length three (namely, ({a, b}, {b, c}, {c, a})), and one cycle
of length six (containing all the remaining elements of

({1,...,5}
2

)
). So,

xcs(π
′) = x1x3x6.

� There are 30 permutations π in Sym(5) of the form (abcd)(e). For such
a π, we see that π′ has two 4-cycles (namely, ({a, e}, {b, e}, {c, e}, {d, e})
and ({a, b}, {b, c}, {c, d}, {d, a})) and one 2-cycle (namely, ({a, c}, {b, d})).
So, xcs(π

′) = x2x
2
4.

� There are 24 permutations π in Sym(5) of the form (abcde). For such a
π, we see that π′ has two 5-cycles (namely, ({a, b}, {b, c}, {c, d}, {d, e}, {e, a})
and ({a, c}, {b, d}, {c, e}, {d, a}, {e, b})). So, xcs(π′) = x25.

Since |Sym′(5)| = |Sym(5)| = 5! = 120, we now see that

ZSym′(5)(x1, . . . , x10)

= 1
120

(
x101 + 10x41x

3
2 + 15x21x

4
2 + 20x1x

3
3 + 20x1x3x6 + 30x2x

2
4 + 24x25

)
.

We now need a couple more definitions. Suppose that C = {c1, . . . , ck}
is some set of colors, and G is a subgroup of Sym(X) acting on a finite set
X in the natural way, i.e. for π ∈ G and x ∈ X, we have π · x = π(x). Let C
be the set of all colorings of X using the color set C (formally, C is simply
the set of all functions from X to C). Then G acts on C in the natural way:
for all π ∈ G, c ∈ C, and x ∈ X, we set (π · c)(x) = c(π−1 · x);15 the idea is
that π · c should assign to x the color that c assigned to the element of X

15Let us check that this is really a group action. For c ∈ C and x ∈ X, we have that
(1G · c)(x) = c(1−1

G · x) = c(1G · x) = c(x), and it follows that 1G · c = c. Further, for
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that got “moved” to x via π, i.e. to the element π−1 · x. Two colorings are
equivalent if one can be transformed into the other via our group action, i.e.
if they belong to the same orbit of our action. Now, let D ⊆ C.

� The coloring inventory of D is a polynomial in c1, . . . , ck, which is
the sum of terms of the form cd11 . . . cdkk , and the coefficient in front

of the term cd11 . . . cdkk is the number of colorings in D that, for each
i ∈ {1, . . . , k}, assign color ci to precisely di elements of X.

� The pattern inventory of D is a polynomial in c1, . . . , ck, which is the
sum of terms of the form cd11 . . . cdkk , and the coefficient in front of the

term cd11 . . . cdkk is the number of non-equivalent colorings in D that,
for each i ∈ {1, . . . , k}, assign color ci to precisely di elements of X.

Lemma 17.4.4. Let C = {c1, . . . , ck} be a set of colors, let X be a finite set
of size n, and let G be a subgroup of Sym(X), acting on X in the natural
way.16 Let C be the set of all colorings of X with colors from C, and let G
act on C in the natural way.17 Then for all π ∈ G, the coloring inventory of
Cπ (the set of fixed points of π in C) is the polynomial pπ(c1, . . . , ck) obtained
by substituting

∑k
i=1 c

r
i for each xr in xcs(π).18

Proof. We write π as a product of disjoint cycles, and we set up a correspon-
dence between the cycles of π and the terms in the product xcs(π),19 in such

π1, π2 ∈ G, c ∈ C, and x ∈ X, we have that

(π1 · (π2 · c))(x) = (π2 · c)(π−1
1 · x)

= c(π−1
2 · (π−1

1 · x))

= c((π−1
2 π−1

1 ) · x)

= c((π1π2)
−1 · x)

= ((π1π2) · c)(x);

so, π1 · (π2 · c) = (π1π2) · c. Thus, this is indeed a group action on C.
16This means that for all π ∈ Sym(X) and x ∈ X, we have that π · x = π(x).
17That is, for all π ∈ G, c ∈ C, and x ∈ X, we set (π · c)(x) = c(π−1 · x).
18For example, if C = {c1, c2}, X = {1, . . . , 7}, G = Sym(7), and π = (125)(36)(47),

then xcs(π) = x2
2x3; if we substitute

∑k
i=1 c

r
i = cr1 + cr2 for each xr in xcs(π), then we get

pπ(c1, c2) = (c21 + c22)
2(c31 + c32) = c71 + 2c51c

2
2 + c41c

3
2 + c31c

4
2 + 2c21c

5
2 + c72.

19Here, xdi
i is understood as a term of di different terms (namely, di copies of xi), and

not as a single term.
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a way that a cycle of length r corresponds to an xr term.20 Then a coloring
c ∈ C is a fixed point of π if and only if, for each cycle of π, c assigns the same
color to each element of X in the cycle. We can choose colors independently
for each cycle. Now, if we substitute

∑k
i=1 c

r
i for each xr in xcs(π), then each

r-cycle of π has a corresponding term of the form
∑k

i=1 c
r
i ; selecting color

ci for all elements of the r-cycle is equivalent to choosing the summand cri
from the corresponding term

∑k
i=1 c

r
i in the product defining the polynomial

pπ(c1, . . . , ck). It follows that the number of ways that we can color X in
such a way that π fixes the coloring, and that there are precisely di elements
of X colored ci (for each i ∈ {1, . . . , k}) is precisely the coefficient in front
of the summand cd11 . . . cdkk in the polynomial pπ(c1, . . . , ck). The result now
follows.

Pólya enumeration theorem. Let C = {c1, . . . , ck} be a set of colors, let
X be a finite set of size n, and let G be a subgroup of Sym(X), acting on X
in the natural way.21 Let C be the set of all colorings of X with colors from
C, and let G act on C in the natural way.22 Then the pattern inventory of C
is ZG(

∑k
i=1 ci,

∑k
i=1 c

2
i , . . . ,

∑k
i=1 c

n
i ).

Proof. Fix a vector d = (d1, . . . , dk) with non-negative integer entries, and
let Cd be the set of all colorings in C in which, for each i ∈ {1, . . . , n}, the
number of elements of X receiving color ci is precisely di.

23 Then Cd is the
union of some orbits of the action of G on C, and so in fact, G acts on Cd as
well. By Burnside’s lemma, we have that

|Cd/G| = 1
|G|
∑
π∈G

|Cπ
d|.

and consequently,

|Cd/G| cd11 . . . cdkk = 1
|G|
∑
π∈G

|Cπ
d| c

d1
1 . . . cdkk .

Now we sum up over all possible choices of the vector d = (d1, . . . , dk), and
we get24 ∑

d

|Cd/G| cd11 . . . cdkk =
∑
d

1
|G|
∑
π∈G

|Cπ
d| c

d1
1 . . . cdkk ,

20For example, if π = (125)(36)(47), then xcs(π) = x2
2x3, and we can set up a correspon-

dence (125) 7→ x3, (36) 7→ x2, and (47) 7→ x2. (So, two different cycles of length two get
mapped to two “different” x2’s.)

21This means that for all π ∈ Sym(X) and x ∈ X, we have that π · x = π(x).
22That is, for all π ∈ G, c ∈ C, and x ∈ X, we set (π · c)(x) = c(π−1 · x).
23Note that if d1 + · · ·+ dk ̸= n, then Cd = ∅.
24Note that our sums are in fact finite because if d1 + · · ·+ dk ̸= n, then Cd = ∅.
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and consequently,∑
d

|Cd/G| cd11 . . . cdkk = 1
|G|
∑
π∈G

∑
d

|Cπ
d| c

d1
1 . . . cdkk .

Clearly, the left-hand-side of this last equality is precisely the pattern in-
ventory of C. On the other hand, for each π ∈ G,

∑
d

|Cπ
d| c

d1
1 . . . cdkk is

precisely the coloring inventory of Cπ, which (by Lemma 17.4.4) is precisely
pπ(c1, . . . , ck), where pπ(c1, . . . , ck) is the polynomial obtained by substi-
tuting

∑k
i=1 c

r
i for each xr in xcs(π). So, the pattern inventory of C is

1
|G|
∑
π∈G

pπ(c1, . . . , ck), which (by the definition of cycle index) is precisely

ZG(
∑k

i=1 ci,
∑k

i=1 c
2
i , . . . ,

∑k
i=1 c

n
i ).

Example 17.4.5. Compute the number of non-equivalent colorings of a
bracelet with four beads, using colors black and white for the beads. (Two
colorings are equivalent if one can be transformed into the other via a rotation
or a reflection.)

Solution. In this particular case, it is easy to see that there are exactly six
non-equivalent colorings, represented below.

However, let us apply the Pólya enumeration theorem in order to illustrate
the principle. We label the beads 1, 2, 3, 4 counterclockwise. The group
acting on the beads is simply the dihedral group D8 (symmetries of the
square). The elements of the group are:

� (1)(2)(3)(4) - identity;

� (1234) - rotation by 90◦ ccw;25

� (13)(24) - rotation by 180◦;

� (1432) - rotation by 270◦ ccw;

� (12)(34) - reflection about the axis through the centers of edges 12, 34;

� (14)(23) - reflection about the axis through the centers of edges 14, 23;

� (1)(24)(3) - reflection about the axis through vertices/beads 1, 3;

25ccw = counterclockwise
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� (13)(2)(4) - reflection about the axis through vertices/beads 2, 4.

So,
ZD8(x1, . . . , x4) = 1

8(x
4
1 + 2x21x2 + 3x22 + 2x4),

and we have that

ZD8(b+ w, b2 + w2, b3 + w3, b4 + w4)

= 1
8

(
(b+ w)4 + 2(b+ w)2(b2 + w2) + 3(b2 + w2)2 + 2(b4 + w4)

)
= b4 + b3w + 2b2w2 + bw3 + w4.

The total number of colorings is equal to the sum of coefficients of the
polynomial above: 1 + 1 + 2 + 1 + 1 = 6.

We also remark that the polynomial above allows us to do more, namely,
to count the number of non-equivalent colorings with a fixed number of black
and white beads. So, there are two non-equivalent colorings with two beads
colored black and two colored white. For any other (fixed) combination of
black and white beads, where the total number of beads adds up to four, we
only have one non-equivalent coloring.

Proposition 17.4.6. Let n ≥ 2 and k ≥ 0 be integers. Then the number of
non-isomorphic graphs on n vertices and k edges is equal to the coefficient in

front of the term xk in the polynomial ZSym′(n)(1 + x, 1 + x2, . . . , 1 + x(
n
2)).

Proof. Let C be the set of all colorings of the set
({1,...,n}

2

)
using the color

set {b, w}. We let Sym′(n) act on C in the natural way. Now, colorings
in C correspond to n-vertex graphs in the natural way: the vertex-set is
{1, . . . , n}, and edges are the pairs colored b (“black”), whereas the non-edges
are the pairs colored w (“white”). The number of non-isomorphic n-vertex
graphs with k edges is precisely the number of non-equivalent colorings in C
(with respect to our group action) in which exactly k elements of

({1,...,n}
2

)
are colored b (and the remaining

(
n
2

)
− k elements are colored w). By the

Pólya enumeration theorem, the latter is precisely the coefficient in front

of bkw(
n
2)−k in the polynomial ZSym′(5)(b+w, b2 +w2, . . . , b(

n
2) +w(

n
2)). But

this is exactly the coefficient in front of xk in the polynomial ZSym′(n)(1 +

x, 1 + x2, . . . , 1 + x(
n
2)) (we replace b by x and w by 1).

Example 17.4.7. For each non-negative integer k, find the number of
non-isomorphic k-edge graphs on five vertices.
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Solution. We apply Proposition 17.4.6. By Example 17.4.3, we know that

ZSym′(5)(x1, . . . , x10)

= 1
120

(
x101 + 10x41x

3
2 + 15x21x

4
2 + 20x1x

3
3 + 20x1x3x6 + 30x2x

2
4 + 24x25

)
,

and so

ZSym′(5)(1 + x, . . . , 1 + x10)

= 1
120

(
(1 + x)10 + 10(1 + x)4(1 + x2)3 + 15(1 + x)2(1 + x2)4+

+20(1 + x)(1 + x3)3 + 20(1 + x)(1 + x3)(1 + x6)+

+30(1 + x2)(1 + x4)2 + 24(1 + x5)2
)
,

= 1 + x+ 2x2 + 4x3 + 6x4 + 6x5 + 6x6 + 4x7 + 2x8 + x9 + x10.

Thus, up to isomorphism,

� there is one edgeless graph on five vertices;

� there is one graph on five vertices with one edge;

� there are two graphs on five vertices with two edges;

� there are four graphs on five vertices with three edges;

� there are six graphs on five vertices with four edges;

� there are six graphs on five vertices with five edges;

� there are six graphs on five vertices with six edges;

� there are four graphs on five vertices with seven edges;

� there are two graphs on five vertices with eight edges;

� there is one graph on five vertices with nine edges;

� there is one graph on five vertices with ten edges;

� there are no graphs on five vertices with more than ten edges.
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Chapter 18

Exponential generating
functions

18.1 Ordinary and exponential generating func-
tions

Let {an}∞n=0 be a sequence of real (or complex) numbers. The ordinary
generating function (abbreviated ogf) of {an}∞n=0 is the function

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

The exponential generating function (abbreviated egf) of {an}∞n=0 is the
function

g(x) =
∞∑
n=0

anxn

n! = a0
0! +

a1x
1! + a2x2

2! + a3x3

3! + . . .

Ordinary generating functions (or simply “generating functions”) were
studied in chapter 2. Here, we give a brief introduction to exponential
generating functions. We begin with a simple example, in which we contrast
the use of ogf’s and egf’s.

Example 18.1.1.

(a) Find the number of ways that three letters from the word SEQUENCE
can be selected (order does not matter).1

1Note that the letter E appears three times, and so we may select between zero and
three copies of E. The three E’s are considered the same: so, if we select (say) two E’s, we
do not care which particular two we selected.
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(b) Find the number of ways that three letters from the word SEQUENCE
can be arranged (order matters).2

Solution. (a) The number of ways we can select three letters from the word
SEQUENCE is the coefficient in front of x3 in the polynomial

f(x) = (1 + x+ x2 + x3)(1 + x)5,

which is 26. (Here, the polynomial 1 + x+ x2 + x3 corresponds to the letter
E, and the five terms 1 + x correspond to the remaining five letters of the
word SEQUENCE.)

More generally, the coefficient in front of xk in f(x) is the number of
ways we can select k letters from the word SEQUENCE (when order does
not matter). So in fact, f(x) is the ogf for the sequence {ak}∞k=0, where ak is
the number of ways of selecting k letters from the word SEQUENCE (when
order does not matter).

(b) Here, we use an egf. The number of ways we can arrange three letters

from the word SEQUENCE is the coefficient in front of x3

3! in the polynomial

g(x) = (1 + x+ x2

2! +
x3

3! )(1 + x)5,

which is 136.
Let us explain why this is correct. For each k ∈ {0, 1, 2, 3}, we select k

E’s and 3− k of the remaining five letters. The number of ways of selecting
those 3−k other letters is precisely the coefficient in front of x3−k in (1+x)5,
and then the number of ways of arranging our three chosen letters (k E’s
and 3 − k other letters) is 3!

k! . So, the total number of ways of arranging
three letters from the word SEQUENCE is precisely the coefficient in front
of x3

3! in g(x).

More generally, the coefficient in front of xk

k! in g(x) is the number of
ways we can arrange k letters from the word SEQUENCE (when order
matters). So in fact, g(x) is the egf for the sequence {bk}∞k=0, where bk is
the number of ways of arranging k letters from the word SEQUENCE (when
order matters).

Example 18.1.2. Find the ogf and egf of the constant sequence 1, 1, 1, 1, . . . .

2For example, SEE and ESE count as different. However, the E’s are still interchangeable:
we do not care which of the three E’s from the word SEQUENCE correspond to the two
E’s from SEE.
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Solution. The ogf of the sequence is

f(x) =
∞∑
n=0

xn = 1
1−x ,

whereas the egf of the sequence is

g(x) =
∞∑
n=0

xn

n! = ex.

For some sequences, it is possible to find a closed formula for the egf, but
not for the ogf. For instance, consider the sequence {n!}∞n=0. The ogf of this
sequence is

f(x) =
∞∑
n=0

n!xn,

which has radius of convergence 0,3 i.e. the series only converges for x = 0.
On the other hand, the egf of the sequence is

g(x) =
∞∑
n=0

n!xn

n! =
∞∑
n=0

xn = 1
1−x ,

with the radius of convergence 1 (the series converges when |x| < 1).
The formulas for the basic operations with egf’s are as follows. (Here,

{an}∞n=0 and {bn}∞n=0 are sequences, and c is a constant.)

�
( ∞∑

n=0

anxn

n!

)
±
( ∞∑

n=0

bnxn

n!

)
=

∞∑
n=0

(an±bn)xn

n!

� c
( ∞∑

n=0

anxn

n!

)
=

∞∑
n=0

canxn

n! .

�
( ∞∑

n=0

anxn

n!

)( ∞∑
n=0

bnxn

n!

)
=

∞∑
n=0

(
n∑

k=0

(
n
k

)
akbn−k)

xn

n!

� d
dx

( ∞∑
n=0

anxn

n!

)
=

∞∑
n=0

an+1xn

n!

The first two formulas above are obvious. For the third, we observe that

the coefficient in front of xn is
n∑

k=0

ak
k!

bn−k

(n−k)! =
n∑

k=0

(
n
k

)akbn−k

n! , and the formula

follows. Finally, for the fourth formula, we compute:

a′(x) =
∞∑
n=1

nanxn−1

n! =
∞∑
n=1

anxn−1

(n−1)! =
∞∑
n=0

an+1xn

n! .

3This can be shown using, for example, the Ratio Test.
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Example 18.1.3. A derangement of a set X is a permutation of X that has
no fixed points.4 For all integers n ≥ 0, let dn be the number of derangements
of an n-element set. Find a recursive formula for the sequence {dn}∞n=0.

Solution. Clearly, d0 = 1 and d1 = 0.5 Now, fix an integer n ≥ 0, and let
X be a set of size n + 2. Fix any a ∈ X. Then a derangement of X can
map a to any element of b ∈ X \ {a} (so, there n+ 1 choices for b). Now,
suppose we have chosen b. Then our derangement of X either does or does
not map b to a. If it does map b to a, then our derangement swaps a and b
and then deranges X \ {a, b}; for fixed b, there are dn choices for this type
of derangement.6 Suppose now that our derangement π does not map b to a.
The number of such derangement is equal to the number of derangements of
X \ {b},7 which is dn+1. So, dn+2 = (n+ 1)(dn + dn+1).

We have now obtained the desired recursive formula:

� d0 = 1, d1 = 0;

� dn+2 = (n+ 1)(dn + dn+1) for all integers n ≥ 0.

In our next example, we use egf’s to find a non-recursive formula for dn
(from Example 18.1.3).

Example 18.1.4. Let the sequence {dn}∞n=0 be defined recursively as follows:

� d0 = 1, d1 = 0;

� dn+2 = (n+ 1)(dn + dn+1) for all integers n ≥ 0.

Find a closed formula for the egf of the sequences {dn}∞n=0, and then find a
non-recursive formula for dn.

4In other words, a derangement of X is a permutation π of X such that for all x ∈ X,
π(x) ̸= x.

5Indeed, the empty function is a permutation of the empty set, and it has no fixed
points (so, it is a derangement). On the other hand, any one-element set admits only one
permutation (namely, the identity), and this permutation has one fixed point (and so it is
not a derangement).

6We are using the fact that |X \ {a, b}| = n.
7Indeed any derangement π of X such that π(a) = b and π(b) ̸= a corresponds to a

derangement of X \ {b} that maps a to π(b).
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Solution. Let d(x) =
∞∑
n=0

dnxn

n! be the egf of the sequence {dn}∞n=0. We first

differentiate d(x), and then we apply the recursive formula, as follows.

d′(x) =
∞∑
n=0

dn+1xn

n!

=
∞∑
n=1

dn+1xn

n! because d1 = 0

=
( ∞∑

n=1

ndn−1xn

n!

)
+
( ∞∑

n=1

ndnxn

n!

)
by the recursive formula

= x
( ∞∑

n=0

dnxn

n!

)
+ x
( ∞∑

n=0

dn+1xn

n!

)
= xd(x) + xd′(x).

So, we have obtained a differential equation:

d′(x) = xd(x) + xd′(x).

The differential equation above is equivalent to d′(x)
d(x) = x

1−x , i.e.

d′(x)
d(x) = 1

1−x − 1.

By integrating both sides, we get

ln(d(x)) = − ln(1− x)− x+ C,

and since d(0) = d0 = 1, we have that C = 0. So, ln(d(x)) = − ln(1− x)− x.
By exponentiating both sides, we get

d(x) = e−x

1−x .

We have now obtained a closed formula for the exponential generating

function d(x). To obtain a formula for dn, we note that e−x =
∞∑
n=0

(−1)nxn

n!

and 1
1−x =

∞∑
n=0

xn =
∞∑
n=0

n!xn

n! . By the formula for the product of egf’s, we

now have that, for all integers n ≥ 0,

dn =
n∑

k=0

(
n
k

)
(−1)k(n− k)!,

and we are done.
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Chapter 19

Extremal combinatorics

19.1 Turán’s theorem

Given graphs H and G, we say that G contains H as a subgraph provided
that some subgraph of G is isomorphic to H. If G does not contain H as a
subgraph, we also say that G is without an H subgraph. G is edge-maximal
without an H subgraph provided that G does not contain H as a subgraph,
but any graph obtained from G by adding at least one edge to G does contain
H as a subgraph.

Given a positive integer n and a graph H, an n-vertex graph G without an
H subgraph is extremal (for the property of not containing H as a subgraph)
if it has the largest possible number of edges among all n-vertex graphs
without an H subgraph; ex(n,H) is the number of edges of an extremal
n-vertex graph without an H subgraph. In other words, ex(n,H) is the
maximum number of edges that an n-vertex graph that does not contain H
as a subgraph can have. Note that if H has at least one edge, then ex(n,H)
is defined;1 however, if H is edgeless, then ex(n,H) is undefined whenever
n ≥ |V (H)|.

Obviously, any extremal graph G without an H subgraph is edge-maximal
without an H subgraph. The converse, however, does not hold in general: a
graph may be edge-maximal without an H subgraph, without being extremal.
For example (see the picture below), 2K2 is a four-vertex edge-maximal
graph without a P4 subgraph, but it is not extremal: indeed, K1,3 also has
four vertices and no P4 subgraph, and it has more edges than 2K2.

2

1This is because there exists at least one n-vertex graph (namely, the graph Kn, the
edgeless graph on n vertices) that does not contain H as a subgraph.

2Note that we cannot obtain K1,3 by adding edges to 2K2.



Chapter 19. Extremal combinatorics 278

P4 2K2 K1,3

The following was proven in chapter 6.

Mantel’s theorem. For any positive integer n, we have that ex(n,K3) =

⌊n2

4 ⌋, and moreover, K⌊n
2
⌋,⌈n

2
⌉ is an extremal n-vertex graph without a K3

subgraph.

Note that the statement of Mantel’s theorem above is slightly different
from the statement given in chapter 6. However, the two statements are
obviously equivalent. Mantel’s theorem is a special case of Turán’s theorem,
to which we now turn.

For a positive integer r, a complete r-partite graph is a graph G whose
vertex set can be partitioned into r (possibly empty) stable sets (called parts),
pairwise complete to each other (i.e. all possible edges between different parts
are present). For example, the graph below is complete 3-partite, with parts
S1, S2, S3.

S1

S2

S3

A complete multipartite graph is any graph that is complete r-partite for
some r.

The r-partite Turán graph on n vertices, denoted by Tr(n), is the complete
r-partite graph on n vertices, in which the sizes of any two parts differ by at
most one (so, each part is of size ⌊nr ⌋ or ⌈nr ⌉); tr(n) is the number of edges of
Tr(n). We note that the complete 3-partite graph above is in fact the graph
T3(8).

Recall that duplicating a vertex x of a graph G produces a supergraph
G◦x by adding to G a vertex x′ and making it adjacent to all the neighbors of
x in G, and to no other vertices of G (in particular, x and x′ are non-adjacent
in G ◦ x). An example is shown below.
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x x

x′

G G ◦ x

Obviously, ω(G ◦ x) = ω(G), and so G contains Kr+1 is a subgraph if and
only if G ◦ x does.

Turán’s theorem. Let n and r be positive integers. Then ex(n,Kr+1) =
tr(n), and furthermore, Tr(n) is the unique (up to isomorphism) extremal
n-vertex graph without a Kr+1 subgraph.

Proof. We may assume that r < n, for otherwise, Tr(n) ∼= Kn, and the
result is immediate. It is clear that Tr(n) is an n-vertex graph without a
Kr+1 subgraph. Now, let G be any n-vertex extremal graph without a Kr+1

subgraph. We must show that G ∼= Tr(n).

Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then there exist pairwise distinct
vertices y1, x, y2 ∈ V (G) such that y1x, xy2 /∈ E(G), but y1y2 ∈ E(G).3 If
dG(y1) > dG(x), then G1 := (G \ x) ◦ y1 is an n-vertex graph that does not
contain Kr+1 as a subgraph, and |E(G1)| > |E(G)|, contrary to the fact that
G is extremal.

So, dG(y1) ≤ dG(x), and similarly, dG(y2) ≤ dG(x). Now, let G′ be
the graph obtained from G \ {y1, y2} by duplicating x twice. Then G′ is
an n-vertex graph without a Kr+1 subgraph, and (since y1y2 ∈ E(G)) we
have that |E(G′)| = |E(G)| − (dG(y1) + dG(y2)) + 1 + 2dG(x) ≥ |E(G)|+ 1,
contrary to the fact that G is extremal. This proves the Claim. ♦

Now, using the Claim, we fix a partition (S1, . . . , Sk) of V (G) into non-
empty stable sets (“parts”), pairwise complete to each other. Clearly, G
contains Kk is a subgraph,4 and so k ≤ r. Suppose that k < r. Then
since r < n, at least one of the sets S1, . . . , Sk has more than one vertex; by

3Let us justify this. Since G is not complete multipartite, G is not the disjoint union of
complete graphs. Consequently, some component C of G is not a complete graph. Since
C is not complete, we see that C contains some two distinct, non-adjacent vertices, call
them a and b. Since C is connected, there is an induced path p1, . . . , pt in C, with p1 = a
and pt = b; since a and b are non-adjacent in C, we see that t ≥ 3. We now set y1 := p1,
x := p2, and y2 := p3, and we observe that y1x, y2x /∈ E(G) and y1y2 ∈ E(G).

4Indeed, we just take one vertex from each Si, and we obtain a clique of size k.
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symmetry, we may assume that |Sk| ≥ 2. Fix a ∈ Sk. Then consider the
graph G′ obtained from G by adding edges between a and all vertices of
Sk \ {a}; then G′ is a complete (k + 1)-partite graph, it does not contain
Kr+1 as a subgraph (because k < r), and it has more edges than G, contrary
to the fact that G is extremal. So, k = r.

It remains to show that any two of S1, . . . , Sr differ in size by at most
one (this will imply that G ∼= Tr(n)). Suppose otherwise. By symmetry,
we may assume that |S1| ≥ |S2| + 2. Fix a vetex a ∈ S1, and let G′ be
the graph obtained by first deleting all edges between a and S2, and then
adding all edges between a and S1 \ {a}. (This effectively “moves” a into
S2.) Now G is still a complete r-partite graph on n vertices, and it does not
contain Kr+1 as a subgraph. Furthermore, since |S1| ≥ |S2|+ 2, we see that
|E(G′)| ≥ |E(G)|+ 1. But this contradicts the fact that G is extremal.

19.2 The Erdős-Ko-Rado theorem

Suppose we are given positive integers r and n, and we want to select a
maximum number of pairwise intersecting r-element subsets of {1, . . . , n}.
What is this maximum number? For r > n

2 , any two r-element subsets of
{1, . . . , n} intersect, and there are

(
n
r

)
many such subsets. How about if

r ≤ n
2 ? In that case, we can fix any x ∈ {1, . . . , n}, and consider all r-element

subsets of {1, . . . , n} that contain x; there are
(
n−1
r−1

)
many such subsets, and

obviously, they pairwise intersect.5 As the following theorem shows, this is
in fact best possible (the proof that we give is due to Katona).

The Erdős-Ko-Rado theorem. Let r and n be positive integers such that
r ≤ n

2 . Then there are at most
(
n−1
r−1

)
many pairwise distinct and pairwise

intersecting r-element subsets of {1, . . . , n}.

Proof. Let A1, . . . , Am be pairwise distinct and pairwise intersecting r-
element subsets of {1, . . . , n}. We must show that m ≤

(
n−1
r−1

)
.

Let c be the number of ordered pairs (C,A), where

� C is a directed cycle with vertex set {1, . . . , n};6

� A is an r-vertex directed subpath of C;

5For the case when r = n
2
, here is another construction. Fix any x ∈ {1, . . . , n}, and

consider all r-element subsets of {1, . . . , n} \ {x}. Since r = n
2
, all these subsets pairwise

intersect, and there are
(
n−1
r

)
=

(
n−1

(n−1)−r

)
=

(
n−1

(n−1)−n
2

)
=

(
n−1
n
2
−1

)
=

(
n−1
r−1

)
many of them.

6Vertics 1, . . . , n need not appear in that order on the cycle.
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� V (A) = Ai for some i ∈ {1, . . . ,m}.

Now we count in two ways, as follows. On the one hand, we can form
an ordered pair (C,A) by first selecting one of the sets A1, . . . , Am (we have
m choices), then ordering its vertices to form a directed path (there are r!
choices), and then ordering the remaining n − r vertices to complete the
cycle C (there are (n− r)! choices). So,

c = mr!(n− r)!.

We now count in another way. First, there are (n− 1)! ways of ordering
{1, . . . , n} to obtain a directed cycle C. Next, we claim that for fixed C,
there are at most r directed subpaths of C that correspond to one of the
Ai’s. Indeed, suppose a subpath a1, a2, . . . , ar of C corresponds to one of
A1, . . . , Am. Then for any other subpath of C corresponding to one of
A1, . . . , Am (and therefore containing at least one of a1, . . . , ar), there exists
some i ∈ {1, . . . , r − 1} such that either ai is the terminal vertex of the
path, or ai+1 is the initial vertex of the path; but since r ≤ n

2 , the r-vertex
subpath terminating at ai and the r-vertex subpath starting at ai+1 have no
vertices in common, and so at most one of them can correspond to one of
A1, . . . , Am. Thus, in addition to a1, . . . , ar, there are at most r−1 subpaths
of C corresponding to one of A1, . . . , Am; in total, at most r subpaths of C
correspond to one of A1, . . . , Am. This proves that

c ≤ (n− 1)!r.

We now have that

mr!(n− r)! = c ≤ (n− 1)!r,

and so
m ≤ (n−1)!r

r!(n−r)! =
(
n−1
r−1

)
,

which is what we needed to show.

19.3 The Sunflower lemma

A sunflower is a family (i.e. collection) S of sets (called petals) such that
there exists a set S (called a kernel) with the property that for all distinct
S1, S2 ∈ S , we have that S1 ∩ S2 = S.7

7It is possible that S = ∅.
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The Sunflower lemma (Erdős-Rado). Let ℓ and p be positive integers, and
let A be a family of sets such that

� |A| ≤ ℓ for all A ∈ A , and

� |A | > (p− 1)ℓℓ!.

Then there exists a sunflower S ⊆ A with p petals.

Proof. We keep p fixed, and we assume inductively that the lemma is true for
smaller values of ℓ. More precisely, we assume that for all positive integers
ℓ′ < ℓ, and all families A ′ of sets such that

� |A| ≤ ℓ′ for all A ∈ A ′, and

� |A ′| > (p− 1)ℓ
′
ℓ′!,

there exists a sunflower S ′ ⊆ A ′ with p petals. Clearly, we may assume
that A is finite (otherwise, instead of A , we consider any finite subset of A
with more than (p− 1)ℓℓ! elements).

Note that |A | ≥ p; so, if p ≤ 2, then any p elements of A form a
sunflower with p petals, and we are done. So, we may assume that p ≥ 3.
Next, suppose that ℓ = 1. Then |A| ≤ 1 for all A ∈ A and |A | > p− 1. We
then take any p elements of A , and we observe that they form a sunflower
(with an empty kernel). So, from now on, we assume that ℓ ≥ 2.

Let D ⊆ A be a collection of pairwise disjoint sets, chosen so that |D | is
as large as possible. If |D | ≥ p, then any p elements of D form a sunflower
(with an empty kernel), and we are done. So assume that |D | < p. Let
D :=

⋃
D ;8 then |D| ≤ |D |ℓ ≤ (p− 1)ℓ. Furthermore, since |A | ≥ ℓ ≥ 2, the

maximality of D guarantees that D contains at least one non-empty set,9

and so D ̸= ∅.

Claim. There exists some d ∈ D such that d belongs to more
than (p− 1)ℓ−1(ℓ− 1)! many elements of A .

Proof of the Claim. We consider two cases: when ∅ /∈ A , and when ∅ ∈ A .
Suppose first that ∅ /∈ A (and consequently, ∅ /∈ D). Then every element

of A intersects D: indeed, since ∅ /∈ D , we know that every element of D

8This means that D =
⋃

X∈D

X, i.e. D is the union of elements of D .

9Let us justify this. Suppose that D contains no non-empty sets. Then either D = ∅ or
D = {∅}. Since |A | ≥ 2, we see that A contains at least one non-empty set, say A. But
then D ∪ {A} is a set of pairwise disjoint elements of A , contrary to the maximality of D .
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intersects D, and by the maximality of D , every element of A \D intersects
D. But then by the Pigeonhole Principle, some element of D belongs to at
least ⌈

|A |
|D|

⌉
> (p−1)ℓℓ!

(p−1)ℓ = (p− 1)ℓ−1(ℓ− 1)!

many elements of A , which is what we needed.
Suppose now that ∅ ∈ A . Then the maximality of D guarantees that

∅ ∈ D. Since D ̸= ∅, it follows that |D | ≥ 2. Since ∅ ∈ D , we see that
|D| ≤ (|D | − 1)ℓ ≤ (p− 2)ℓ. Now by the maximality of D , every element of
A \ {∅} intersects D. But then by the Pigeonhole Principle, some element
of D belongs to at least⌈

|A \{∅}|
|D|

⌉
≥ (p−1)ℓℓ!

(p−2)ℓ

= (p− 1)ℓ−1(ℓ− 1)!p−1
p−2

> (p− 1)ℓ−1(ℓ− 1)!

many elements of A , which is what we needed. This proves the Claim. ♦

Let d ∈ D be as in the Claim, and set A ′ := {A \ {d} | A ∈ A , d ∈ A}.
Then |A ′| > (p− 1)ℓ−1(ℓ− 1)!; furthermore, |A| ≤ ℓ− 1 for all A ∈ A ′. So,
by the induction hypothesis, there exists a sunflower S ′ ⊆ A ′ with p petals.
Now, set S := {A ∪ {d} | A ∈ S ′}; then S ⊆ A is a sunflower with p
petals, and we are done.
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