NDMI012: Combinatorics and Graph Theory 2 Tutorial 14

Irena Penev Summer 2022

Thursday, May 19

Exercise 1. For each pair of positive integers, p and ℓ , construct a family \mathscr{A} of $(p-1)^{\ell}$ non-empty sets, each of size ℓ , such that there does **not** exist a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Exercise 2. For each pair of positive integers, n and r, find $ex(n, K_{1,r})$.

Exercise 3. Prove that for all positive integers r and n, we have that

 $t_r(n) \leq \frac{r-1}{2r}n^2,$

and that equality holds whenever r divides n.

Hint: Set $n = kr + \ell$, where k and ℓ are non-negative integers with $\ell \leq r - 1$. Treat the case $\ell = 0$ first, and then show for the general case that $t_r(n) = \frac{r-1}{2r}(n^2 - \ell^2) + {\ell \choose 2}$.

Exercise 4. Let r be a positive integer. Prove that

$$\lim_{n \to \infty} \frac{t_r(n)}{\binom{n}{2}} = \frac{r-1}{r}.$$

Hint: $r\lfloor \frac{n}{r} \rfloor \leq n \leq r\lceil \frac{n}{r} \rceil$, and consequently, $t_r\left(r\lfloor \frac{n}{r} \rfloor\right) \leq t_r(n) \leq t_r\left(r\lceil \frac{n}{r} \rceil\right)$. Use Exercise 3.