NDMI012: Combinatorics and Graph Theory 2 Tutorial 12

Irena Penev Summer 2022

Thursday, May 5

Exercise 5 from Tutorial 11. Let G be a Hamiltonian bipartite graph, and let $x, y \in V(G)$. Prove that $G \setminus \{x, y\}$ has a perfect matching if and only if x and y are on the opposite sides of the bipartition of G. Apply this to prove that deleting two unit squares from an 8×8 chessboard leaves a board that can be partitioned into 1×2 rectangles if and only if the two missing squares have opposite colors.

Exercise 1. A graph is cubic if all its vertices are of degree three. Construct a 2-connected cubic bipartite graph that is not Hamiltonian.

Exercise 2.

(a) Using Burnside's lemma, find the number of non-isomorphic graphs on four vertices.

Hint: This is similar to (but easier than) Example 3.2 from Lecture Notes 11.

(b) Draw all non-isomorphic graphs on four vertices. (You do not have to prove that they are non-isomorphic.)

Definition. For an integer $n \geq 3$, the dihedral group D_{2n} is the group of symmetries of the regular n-gon. Its elements are the identity function, n-1 rotations about the center of the n-gon (by $\frac{i}{n} \cdot 360^{\circ}$, for $i \in \{1, \ldots, n-1\}$), and n reflections. The group operation is the composition of functions.

Exercise 3. Let k be a positive integer, and let P_k be the set of all colorings of the edges of the regular pentagon using the color set $\{1, \ldots, k\}$. Two colorings in P_k are equivalent if one can be transformed into another by a symmetry in D_{10} . Using Burnside's lemma, compute the number of non-equivalent colorings in P_k .

Hint: This is similar to (but easier than) Example 3.1 from Lecture Notes 11.

Exercise 4. Let k be a positive integer, and let H_k be the set of all colorings of the edges of the regular hexagon using the color set $\{1, \ldots, k\}$. Two colorings in H_k are equivalent if one can be transformed into another by a symmetry in D_{12} . Using Burnside's lemma, compute the number of non-equivalent colorings in H_k .

Hint: This is similar to (but easier than) Example 3.1 from Lecture Notes 11.