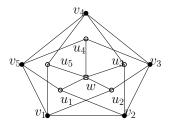
NDMI012: Combinatorics and Graph Theory 2 Tutorial 11


Irena Penev Summer 2022

Thursday, April 28

Exercise 1. Let G be a graph that has a Hamiltonian path. Prove that for any set $S \subsetneq V(G)$, the graph $G \setminus S$ has at most |S| + 1 many components.

Exercise 2. Determine if the Grötzch graph (below) is Hamiltonian, and if so, find a Hamiltonian cycle in it.

Remark: The Grötzch graph is the same as the Mycielski graph M_4 .

The Grötzch graph

Exercise 3. Prove that the Chvátal closure of a graph is uniquely defined.

Definition. The Cartesian product of graphs G and H, denoted by $G\Box H$, is the graph with vertex set $V(G) \times V(H)$ and edge set

 $\{(u, v_1)(u, v_2) \mid u \in V(G), v_1v_2 \in E(H)\} \cup \{(u_1, v)(u_2, v) \mid u_1u_2 \in E(G), v \in E(H)\}.$

Exercise 4. Prove that the Cartesian product of two Hamiltonian graphs is again Hamiltonian.

Exercise 5. Let G be a Hamiltonian bipartite graph, and let $x, y \in V(G)$. Prove that $G \setminus \{x, y\}$ has a perfect matching if and only if x and y are on the opposite sides of the bipartition of G. Apply this to prove that deleting two unit squares from an 8×8 chessboard leaves a board that can be partitioned into 1×2 rectangles if and only if the two missing squares have opposite colors.

Definition. The girth of a graph that is not a forest is the length of its shortest cycle.

Exercise 6. Let G be a graph that is not a forest, and assume that G has girth at least five. Prove that \overline{G} is Hamiltonian.

Hint: Use Ore's condition.