NDMI012: Combinatorics and Graph Theory 2 Tutorial 10

Irena Penev Summer 2022

Thursday, April 21

Definition. A star-cutset of a graph G is a set $S \subsetneq V(G)$ such that both the following hold:

- there is a vertex $s \in S$ such that $S \subseteq N_G[s]$;¹
- $G \setminus S$ is disconnected.

Exercise 3(b) from Tutorial 9. Let G be a graph, all of whose proper induced subgraphs are perfect. Assume that G admits a star-cutset. Prove that G is perfect.

Definition. A graph is split if its vertex set can be partitioned into a clique and a stable set.²

Exercise 1. Prove that a graph is split if and only if it is $\{2K_2, C_4, C_5\}$ -free.³

Hint for the "if" (" \Leftarrow ") direction: Assume that a graph G is $\{2K_2, C_4, C_5\}$ -free. If G is not a complete graph, then of all maximum cliques of G, choose K to be one for which the number of edges in $G \setminus K$ is as small as possible. Now show that $V(G) \setminus K$ is a stable set.

¹In other words, some vertex of S is adjacent to all other vertices of S.

 $^{^{2}}$ The clique or the stable set may possibly be empty.

³For a family of graphs \mathcal{H} , a graph G is \mathcal{H} -free if no induced subgrpah of G is isomorphic to a graph in \mathcal{H} .

Exercise 2. Prove that a graph G is split if and only if G and \overline{G} are both chordal.

Exercise 3.

(a) [10 points] Prove that for all $n \ge 1$, $T_{C_n}(x, y) = y + \sum_{i=1}^{n-1} x^i$.

(b) [10 points] Prove that for $n \ge 1$, $T_{I_n}(x, y) = x + \sum_{i=1}^{n-1} y^i$, where I_n is the 2-vertex multigraph with n edges between them.

Hint: Induction on n, using the recursive deletion-contraction formula for the Tutte polynomial.