NDMI012: Combinatorics and Graph Theory 2 Tutorial 9

Irena Penev Summer 2022

Thursday, April 14

Exercise 1. Let G be a graph. Prove that the following are equivalent:

- (1) G is perfect;
- (2) every induced subgraph H of G contains a stable set that intersects all maximum cliques of H.

Definition. A graph G is strongly perfect if every induced subgraph H of G has a stable set that intersects all maximal cliques of H.

Exercise 2. By Exercise 1, every strongly perfect graph is perfect. Find an example of a perfect graph that is **not** strongly perfect.

Definition. A star-cutset of a graph G is a set $S \subsetneq V(G)$ such that both the following hold:

- there is a vertex $s \in S$ such that $S \subseteq N_G[s];^1$
- $G \setminus S$ is disconnected.

Exercise 3. Let G be a graph, all of whose proper induced subgraphs are perfect.

- (a) Assume that G admits a clique-cutset. Prove that G is perfect.
- (b) Assume that G admits a star-cutset. Prove that G is perfect.

Definition. Given graphs G and H, we say that G is H-free if no induced subgraph of G is isomorphic to H.

¹In other words, some vertex of S is adjacent to all other vertices of S.

Exercise 4. As usual, P_4 is the path on four vertices and three edges. Prove that if G is a P_4 -free graph on at least two vertices, then G or \overline{G} is disconnected.²

Proof. Hint: Induction on the number of vertices.

Exercise 5. Using Exercise 4 (or in some other way), prove that every P_4 -free graph is strongly perfect.

Hint: Induction on the number of vertices.

 $^{{}^{2}\}overline{G} = \text{complement of } G$