NDMI012: Combinatorics and Graph Theory 2 Tutorial 8

Irena Penev Summer 2022

Thursday, April 7

Exercise 1. Let n be a positive integer, let $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$ be such that $a_1 < b_1, \ldots, a_n < b_n$, and let $I_1 = (a_1, b_1), \ldots, I_n = (a_n, b_n)$. Let G be the graph with vertex set $\{v_1, \ldots, v_n\}$, and with adjacency as follows: for all distinct $i, j \in \{1, \ldots, n\}$, v_i is adjacent to v_j in G if and only if $I_i \cap I_j \neq \emptyset$.¹ Prove that G is a chordal graph.

Hint: Induction on n. In the induction step, find a simplicial vertex, delete it, and apply the induction hypothesis.

Exercise 2. Let T be a tree, and let T_1, \ldots, T_k , with $k \ge 1$, be (not necessarily distinct) subtrees of T. Assume that for all distinct $i, j \in \{1, \ldots, k\}, V(T_i) \cap V(T_i) \ne \emptyset$. Prove that $V(T_1) \cap \cdots \cap V(T_k) \ne \emptyset$.

Hint: Induction on |V(T)|.

Exercise 3. Let T be a tree, and let T_1, \ldots, T_k , with $k \ge 1$, be (not necessarily distinct) subtrees of T. Let G be the graph with vertex-set $V(G) = \{v_1, \ldots, v_k\}$, and adjacency as follows: for all distinct $i, j \in \{1, \ldots, k\}$, $v_i v_j \in E(G)$ if and only if $V(T_i) \cap V(T_j) \neq \emptyset$. Prove that G is chordal.

Hint: Induction on |V(T)|.

Exercise 4. Let G be a chordal graph, and set $V(G) = \{v_1, \ldots, v_n\}$. Prove that there exists a tree T and (not necessarily distinct) subtrees T_1, \ldots, T_n of T such that for all distinct $i, j \in \{1, \ldots, n\}$, $v_i v_j \in E(G)$ if and only if $V(T_i) \cap V(T_j) \neq \emptyset$.

Hint: Induction on n.

Exercise 5. Do Exercise 4 with the additional requirement that $\Delta(T) \leq 3$, and that T_1, \ldots, T_n are pairwise distinct.

^{1 A graph obtained in this way is called an *interval graph*.}