NDMI012: Combinatorics and Graph Theory 2 Tutorial 7

Irena Penev Summer 2022

Thursday, March 31

Exercise 1. Compute the chromatic index of the Petersen graph.

Petersen graph

Exercise 2. Edge coloring (and proper edge coloring) can be defined for loopless multigraphs in the natural way.¹ Prove that every loopless multigraph G satisfies $\chi'(G) \leq 2\Delta(G)$. Do **not** use Shannon's theorem (stated below).

Shannon's theorem. Every loopless multigraph G satisfies $\chi'(G) \leq \left\lfloor \frac{3\Delta(G)}{2} \right\rfloor$. Proof. Omitted.

i rooj. Onneed.

Exercise 3. For each integer Δ , construct a multigraph G of maximum degree Δ , and satisfying $\chi'(G) = \lfloor \frac{3\Delta}{2} \rfloor$.

Hint: It's probably best to first do this for even Δ . Then slightly adapt your construction to get odd Δ .

Remark: This proves that the bound for Shannon's theorem is optimal.

¹So, we consider graphs that have no loops, but may have parallel edges.

Exercise 4. Prove that for any triangle-free graph H, there exists some integer $k \geq 2$ such that H is isomorphic to an induced subgraph of the Mycielski graph M_k .

Hint: Induction on |V(H)|.

Definition. We define the sequence $\{Z_k\}_{k=1}^{\infty}$ of Zykov graphs recursively, as follows. Let $Z_1 := K_1$. Next, fix a positive integer k, and assume inductively that graphs Z_1, \ldots, Z_k have been defined. We define Z_{k+1} as follows. We first take the disjoint union of Z_1, \ldots, Z_k , and then we add $\prod_{i=1}^{k} |V(Z_i)|$ "new" vertices, each corresponding to a unique combination of selections of one vertex from each of Z_1, \ldots, Z_k .² Make each new vertex adjacent to the k vertices it corresponds to (and to no other vertices). The resulting graph is Z_{k+1} .

Exercise 5. Prove that for all positive integers k, the Zykov graph Z_k is triangle-free and has chromatic number k.

²There are precisely $\prod_{i=1}^{k} |V(Z_i)|$ such selections, and for each selection, we have exactly one "new" vertex that corresponds to it.