NDMI012: Combinatorics and Graph Theory 2 Tutorial 6

Irena Penev Summer 2022

Thursday, March 24

Exercise 6 from Tutorial 3. Let G be a 3-connected graph on at least six vertices, and assume that G contains K_5 as a topological minor. Prove that G contains $K_{3,3}$ as a topological minor.

Exercise 1. Prove that for every graph G, there exists an ordering v_1, \ldots, v_n of its vertices such that the greedy algorithm applied to G with the ordering v_1, \ldots, v_n produces an optimal coloring of G, i.e. a proper coloring that uses only $\chi(G)$ colors.

Exercise 2. For every integer $n \ge 2$, construct a bipartite graph on 2n vertices, ordered in such a way that the greedy algorithm uses n colors.

Definition. A graph G is critical if all its proper induced subgraphs H satisfy $\chi(H) < \chi(G)$.¹

Exercise 3. Determine all critical graphs of chromatic number 3.

Exercise 4. Prove that every graph G satisfies

 $\chi(G) \leq \max\{\delta(H) + 1 \mid H \text{ is a subgraph of } G\}.$

Exercise 5. Let G be a graph whose odd cycles are pairwise intersecting, i.e. every two odd cycles of G share at least one vertex. Prove that $\chi(G) \leq 5$.

¹In some texts, a graph G is defined to be critical if all its proper subgraphs H (not necessarily induced) satisfy $\chi(H) < \chi(G)$. Here, we will use the definition with induced subgraphs.