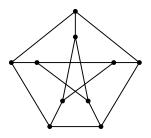
NDMI012: Combinatorics and Graph Theory 2 Tutorial 4

Irena Penev Summer 2022

Thursday, March 10

Exercise 2 from Tutorial 3. Prove that the Petersen graph (below) is non-planar. (You may use the Kuratowski-Wagner theorem.)



Petersen graph

Exercise 4 from Tutorial 3. Show that a graph is outerplanar if and only if it contains neither K_4 nor $K_{2,3}$ as a minor.

Hint: Use the Kuratowski-Wagner theorem.

Definition. A graph is maximally planar if it is planar, and it is not a proper subgraph of any planar graph on the same vertex set.¹

Definition. A minimal non-planar graph is a graph that is not planar, but all of its proper subgraphs are planar.

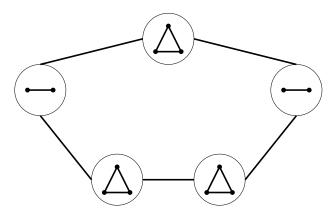
Exercise 5 from Tutorial 3. Does every minimal non-planar graph G contain an edge e such that G - e is maximally planar? Does the answer change if we define "minimal" with respect to minors rather than subgraphs?

¹This means that the graph is planar, but turning any non-edge of the graph into an edge produces a non-planar graph.

Definition. A graph is called outerplanar if it has a drawing in the plane such that all vertices lie on the outer face.

Exercise 6 from Tutorial 3. Let G be a 3-connected graph on at least six vertices, and assume that G contains K_5 as a topological minor. Prove that G contains $K_{3,3}$ as a topological minor.

Exercise 1. Verify that the graph below is a counterexample to Hajós' Conjecture for k = 7,² that is, show that the graph has chromatic number 7, but does not contain K_7 as a topological minor. Then, show that this graph is **not** a counterexample to Hadwiger's Conjecture, that is, show that it contains K_7 as a minor.



 $^{^{2}}$ A line between two circles indicates that all vertices inside one of the circles are adjacent to all vertices inside the other circle.