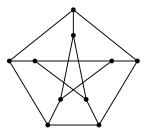
NDMI012: Combinatorics and Graph Theory 2 Tutorial 2


Irena Penev Summer 2022

Thursday, February 24

Reminder: A maximum matching in a graph G is a matching of size $\nu(G)$. On the other hand, a maximal matching in G is a matching that is not a proper subset of any other matching of G.

Exercise 6 from Tutorial 1. Prove that a tree T has a perfect matching if and only if $odd(T \setminus v) = 1$ for every vertex $v \in V(T)$.

Exercise 7 from Tutorial 1. Find all perfect matchings of the Petersen graph (shown below). Make sure you prove that the perfect matchings that you found are the only ones.

Petersen graph

Exercise 1. Prove that every maximal matching in a graph G has at least $\frac{\nu(G)}{2}$ many edges.

Exercise 2. Let M_0 be a matching in a graph G, and let u be a vertex of G that is unsaturated by M_0 . Assume that no M_0 -augmenting path of G starts at u. Prove that u is unsaturated by some maximum matching of G.

Exercise 3. Prove that any cubic graph with at most two bridges has a perfect matching.