NDMI012: Combinatorics and Graph Theory 2 Tutorial 1

Irena Penev Summer 2022

Thursday, February 17

Exercise 1. A maximal matching in a graph G is a matching M such that M is not a proper subset of any other matching of G.¹ Give an example of a graph G and a matching M such that M is a maximal, but not a maximum matching of G.

Exercise 2. Either find a perfect matching in the graph below, or show that the graph does not have a perfect matching.

Exercise 3. Find a maximum matching in the graph below, and give a short proof that your matching is indeed maximum.

¹This means that there is no matching M' of G such that $M \subsetneqq M'$.

Exercise 4. Using Tutte's theorem, prove that a graph G is hypomatchable if and only if |V(G)| is odd and all non-empty sets $S \subseteq V(G)$ satisfy $|S| \ge odd(G \setminus S)$.

Hint: How is the parity of |S| related to the parity of $odd(G \setminus S)$?

Exercise 5. Prove or disprove the following statement: "Every forest has at most one perfect matching."

Remark: So, if the statement is true, then you should prove it. If it is false, then you should construct a counterexample.

Exercise 6. Prove that a tree T has a perfect matching if and only if $odd(T \setminus v) = 1$ for every vertex $v \in V(T)$.

Exercise 7. Find all perfect matchings of the Petersen graph (shown below). Make sure you prove that the perfect matchings that you found are the only ones.

Petersen graph