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In this lecture, we will cover three theorems:

@ Turan's theorem:;
@ the Erdés-Ko-Rado theorem;

@ the Sunflower lemma.



Part |: Turan's theorem



Part I: Turdn's theorem

Definition

Given a positive integer n and a graph H, an n-vertex graph G
without an H subgraph is extremal (for the property of not
containing H as a subgraph) if it has the largest possible number
of edges among all n-vertex graphs without an H subgraph;
ex(n, H) is the number of edges of an extremal n-vertex graph
without an H subgraph.

@ So, ex(n, H) is the maximum number of edges that an
n-vertex graph that does not contain H as a subgraph can
have.



@ Any extremal graph G without an H subgraph is
“edge-maximal” without an H subgraph, i.e. any graph
obtained from G by adding one or more edges to it, contains
H as a subgraph.



@ Any extremal graph G without an H subgraph is
“edge-maximal” without an H subgraph, i.e. any graph
obtained from G by adding one or more edges to it, contains
H as a subgraph.

@ The converse, however, does not hold in general: it is possible

that a graph is edge-maximal without an H subgraph, without
being extremal.



@ Any extremal graph G without an H subgraph is
“edge-maximal” without an H subgraph, i.e. any graph
obtained from G by adding one or more edges to it, contains
H as a subgraph.

@ The converse, however, does not hold in general: it is possible
that a graph is edge-maximal without an H subgraph, without
being extremal.

o For example, 2K is a four-vertex edge-maximal graph without
a P, subgraph, but it is not extremal: indeed, Kj 3 also has

four vertices and no P, subgraph, and it has more edges than
2K;.
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Mantel's theorem

For any positive integer n, we have that ex(n, K3) = L"TQJ and
moreover, KL%JH1 is an extremal n-vertex graph without a K3
subgraph.

Proof. Combinatorics & Graphs 1.



Mantel's theorem

For any positive integer n, we have that ex(n, K3) = L"TQJ and
moreover, KL%H? is an extremal n-vertex graph without a K3
subgraph.

Proof. Combinatorics & Graphs 1.

@ Mantel's theorem is a special case of Turan's theorem, to
which we now turn.



Definition

For a positive integer r, a complete r-partite graph is a graph G
whose vertex set can be partitioned into r (possibly empty) stable
sets (called parts), pairwise complete to each other.

Definition
A complete multipartite graph is any graph that is complete
r-partite for some r.



Definition

The r-partite Turan graph on n vertices, denoted by T,(n), is the
complete r-partite graph on n vertices, in which the sizes of any
two parts differ by at most one (so, each part is of size [ 7] or
[1); t-(n) is the number of edges of T,(n).




Turan’s theorem

Let n and r be positive integers. Then ex(n, K,1+1) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,;1 subgraph.




@ Duplicating a vertex x of a graph G produces a supergraph
G o x by adding to G a vertex x’ and making it adjacent to all
the neighbors of x in G, and to no other vertices of G (in
particular, x and x’ are nonadjacent in G o x).

G Goux



@ Duplicating a vertex x of a graph G produces a supergraph
G o x by adding to G a vertex x’ and making it adjacent to all
the neighbors of x in G, and to no other vertices of G (in
particular, x and x’ are nonadjacent in G o x).

G Gox
@ Obviously, w(G o x) = w(G), i.e. G contains K,11 is a
subgraph iff G o x does.



Turan’s theorem

Let n and r be positive integers. Then ex(n, K1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K1 subgraph.

Proof.
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Let n and r be positive integers. Then ex(n, K1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K1 subgraph.

Proof. We may assume that r < n, for otherwise, T,(n) = K, and
the result is immediate.
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furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K1 subgraph.

Proof. We may assume that r < n, for otherwise, T,(n) = K, and
the result is immediate.

It is clear that T,(n) is an n-vertex graph without a K1
subgraph.



Turan’s theorem

Let n and r be positive integers. Then ex(n, K1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K1 subgraph.

Proof. We may assume that r < n, for otherwise, T,(n) = K, and
the result is immediate.

It is clear that T,(n) is an n-vertex graph without a K1
subgraph. Now, let G be any n-vertex extremal graph without a
Kr+1 subgraph. We must show that G = T,(n).



Turan's theorem

Let n and r be positive integers. Then ex(n, K,1+1) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K11 subgraph.
Claim. G is a complete multipartite graph.

Proof of the Claim.



Turan's theorem

Let n and r be positive integers. Then ex(n, K,1+1) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K11 subgraph.
Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise.



Turan's theorem

Let n and r be positive integers. Then ex(n, K,1+1) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K11 subgraph.
Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then there exist pairwise
distinct vertices y1,x,y» € V(G) s.t. y1x,xy2 ¢ E(G), but
yiy2 € E(G).



Turan's theorem

Let n and r be positive integers. Then ex(n, K,1+1) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K11 subgraph.
Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then there exist pairwise
distinct vertices y1,x,y» € V(G) s.t. y1x,xy2 ¢ E(G), but

yiy2 € E(G). If dg(y1) > dg(x), then Gy := (G \ x) o yj is an
n-vertex graph that does not contain K,;1 as a subgraph, and
|E(G1)| > |E(G)|, contrary to the fact that G is extremal.



Turan's theorem

Let n and r be positive integers. Then ex(n, K,1+1) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K11 subgraph.
Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then there exist pairwise
distinct vertices y1,x,y» € V(G) s.t. y1x,xy2 ¢ E(G), but

yiy2 € E(G). If dg(y1) > dg(x), then Gy := (G \ x) o yj is an
n-vertex graph that does not contain K,;1 as a subgraph, and
|E(G1)| > |E(G)|, contrary to the fact that G is extremal.

So, dg(y1) < dg(x), and similarly, dg(y2) < dg(x).



Turan’s theorem

Let n and r be positive integers. Then ex(n, K,+1) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph.
Claim. G s a complete multipartite graph.

Proof of the Claim (continued). Reminder: y1x,xy» ¢ E(G) and
y1y2 € E(G); dg(y1), de(y2) < dg(x).



Turan’s theorem

Let n and r be positive integers. Then ex(n, K,+1) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph.
Claim. G s a complete multipartite graph.

Proof of the Claim (continued). Reminder: y1x,xy» ¢ E(G) and
y1y2 € E(G); dg(y1), de(y2) < dg(x).

Now, let G’ be the graph obtained from G\ {y1, 2} by duplicating
X twice.



Turan’s theorem

Let n and r be positive integers. Then ex(n, K,+1) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph.
Claim. G s a complete multipartite graph.

Proof of the Claim (continued). Reminder: y1x,xy» ¢ E(G) and
y1y2 € E(G); dg(y1), de(y2) < dg(x).

Now, let G’ be the graph obtained from G\ {y1, 2} by duplicating
x twice. Then G’ is an n-vertex graph with no K,;1 subgraph, and
(since y1y2 € E(G)) we have that

|E(G")| = |E(G)| = (da(y1) + d6(y2)) + 1+ 2d6(x) > |E(G)| + 1,
contrary to the fact that G is extremal. This proves the Claim.



Turan’s theorem

Let n and r be positive integers. Then ex(n, K,11) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph.

Now, using the Claim, we fix a partition (Si1,. .., Sk) of V(G) into
non-empty stable sets, pairwise complete to each other.



Turan’s theorem

Let n and r be positive integers. Then ex(n, K,11) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph.

Now, using the Claim, we fix a partition (Si1,. .., Sk) of V(G) into
non-empty stable sets, pairwise complete to each other. Clearly, G
contains K is a subgraph, and so k < r.



Turan’s theorem

Let n and r be positive integers. Then ex(n, K,11) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph.

Now, using the Claim, we fix a partition (Si1,. .., Sk) of V(G) into
non-empty stable sets, pairwise complete to each other. Clearly, G
contains K is a subgraph, and so k < r. Suppose that k < r.



Turan’s theorem

Let n and r be positive integers. Then ex(n, K,11) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph.

Now, using the Claim, we fix a partition (Si1,. .., Sk) of V(G) into
non-empty stable sets, pairwise complete to each other. Clearly, G
contains K is a subgraph, and so k < r. Suppose that k < r.
Then since r < n, at least one of the sets S1,..., S, has more than
one vertex; by symmetry, we may assume that |Sk| > 2. Fix
aes,.



Turan’s theorem

Let n and r be positive integers. Then ex(n, K,11) = t,(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph.

Now, using the Claim, we fix a partition (Si1,. .., Sk) of V(G) into
non-empty stable sets, pairwise complete to each other. Clearly, G
contains K is a subgraph, and so k < r. Suppose that k < r.
Then since r < n, at least one of the sets S1,..., S, has more than
one vertex; by symmetry, we may assume that |Sk| > 2. Fix

a € S5¢. Then we get a contradiction to the fact that G is extremal
as follows (next slide; formal details: Lecture Notes).



Turan's theorem

Let n and r be positive integers. Then ex(n, Ky4+1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,11 subgraph.

Proof (continued).




Turan's theorem

Let n and r be positive integers. Then ex(n, Ky4+1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,11 subgraph.

Proof (continued).




Turan's theorem

Let n and r be positive integers. Then ex(n, Ky4+1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph; G is a complete r-partite graph with
(non-empty) parts Si,...,S,. WTS G = T,(n).



Turan's theorem

Let n and r be positive integers. Then ex(n, Ky4+1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph; G is a complete r-partite graph with
(non-empty) parts Si,...,S,. WTS G = T,(n).

It remains to show that any two of S;,..., S, differ in size by at
most one.



Turan's theorem

Let n and r be positive integers. Then ex(n, Ky4+1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph; G is a complete r-partite graph with
(non-empty) parts Si,...,S,. WTS G = T,(n).

It remains to show that any two of S;,..., S, differ in size by at
most one. Suppose otherwise.



Turan's theorem

Let n and r be positive integers. Then ex(n, Ky4+1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph; G is a complete r-partite graph with
(non-empty) parts Si,...,S,. WTS G = T,(n).

It remains to show that any two of S;,..., S, differ in size by at
most one. Suppose otherwise. By symmetry, we may assume that
‘51| > ‘52’ + 2.



Turan's theorem

Let n and r be positive integers. Then ex(n, Ky4+1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph; G is a complete r-partite graph with
(non-empty) parts Si,...,S,. WTS G = T,(n).

It remains to show that any two of S;,..., S, differ in size by at
most one. Suppose otherwise. By symmetry, we may assume that
|S1| > |S2| + 2. Now, fix a vetex a € S;, and “move” a from S; to
S, (i.e. delete edges between a and Sp, and add edges between a

and 51\ {a}).



Turan's theorem

Let n and r be positive integers. Then ex(n, Ky4+1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph; G is a complete r-partite graph with
(non-empty) parts Si,...,S,. WTS G = T,(n).

It remains to show that any two of S;,..., S, differ in size by at
most one. Suppose otherwise. By symmetry, we may assume that
|S1| > |S2| + 2. Now, fix a vetex a € S;, and “move” a from S; to
S, (i.e. delete edges between a and Sp, and add edges between a
and 51 \ {a}). This increases the number of edges without
creating a K,;1 subgraph, contrary to the fact that G is extremal.



Turan's theorem

Let n and r be positive integers. Then ex(n, Ky4+1) = t.(n), and
furthermore, T,(n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,11 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a K,11 subgraph; G is a complete r-partite graph with
(non-empty) parts Si,...,S,. WTS G = T,(n).

It remains to show that any two of S;,..., S, differ in size by at
most one. Suppose otherwise. By symmetry, we may assume that
|S1| > |S2| + 2. Now, fix a vetex a € S;, and “move” a from S; to
S, (i.e. delete edges between a and Sp, and add edges between a
and 51 \ {a}). This increases the number of edges without
creating a K,;1 subgraph, contrary to the fact that G is extremal.

So, G = T,(n).
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@ Suppose we are given positive integers r and n, and we want
to select a maximum number of pairwise intersecting
r-element subsets of {1,...,n}.

e What is this maximum number?
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@ Suppose we are given positive integers r and n, and we want
to select a maximum number of pairwise intersecting
r-element subsets of {1,...,n}.

e What is this maximum number?

e For r > 7, any two r-element subsets of {1,..., n} intersect,
and there are () many such subsets.
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to select a maximum number of pairwise intersecting
r-element subsets of {1,...,n}.

e What is this maximum number?
e For r > 7, any two r-element subsets of {1,..., n} intersect,
and there are () many such subsets.
e How about if r < 37



Part Il: The Erdés-Ko-Rado theorem

@ Suppose we are given positive integers r and n, and we want
to select a maximum number of pairwise intersecting
r-element subsets of {1,...,n}.

e What is this maximum number?

e For r > 7, any two r-element subsets of {1,..., n} intersect,
and there are () many such subsets.
e How about if r < 37

o In that case, we can fix any x € {1,..., n}, and consider all
r-element subsets of {1,..., n} that contain x.
o There are ("~1) many such subsets, and obviously, they

pairwise intersect.



Part II: The Erdés-Ko-Rado theorem
@ Suppose we are given positive integers r and n, and we want
to select a maximum number of pairwise intersecting
r-element subsets of {1,...,n}.
e What is this maximum number?

e For r > 7, any two r-element subsets of {1,..., n} intersect,

and there are () many such subsets.
e How about if r < 37
o In that case, we can fix any x € {1,..., n}, and consider all
r-element subsets of {1,..., n} that contain x.
o There are ("~1) many such subsets, and obviously, they
pairwise intersect.
o As the following theorem shows, this is in fact best possible.



Part Il: The Erdés-Ko-Rado theorem

@ Suppose we are given positive integers r and n, and we want
to select a maximum number of pairwise intersecting
r-element subsets of {1,...,n}.

e What is this maximum number?

e For r > 7, any two r-element subsets of {1,..., n} intersect,

and there are () many such subsets.
e How about if r < 37
o In that case, we can fix any x € {1,..., n}, and consider all
r-element subsets of {1,..., n} that contain x.
o There are ("~1) many such subsets, and obviously, they
pairwise intersect.
o As the following theorem shows, this is in fact best possible.

The Erdés-Ko-Rado theorem

Let r and n be positive integers s.t. r < g Then there are at most

("~1) many pairwise distinct and pairwise intersecting r-element

subsets of {1,...,n}.




The Erdos-Ko-Rado theorem

Let r and n be positive integers s.t. r < 7. Then there are at most
('Zj) many pairwise distinct and pairwise intersecting r-element

subsets of {1,...,n}.

Proof.
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The Erdos-Ko-Rado theorem

Let r and n be positive integers s.t. r < 7. Then there are at most
('Zj) many pairwise distinct and pairwise intersecting r-element

subsets of {1,...,n}.

Proof. Let A1,...,An be pairwise distinct and pairwise

intersecting r-element subsets of {1,...,n}. WTS m < (’;:i)

Let ¢ be the number of ordered pairs (C, A), where
e C is a directed cycle with vertex set {1,...,n};
e vertics 1,..., n need not appear in that order on the cycle;
@ Ais an r-vertex directed subpath of C;
o V(A) = A, for some i € {1,..., m}.



The Erdos-Ko-Rado theorem

Let r and n be positive integers s.t. r < 7. Then there are at most
('Zj) many pairwise distinct and pairwise intersecting r-element

subsets of {1,...,n}.

Proof. Let A1,...,An be pairwise distinct and pairwise

intersecting r-element subsets of {1,...,n}. WTS m < (’;:i)

Let ¢ be the number of ordered pairs (C, A), where
e C is a directed cycle with vertex set {1,...,n};
e vertics 1,..., n need not appear in that order on the cycle;
@ Ais an r-vertex directed subpath of C;
o V(A) = A, for some i € {1,..., m}.
Now we count in two ways, as follows.



The Erdos-Ko-Rado theorem

Let r and n be positive integers s.t. r < 7. Then there are at most
('Zj) many pairwise distinct and pairwise intersecting r-element

subsets of {1,...,n}.

Proof. Let A1,...,An be pairwise distinct and pairwise

intersecting r-element subsets of {1,...,n}. WTS m < (’;:i)

Let ¢ be the number of ordered pairs (C, A), where

e C is a directed cycle with vertex set {1,...,n};
e vertics 1,..., n need not appear in that order on the cycle;

@ Ais an r-vertex directed subpath of C;

o V(A) = A, for some i € {1,..., m}.
Now we count in two ways, as follows. On the one hand, we can
form an ordered pair (C, A) by first selecting one of the sets
A1,...,Amn (we have m choices),



The Erdos-Ko-Rado theorem

Let r and n be positive integers s.t. r < 7. Then there are at most
('Zj) many pairwise distinct and pairwise intersecting r-element

subsets of {1,...,n}.

Proof. Let A1,...,An be pairwise distinct and pairwise
intersecting r-element subsets of {1,...,n}. WTS m < (’;:i)

Let ¢ be the number of ordered pairs (C, A), where
e C is a directed cycle with vertex set {1,...,n};
e vertics 1,..., n need not appear in that order on the cycle;

@ Ais an r-vertex directed subpath of C;

o V(A) = A, for some i € {1,..., m}.
Now we count in two ways, as follows. On the one hand, we can
form an ordered pair (C, A) by first selecting one of the sets
A1,...,Am (we have m choices), then ordering its vertices to form
a directed path (there are r! choices),



The Erdos-Ko-Rado theorem

Let r and n be positive integers s.t. r < 7. Then there are at most
('Zj) many pairwise distinct and pairwise intersecting r-element

subsets of {1,...,n}.

Proof. Let A1,...,An be pairwise distinct and pairwise

intersecting r-element subsets of {1,...,n}. WTS m < (’;:i)

Let ¢ be the number of ordered pairs (C, A), where

e C is a directed cycle with vertex set {1,...,n};
e vertics 1,..., n need not appear in that order on the cycle;

@ Ais an r-vertex directed subpath of C;

o V(A) = A, for some i € {1,..., m}.
Now we count in two ways, as follows. On the one hand, we can
form an ordered pair (C, A) by first selecting one of the sets
A1,...,Am (we have m choices), then ordering its vertices to form
a directed path (there are r! choices), and then ordering the
remaining n — r vertices to complete the cycle C (there are
(n — r)! choices). So, ¢ = mr!(n—r)l.



Proof (continued). Reminder: Ay, ..., A, are pairwise distinct and
pairwise intersecting r-element subsets of {1,...,n}; c is the
number of ordered pairs (C, A), where

e C is a directed cycle with vertex set {1,...,n};
@ Ais an r-vertex directed subpath of C;
o V(A) = A, forsome i e {l,..., m};

c=mrl(n—r)l



Proof (continued). Reminder: Ay, ..., A, are pairwise distinct and
pairwise intersecting r-element subsets of {1,...,n}; c is the
number of ordered pairs (C, A), where

e C is a directed cycle with vertex set {1,...,n};

@ Ais an r-vertex directed subpath of C;

o V(A) = A, forsome i e {l,..., m};
c=mrl(n—r)l

We now count in another way.



Proof (continued). Reminder: Ay, ..., A, are pairwise distinct and
pairwise intersecting r-element subsets of {1,...,n}; c is the
number of ordered pairs (C, A), where

e C is a directed cycle with vertex set {1,...,n};

@ Ais an r-vertex directed subpath of C;

o V(A) = A, forsome i e {l,..., m};
c=mrl(n—r)l
We now count in another way. First, there are (n — 1)! ways of
ordering {1,...,n} to obtain a directed cycle C.



Proof (continued). Reminder: Ay, ..., A, are pairwise distinct and
pairwise intersecting r-element subsets of {1,...,n}; c is the
number of ordered pairs (C, A), where

e C is a directed cycle with vertex set {1,...,n};

@ Ais an r-vertex directed subpath of C;

o V(A) = A, forsome i e {l,..., m};
c=mrl(n—r)l
We now count in another way. First, there are (n — 1)! ways of
ordering {1,...,n} to obtain a directed cycle C. WTS that for
fixed C, there are at most r directed subpaths of C that
correspond to one of A;'s.



Proof (continued). Reminder: Ay, ..., A, are pairwise distinct and
pairwise intersecting r-element subsets of {1,...,n}; c is the
number of ordered pairs (C, A), where

e C is a directed cycle with vertex set {1,...,n};

@ Ais an r-vertex directed subpath of C;

o V(A) = A, forsome i e {l,..., m};
c=mrl(n—r)l

We now count in another way. First, there are (n — 1)! ways of
ordering {1,...,n} to obtain a directed cycle C. WTS that for
fixed C, there are at most r directed subpaths of C that
correspond to one of A;'s. Indeed, suppose the subpath
ai,ap,...,a, of C corresponds to one of Ay,...,An.




a,

ay

a; Qi1

Then for any other subpath of C corresponding to one of
Ai1,...,Am (and therefore containing at least one of a1,...,a,),
there exists some i € {1,...,r — 1} s.t. either a; is the terminal
vertex of the path, or ajy; is the initial vertex of the path;



a,

ay

a; Qi1

Then for any other subpath of C corresponding to one of
Ai1,...,Am (and therefore containing at least one of a1,...,a,),
there exists some i € {1,...,r — 1} s.t. either a; is the terminal
vertex of the path, or ajy; is the initial vertex of the path; but since
r < 2, at most one of those choices is possible.



a,

ay

a; Qi1

Then for any other subpath of C corresponding to one of
Ai1,...,Am (and therefore containing at least one of a1,...,a,),
there exists some i € {1,...,r — 1} s.t. either a; is the terminal
vertex of the path, or ajy; is the initial vertex of the path; but since
r < 5, at most one of those choices is possible. This proves that

c < (n=1'r.



The Erdés-Ko-Rado theorem

Let r and n be positive integers s.t. r < 7. Then there are at most
(’r’:%) many pairwise distinct and pairwise intersecting r-element

subsets of {1,...,n}.

Proof (continued). Reminder: Ai, ..., A, are pairwise distinct and
pairwise intersecting r-element subsets of {1,..., n};
mrl(n—r)l =c<(n—1)!r.



The Erdés-Ko-Rado theorem

Let r and n be positive integers s.t. r < 7. Then there are at most

(’r’:%) many pairwise distinct and pairwise intersecting r-element

subsets of {1,...,n}.

Proof (continued). Reminder: Ai, ..., A, are pairwise distinct and
pairwise intersecting r-element subsets of {1,..., n};
mrl(n—r)l =c<(n—1)!r.
> (n—1)
n—1)lr -1
m < Mn—n)1 (771)’

which is what we needed to show.
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Part Ill: The Sunflower lemma

Definition

A sunflower is a family (i.e. collection) . of sets (called petals)
s.t. there exists a set S (called a kernel) with the property that for
all distinct S1, 5, € ., we have that S NS, = S.

e A sunflower ./ = {Si,..., Sk} with kernel S:
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Proof. We assume inductively that the lemma is true for smaller
values of /.



Definition

A sunflower is a family (i.e. collection) . of sets (called petals)
s.t. there exists a set S (called a kernel) with the property that for
all distinct $1, 5, € .%, we have that 5, NS, = S.

The Sunflower lemma [Erdés-Rado]

Let ¢ and p be positive integers, and let </ be a family of sets s.t.
o |A| < /forall Ac </, and
o || > (p— 1)

Then there exists a sunflower . C & with p petals.

Proof. We assume inductively that the lemma is true for smaller
values of £. If p < 2 or £ =1, then it's easy (details: Lecture
Notes). So, we assume that p > 3 and ¢ > 2.
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Let £ and p be positive integers, and let 2/ be a family of sets s.t.
o |A| </ forall A€ </, and
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Proof (continued). Reminder: true (inductively) for smaller values
of b; p>3,¢>2.
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Let £ and p be positive integers, and let 2/ be a family of sets s.t.
o |A| </ forall A€ </, and
o || > (p— 1)k

Then there exists a sunflower . C & with p petals.

Proof (continued). Reminder: true (inductively) for smaller values
of b; p>3,¢>2.

Let Z C 7 be a collection of pairwise disjoint sets, with |7
chosen maximum. If |2| > p, then any p elements of 2 form a
sunflower (with an empty kernel), and we are done.



The Sunflower lemma [Erdés-Rado]

Let £ and p be positive integers, and let 2/ be a family of sets s.t.
o |A| </ forall A€ </, and
o || > (p— 1)k

Then there exists a sunflower . C & with p petals.

Proof (continued). Reminder: true (inductively) for smaller values
of b; p>3,¢>2.

Let Z C 7 be a collection of pairwise disjoint sets, with |7
chosen maximum. If |2| > p, then any p elements of 2 form a
sunflower (with an empty kernel), and we are done. So assume
that |2| < p.



The Sunflower lemma [Erdés-Rado]

Let £ and p be positive integers, and let 2/ be a family of sets s.t.
o |A| </ forall A€ </, and
o || > (p— 1)k

Then there exists a sunflower . C & with p petals.

Proof (continued). Reminder: true (inductively) for smaller values
of b; p>3,¢>2.

Let Z C 7 be a collection of pairwise disjoint sets, with |7
chosen maximum. If |2| > p, then any p elements of 2 form a
sunflower (with an empty kernel), and we are done. So assume
that [2]| < p. Let D= Z; then |D| < |2]¢ < (p — 1)L.



The Sunflower lemma [Erdés-Rado]

Let £ and p be positive integers, and let 2/ be a family of sets s.t.
o |A| </ forall A€ </, and
o || > (p— 1)k

Then there exists a sunflower . C & with p petals.

Proof (continued). Reminder: true (inductively) for smaller values
of b; p>3,¢>2.

Let Z C 7 be a collection of pairwise disjoint sets, with |7
chosen maximum. If |2| > p, then any p elements of 2 form a
sunflower (with an empty kernel), and we are done. So assume
that [2]| < p. Let D= Z; then |D| < |2]¢ < (p — 1)L.
Furthermore, since |.<7| > ¢ > 2, the maximality of & guarantees
that 2 contains at least one non-empty set, and so D # ().
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than (p — 1)!=1(¢ — 1)! many elements of o7 .

Proof of the Claim.
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Then every element of .7 intersects D: indeed, since () ¢ 2, we
know that every element of & intersects D, and by the maximality
of 2, every element of &7 \ & intersects D.



Claim. There exists some d € D s.t. d belongs to more
than (p — 1)!=1(¢ — 1)! many elements of o7 .

Proof of the Claim. We consider the case when () ¢ o (see the
Lecture Notes for the other case).

Then every element of .7 intersects D: indeed, since () ¢ 2, we
know that every element of & intersects D, and by the maximality
of 2, every element of &7 \ & intersects D. But then by the
Pigeonhole Principle, some element of D belongs to at least

_1\¢
[%W = (fp—ll))f! = (p—1)He—1)

many elements of o/, which is what we needed. This proves the
Claim.



The Sunflower lemma [Erdés-Rado]

Let ¢ and p be positive integers, and let ./ be a family of sets s.t.
e |A| </ forall A€ </, and
o || > (p— 1)t

Then there exists a sunflower . C o/ with p petals.

Proof (continued). Reminder: p > 3, ¢ > 2; true for smaller values
of ¢; 9 C & be a collection of pairwise disjoint sets of maximum
possible size; D = J Z.
Claim. There exists some d € D s.t. d belongs to more
than (p — 1)*~1(¢ — 1)! many elements of </ .
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of ¢; 9 C & be a collection of pairwise disjoint sets of maximum
possible size; D = J Z.
Claim. There exists some d € D s.t. d belongs to more
than (p — 1)*~1(¢ — 1)! many elements of </ .

Let d € D be as in the Claim,



The Sunflower lemma [Erdés-Rado]

Let ¢ and p be positive integers, and let ./ be a family of sets s.t.
e |A| </ forall A€ </, and
o || > (p— 1)t

Then there exists a sunflower . C o/ with p petals.

Proof (continued). Reminder: p > 3, ¢ > 2; true for smaller values
of ¢; 9 C & be a collection of pairwise disjoint sets of maximum
possible size; D = J Z.
Claim. There exists some d € D s.t. d belongs to more
than (p — 1)*~1(¢ — 1)! many elements of </ .

Let d € D be as in the Claim, and set
" ={A\{d} |Ae o ,d e A}.



The Sunflower lemma [Erdés-Rado]

Let ¢ and p be positive integers, and let ./ be a family of sets s.t.
e |A| </ forall A€ </, and
o || > (p— 1)t

Then there exists a sunflower . C o/ with p petals.

Proof (continued). Reminder: p > 3, ¢ > 2; true for smaller values
of ¢; 9 C & be a collection of pairwise disjoint sets of maximum
possible size; D = J Z.
Claim. There exists some d € D s.t. d belongs to more
than (p — 1)*~1(¢ — 1)! many elements of </ .

Let d € D be as in the Claim, and set
"= {A\{d} | A€ o/,d € A}. Then |&'| > (p— 1)1 (¢ —1)!,
and [A|<(—-1VAe '



The Sunflower lemma [Erdés-Rado]

Let ¢ and p be positive integers, and let ./ be a family of sets s.t.
e |A| </ forall A€ </, and
o || > (p— 1)t

Then there exists a sunflower . C o/ with p petals.

Proof (continued). Reminder: p > 3, ¢ > 2; true for smaller values
of ¢; 9 C & be a collection of pairwise disjoint sets of maximum
possible size; D = J Z.
Claim. There exists some d € D s.t. d belongs to more
than (p — 1)*~1(¢ — 1)! many elements of </ .

Let d € D be as in the Claim, and set

"= {A\{d} | A€ o/,d € A}. Then |&'| > (p— 1)1 (¢ —1)!,
and |A| < ¢ —1VAe€ . So, by the ind. hyp., 3 sunflower

' C &' with p petals.



The Sunflower lemma [Erdés-Rado]

Let ¢ and p be positive integers, and let ./ be a family of sets s.t.
e |A| </ forall A€ </, and
o || > (p— 1)t

Then there exists a sunflower . C o/ with p petals.

Proof (continued). Reminder: p > 3, ¢ > 2; true for smaller values
of ¢; 9 C & be a collection of pairwise disjoint sets of maximum
possible size; D = J Z.
Claim. There exists some d € D s.t. d belongs to more
than (p — 1)*~1(¢ — 1)! many elements of </ .

Let d € D be as in the Claim, and set

"= {A\{d} | A€ o/,d € A}. Then |&'| > (p— 1)1 (¢ —1)!,
and |A| < ¢ —1VAe€ . So, by the ind. hyp., 3 sunflower

" C o' with p petals. Now, set .7 := {AU{d} | A €.}, then
& C of is a sunflower with p petals, and we are done.



