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Lecture #13

Extremal combinatorics

Irena Penev

1 Turán’s theorem

Given a positive integer n and a graph H, an n-vertex graph G without an
H subgraph is extremal (for the property of not containing H as a subgraph)
if it has the largest possible number of edges among all n-vertex graphs
without an H subgraph; ex(n,H) is the number of edges of an extremal
n-vertex graph without an H subgraph. In other words, ex(n,H) is the
maximum number of edges that an n-vertex graph that does not contain H
as a subgraph can have.

Obviously, any extremal graph G without an H subgraph is “edge-
maximal” without an H subgraph, i.e. any graph obtained from G by adding
one or more edges to it, contains H as a subgraph. The converse, however,
does not hold in general: it is possible that a graph is edge-maximal without
an H subgraph, without being extremal. For example, 2K2 is a four-vertex
edge-maximal graph without a P4 subgraph,1 but it is not extremal: indeed,
K1,3 also has four vertices and no P4 subgraph, and it has more edges than
2K2.

P4 2K2 K1,3

The following was proven in Combinatorics & Graphs Theory 1.

Mantel’s theorem. For any positive integer n, we have that ex(n,K3) =

⌊n2

4 ⌋, and moreover, K⌊n
2
⌋,⌈n

2
⌉ is an extremal n-vertex graph without a K3

subgraph.

1As usual, P4 is the four-vertex (and three-edge) path.
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Mantel’s theorem is a special case of Turán’s theorem, to which we now
turn.

For a positive integer r, a complete r-partite graph is a graph G whose
vertex set can be partitioned into r (possibly empty) stable sets (called parts),
pairwise complete to each other. For example, the graph below is complete
3-partite, with parts S1, S2, S3.

S1

S2

S3

A complete multipartite graph is any graph that is complete r-partite for
some r.

The r-partite Turán graph on n vertices, denoted by Tr(n), is the complete
r-partite graph on n vertices, in which the sizes of any two parts differ by at
most one (so, each part is of size ⌊nr ⌋ or ⌈nr ⌉); tr(n) is the number of edges of
Tr(n). We note that the complete 3-partite graph above is in fact the graph
T3(8).

Recall that duplicating a vertex x of a graph G produces a supergraph
G◦x by adding to G a vertex x′ and making it adjacent to all the neighbors of
x in G, and to no other vertices of G (in particular, x and x′ are nonadjacent
in G ◦ x). An example is shown below.

x x

x′

G G ◦ x

Obviously, ω(G ◦ x) = ω(G), i.e. G contains Kr+1 is a subgraph if and only
if G ◦ x does.

Turán’s theorem. Let n and r be positive integers. Then ex(n,Kr+1) =
tr(n), and furthermore, Tr(n) is the unique (up to isomorphism) extremal
n-vertex graph without a Kr+1 subgraph.

Proof. We may assume that r < n, for otherwise, Tr(n) ∼= Kn, and the result
is immediate.

It is clear that Tr(n) is an n-vertex graph without a Kr+1 subgraph. Now,
let G be any n-vertex extremal graph without a Kr+1 subgraph. We must
show that G ∼= Tr(n).
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Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then there exist pairwise distinct
vertices y1, x, y2 ∈ V (G) such that y1x, xy2 /∈ E(G), but y1y2 ∈ E(G).2 If
dG(y1) > dG(x), then G1 := (G \ x) ◦ y1 is an n-vertex graph that does not
contain Kr+1 as a subgraph, and |E(G1)| > |E(G)|, contrary to the fact that
G is extremal.

So, dG(y1) ≤ dG(x), and similarly, dG(y2) ≤ dG(x). Now, let G
′ be the

graph obtained from G \ {y1, y2} by duplicating x twice. Then G′ is an
n-vertex graph with no Kr+1 subgraph, and (since y1y2 ∈ E(G)) we have
that |E(G′)| = |E(G)|−(dG(y1)+dG(y2))+1+2dG(x) ≥ |E(G)|+1, contrary
to the fact that G is extremal. This proves the Claim. ♦

Now, using the Claim, we fix a partition (S1, . . . , Sk) of V (G) into non-
empty stable sets, pairwise complete to each other. Clearly, G contains Kk

is a subgraph,3 and so k ≤ r. Suppose that k < r. Then since r < n, at
least one of the sets S1, . . . , Sk has more than one vertex; by symmetry, we
may assume that |Sk| ≥ 2. Fix a ∈ Sk. Then consider the graph G′ obtained
from G by adding edges between a and all vertices of Sk \ {a}; then G′ is
a complete (k + 1)-partite graph, it does not contain Kr+1 as a subgraph
(because k < r), and it has more edges than G, contrary to the fact that G
is extremal. So, k = r.

It remains to show that any two of S1, . . . , Sr differ in size by at most
one (this will imply that G ∼= Tr(n)). Suppose otherwise. By symmetry, we
may assume that |S1| ≥ |S2| + 2. Now, fix a vetex a ∈ S1, and let G′ be
the graph obtained by first deleting all edges between a and S2, and then
adding all edges between a and S1 \ {a}. (This effectively “moves” a into
S2.) Now G is still a complete r-partite graph on n vertices, and it does not
contain Kr+1 as a subgraph. Furthermore, since |S1| ≥ |S2|+ 2, we see that
|E(G′)| ≥ |E(G)|+ 1. But this contradicts the fact that G is extremal.

2 The Erdős-Ko-Rado theorem

Suppose we are given positive integers r and n, and we want to select a
maximum number of pairwise intersecting r-element subsets of {1, . . . , n}.
What is this maximum number? For r > n

2 , any two r-element subsets of
{1, . . . , n} intersect, and there are

(
n
r

)
many such subsets. How about if

r ≤ n
2 ? In that case, we can fix any x ∈ {1, . . . , n}, and consider all r-element

2Let us justify this. Since G is not complete multipartite, G is not the disjoint union of
complete graphs. Consequently, some component C of G is not a complete graph. Since
C is not complete, we see that C contains some two distinct, non-adjacent vertices, call
them a and b. Since C is connected, there is an induced path p1, . . . , pt in C, with p1 = a
and pt = b; since a and b are non-adjacent in C, we see that t ≥ 3. We now set y1 := p1,
x := p2, and y2 := p3, and we observe that y1x, y2x /∈ E(G) and y1y2 ∈ E(G).

3Indeed, we just take one vertex from each Si, and we obtain a clique of size k.
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subsets of {1, . . . , n} that contain x; there are
(
n−1
r−1

)
many such subsets, and

obviously, they pairwise intersect.4 As the following theorem shows, this is
in fact best possible.

The Erdős-Ko-Rado theorem. Let r and n be positive integers such that
r ≤ n

2 . Then there are at most
(
n−1
r−1

)
many pairwise distinct and pairwise

intersecting r-element subsets of {1, . . . , n}.

Proof. Let A1, . . . , Am be pairwise distinct and pairwise intersecting r-
element subsets of {1, . . . , n}. We must show that m ≤

(
n−1
r−1

)
.

Let c be the number of ordered pairs (C,A), where

� C is a directed cycle with vertex set {1, . . . , n};5

� A is an r-vertex directed subpath of C;

� V (A) = Ai for some i ∈ {1, . . . ,m}.

Now we count in two ways, as follows. On the one hand, we can form
an ordered pair (C,A) by first selecting one of the sets A1, . . . , Am (we have
m choices), then ordering its vertices to form a directed path (there are r!
choices), and then ordering the remaining n − r vertices to complete the
cycle C (there are (n− r)! choices). So,

c = mr!(n− r)!.

We now count in another way. First, there are (n− 1)! ways of ordering
{1, . . . , n} to obtain a directed cycle C. Next, we claim that for fixed
C, there are at most r directed subpaths of C that correspond to one of
Ai’s. Indeed, suppose the subpath a1, a2, . . . , ar of C corresponds to one
of A1, . . . , Am. Then for any other subpath of C corresponding to one of
A1, . . . , Am (and therefore containing at least one of a1, . . . , ar), there exists
some i ∈ {1, . . . , r − 1} such that either ai is the terminal vertex of the
path, or ai+1 is the initial vertex of the path; but since r ≤ n

2 , the r-vertex
subpath terminating at ai and the r-vertex subpath starting at ai+1 have no
vertices in common, and so at most one of them can correspond to one of
A1, . . . , Am. Thus, in addition to a1, . . . , ar, there are at most r−1 subpaths
of C corresponding to one of A1, . . . , Am; in total, at most r subpaths of C
correspond to one of A1, . . . , Am. This proves that

c ≤ (n− 1)!r.

4For the case when r = n
2
, here is another construction. Fix any x ∈ {1, . . . , n}, and

consider all r-element subsets of {1, . . . , n} \ {x}. Since r = n
2
, all these subsets pairwise

intersect, and there are
(
n−1
r

)
=

(
n−1

(n−1)−r

)
=

(
n−1

(n−1)−n
2

)
=

(
n−1
n
2
−1

)
=

(
n−1
r−1

)
many of them.

5Vertics 1, . . . , n need not appear in that order on the cycle.
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We now have that

mr!(n− r)! = c ≤ (n− 1)!r,

and so
m ≤ (n−1)!r

r!(n−r)! =
(
n−1
r−1

)
,

which is what we needed to show.

3 The Sunflower lemma

A sunflower is a family (i.e. collection) S of sets (called petals) such that
there exists a set S (called a kernel) with the property that for all distinct
S1, S2 ∈ S , we have that S1 ∩ S2 = S.6

The Sunflower lemma (Erdős-Rado). Let ℓ and p be positive integers, and
let A be a family of sets such that

� |A| ≤ ℓ for all A ∈ A , and

� |A | > (p− 1)ℓℓ!.

Then there exists a sunflower S ⊆ A with p petals.

Proof. We assume inductively that the lemma is true for smaller values of
ℓ. More precisely, we assume that for all positive integers ℓ′ < ℓ, and all
families A ′ of sets such that

� |A| ≤ ℓ′ for all A ∈ A ′, and

� |A ′| > (p− 1)ℓ
′
ℓ′!,

there exists a sunflower S ′ ⊆ A ′ with p petals.
Note that |A | ≥ p; so, if p ≤ 2, then any p elements of A form a

sunflower with p petals, and we are done. So, we may assume that p ≥ 3.
Next, suppose that ℓ = 1. Then |A| ≤ 1 for all A ∈ A and |A | > p− 1. We
then take any p elements of A , and we observe that they form a sunflower
(with an empty kernel). So, from now on, we assume that ℓ ≥ 2.

Let D ⊆ A be a collection of pairwise disjoint sets, with |D | chosen
maximum. If |D | ≥ p, then any p elements of D form a sunflower (with an
empty kernel), and we are done. So assume that |D | < p. Let D =

⋃
D ;

then |D| ≤ |D |ℓ ≤ (p− 1)ℓ. Furthermore, since |A | ≥ ℓ ≥ 2, the maximality
of D guarantees that D contains at least one non-empty set,7 and so D ̸= ∅.

6It is possible that S = ∅.
7Let us justify this. Suppose that D contains no non-empty sets. Then either D = ∅ or

D = {∅}. Since |A | ≥ 2, we see that A contains at least one non-empty set, say A. But
then D ∪ {A} is a set of pairwise disjoint elements of A , contrary to the maximality of D .
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Claim. There exists some d ∈ D such that d belongs to more
than (p− 1)ℓ−1(ℓ− 1)! many elements of A .

Proof of the Claim. We consider two cases: when ∅ ∈ A , and when this is
not the case.

Suppose first that ∅ /∈ A (and consequently, ∅ /∈ D). Then every element
of A intersects D: indeed, since ∅ /∈ D , we know that every element of D
intersects D, and by the maximality of D , every element of A \D intersects
D. But then by the Pigeonhole Principle, some element of D belongs to at
least ⌈

|A |
|D|

⌉
> (p−1)ℓℓ!

(p−1)ℓ = (p− 1)ℓ−1(ℓ− 1)!

many elements of A , which is what we needed.
Suppose now that ∅ ∈ A . Then the maximality of D guarantees that

∅ ∈ D. Since D ̸= ∅, it follows that |D | ≥ 2. Since ∅ ∈ D , we see that
|D| ≤ (|D | − 1)ℓ ≤ (p− 2)ℓ. Now by the maximality of D , every element of
A \ {∅} intersects D. But then by the Pigeonhole Principle, some element
of D belongs to at least⌈

|A \{∅}|
|D|

⌉
≥ (p−1)ℓℓ!

(p−2)ℓ

= (p− 1)ℓ−1(ℓ− 1)!p−1
p−2

> (p− 1)ℓ−1(ℓ− 1)!

many elements of A , which is what we needed. This proves the Claim. ♦

Let d ∈ D be as in the Claim, and set A ′ := {A \ {d} | A ∈ A , d ∈ A}.
Then |A ′| > (p− 1)ℓ−1(ℓ− 1)!; furthermore, |A| ≤ ℓ− 1 for all A ∈ A ′. So,
by the induction hypothesis, there exists a sunflower S ′ ⊆ A ′ with p petals.
Now, set S := {A ∪ {d} | A ∈ S ′}; then S ⊆ A is a sunflower with p
petals, and we are done.
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