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Pólya enumeration theorem. Exponential generating

functions

Irena Penev

1 Pólya enumeration theorem

Our goal in this section is to compute the number of different colorings of
certain objects, up to symmetry. The symmetry will be determined by an
appropriate group action.

A subgroup of a group G is a subset of G that is a group under the
operation inherited from G. Note that every group is a subgroup of itself, as
is the one-element group consisting only of the identity element.

Let X be a set of size n, and let G be a subgroup of Sym(X). Each
element of G can be represented as a composition of disjoint cycles, the sum
of whose lengths is n. Now, for g ∈ G and k ∈ {1, . . . , n}, we denote by
jk(g) the number of cycles of length k, when g is written as a composition of

disjoint cycles.1 For g ∈ G, we set xcs(g) := x
j1(g)
1 x

j2(g)
2 . . . x

jn(g)
n . Finally, the

cycle index of the group G is

ZG(x1, . . . , xn) = 1
|G|

∑
g∈G

xcs(g).

Example 1.1. Compute cycle index of the group Sym(2).

Solution. Here, using the notation from the definition of a cycle index, we
have that X = {1, 2} and n = 2. We have that Sym(2) = {(1)(2), (12)}, and
clearly,

� xcs
(
(1)(2)

)
= x21x

0
2 = x21;

� xcs
(
(12)

)
= x01x

1
2 = x2.

1For example, if n = 7 and g = (124)(35)(6)(7), then j1(g) = 2, j2(g) = 1, j3(g) = 1,
and j4(g) = j5(g) = j6(g) = j7(g) = 0. Do not forget to count cycles of length one!
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So,

ZSym(2)(x1, x2) =
x2
1+x2

2 .

Example 1.2. Compute cycle index of the group Sym(3).

Solution. Here, using the notation from the definition of a cycle index, we
have that X = {1, 2, 3} and n = 3. Sym(3) has one element that is a
composition of three 1-cycles; it has three elements that are a composition
of one 2-cycle and one 1-cycle; and it has two elements that consist of one
3-cycle. So,

ZSym(3)(x1, x2, x3) =
x3
1+3x1x2+2x3

6 .

Recall that for a set X,
(
X
2

)
is the set of all 2-element subsets of X.

For each positive integer n and permutation π ∈ Sym(n), we define a
permutation π′ on the set

({1,...,n}
2

)
by setting π′({i, j}) = {π(i), π(j)}, and

we set Sym′(n) = {π′ | π ∈ Sym(n)}. It is easy to check that Sym′(n) is a

subgroup of Sym
(({1,...,n}

2

))
. In particular, every permutation in Sym′(n)

can be represented as a composition of disjoint cycles, the sum of whose
lengths is

(
n
2

)
.

Example 1.3. Compute the cycle index of the group Sym′(5).

Solution. We remark that
(
5
2

)
= 10, and so each permutation in Sym′(5) can

be represented as a composition of disjoint cycles, the sum of whose lengths
is 10.

We analyze the cycle structure of permutations in Sym(5): given the
cycle structure of a permutation π ∈ Sym(5), we describe the cycle structure
of π′. If we, in addition, keep track of the number of permutations of each
type in Sym(5), we can easily find the cycle index of Sym′(5).

� There is one permutation π in Sym(5) (namely, the identity permuta-
tion) of the form (a)(b)(c)(d)(e). For such a π, we have that π′ is the
composition of ten cycles of length one. So, xcs(π

′) = x101 .

� There are 10 permutations π in Sym(5) of the form (ab)(c)(d)(e). For
such a π, we see that π′ has three cycles of the length two (these cycles
are of the form ({a, x}, {b, x}), with x /∈ {a, b}), and it has four cycles
of length one. So, xcs(π

′) = x41x
3
2.

� There are 15 permutation π in Sym(5) of the form (ab)(cd)(e). For
such a π, we see that π′ has exactly two cycles of length one (namely,
({a, b}) and ({c, d})), and the remaining cycles of π′ (four of them) are
of length two. So, xcs(π

′) = x21x
4
2.
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� There are 20 permutations π in Sym(5) of the form (abc)(d)(e). For
such a π, we see that π′ has one cycle of length one (namely, ({d, e})),
and the remaining cycles of π′ (three of them) are of length three. So,
xcs(π

′) = x1x
3
3.

� There are 20 permutations π in Sym(5) of the form (abc)(de). For
such a π, we see that π′ has one cycle of length one (namely, ({d, e})),
one cycle of length three (namely, ({a, b}, {b, c}, {c, a})), and one cycle
of length six (containing all the remaining elements of

({1,...,5}
2

)
). So,

xcs(π
′) = x1x3x6.

� There are 30 permutations π in Sym(5) of the form (abcd)(e). For such
a π, we see that π′ has two 4-cycles (namely, ({a, e}, {b, e}, {c, e}, {d, e})
and ({a, b}, {b, c}, {c, d}, {d, a})) and one 2-cycle (namely, ({a, c}, {b, d})).
So, xcs(π

′) = x2x
2
4.

� There are 24 permutations π in Sym(5) of the form (abcde). For such a
π, we see that π′ has two 5-cycles (namely, ({a, b}, {b, c}, {c, d}, {d, e}, {e, a})
and ({a, c}, {b, d}, {c, e}, {d, a}, {e, b})). So, xcs(π′) = x25.

Since |Sym′(5)| = |Sym(5)| = 5! = 120, we now see that

ZSym′(5)(x1, . . . , x10)

= 1
120

(
x101 + 10x41x

3
2 + 15x21x

4
2 + 20x1x

3
3 + 20x1x3x6 + 30x2x

2
4 + 24x25

)
.

We now need a couple more definitions. Suppose C = {c1, . . . , ck} is
some set of colors, and that G is a subgroup of Sym(X) acting on a finite set
X in the natural way, i.e. for π ∈ G and x ∈ X, we have π · x = π(x). Let C
be the set of all colorings of X using the color set C (formally, C is simply
the set of all functions from X to C). Then G acts on C in the natural way:
for all π ∈ G, c ∈ C, and x ∈ X, we set (π · c)(x) = c(π−1 · x);2 the idea is

2Let us check that this is really a group action. For c ∈ C and x ∈ X, we have that
(1G · c)(x) = c(1−1

G · x) = c(1G · x) = c(x), and it follows that 1G · c = c. Further, for
π1, π2 ∈ G, c ∈ C, and x ∈ X, we have that

(π1 · (π2 · c))(x) = (π2 · c)(π−1
1 · x)

= c(π−1
2 · (π−1

1 · x))

= c((π−1
2 π−1

1 ) · x)

= ((π1π2)
−1 · c)(x)

= ((π1π2) · c)(x);

so, π1 · (π2 · c) = (π1π2) · c. Thus, this is indeed a group action on C.
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that π · c should assign to x the color that c assigned to the element of X
that got “moved” to x via π, i.e. to the element π−1 · x. Two colorings are
equivalent if one can be transformed into the other via our group action, i.e.
if they belong to the same orbit of our action. Now, let D ⊆ C.

� The coloring inventory of D is a polynomial in c1, . . . , ck, which is
the sum of terms of the form cd11 . . . cdkk , and the coefficient in front

of the term cd11 . . . cdkk is the number of colorings in D that, for each
i ∈ {1, . . . , k}, assign color ci to precisely di elements of X.

� The pattern inventory of D is a polynomial in c1, . . . , ck, which is the
sum of terms of the form cd11 . . . cdkk , and the coefficient in front of the

term cd11 . . . cdkk is the number of non-equivalent colorings in D that,
for each i ∈ {1, . . . , k}, assign color ci to precisely di elements of X.

Lemma 1.4. Let C = {c1, . . . , ck} be a set of colors, let X be a finite set
of size n, and let G be a subgroup of Sym(X), acting on X in the natural
way.3 Let C be the set of all colorings of X with colors from C, and let G act
on C in the natural way.4 Then for all π ∈ G, the coloring inventory of Cπ

(the set of fixed points of π in C) is the polynomial pπ(c1, . . . , ck) obtained by
substituting

∑k
i=1 c

r
i for each xr in xcs(π).5

Proof. We write π as a product of disjoint cycles, and we set up a correspon-
dence between the cycles of π and the terms in the product xcs(π),6 in such
a way that a cycle of length r corresponds to an xr term.7 Then a coloring
c ∈ C is a fixed point of π if and only if, for each cycle of π, c assigns the same
color to each element of X in the cycle. We can choose colors independently
for each cycle. Now if we substitute

∑k
i=1 c

r
i for each xr in xcs(π), then each

r-cycle of π has a corresponding term of the form
∑k

i=1 c
r
i ; selecting color

ci for all elements of the r-cycle is equivalent to choosing the summand cri
from the corresponding term

∑k
i=1 c

r
i in the product defining the polynomial

pπ(c1, . . . , ck). It follows that the number of ways that we can color X in
such a way that π fixes the coloring, and that there are precisely di elements
of X colored ci (for each i ∈ {1, . . . , k}) is precisely the coefficient in front
of the summand cd11 . . . cdkk in the polynomial pπ(c1, . . . , ck). The result now
follows.

3This means that for all π ∈ Sym(X) and x ∈ X, we have that π · x = π(x).
4That is, for all π ∈ G, c ∈ C, and x ∈ X, we set (π · c)(x) = c(π−1 · x).
5For example, if C = {c1, c2}, X = {1, . . . , 7}, G = Sym(7), and π = (125)(36)(47),

then xcs(π) = x2
2x3; if we substitute

∑k
i=1 c

r
i = cr1 + cr2 for each xr in xcs(π), then we get

pπ(c1, c2) = (c21 + c22)
2(c31 + c32) = c71 + 2c51c

2
2 + c41c

3
2 + c31c

4
2 + 2c21c

5
2 + c72.

6Here, xdi
i is understood as a term of di different terms (namely, di copies of xi), and

not as a single term.
7For example, if π = (125)(36)(47), then xcs(π) = x2

2x3, and we can set up a correspon-
dence (125) 7→ x3, (36) 7→ x2, and (47) 7→ x2. (So, two different cycles of length two get
mapped to two “different” x2’s.)
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Pólya enumeration theorem. Let C = {c1, . . . , ck} be a set of colors, let
X be a finite set of size n, and let G be a subgroup of Sym(X), acting on X
in the natural way.8 Let C be the set of all colorings of X with colors from
C, and let G act on C in the natural way.9 Then the pattern inventory of C
is ZG(

∑k
i=1 ci,

∑k
i=1 c

2
i , . . . ,

∑k
i=1 c

n
i ).

Proof. Fix a vector d = (d1, . . . , dk) with non-negative integer entries, and
let Cd be the set of all colorings in C in which, for each i ∈ {1, . . . , n}, the
number of elements of X receiving color ci is precisely di.

10 Then Cd is the
union of some orbits of the action of G on C, and so in fact, G acts on Cd as
well. By Burnside’s lemma, we have that

|Cd/G| = 1
|G|

∑
π∈G

|Cπ
d|.

and consequently,

|Cd/G| cd11 . . . cdkk = 1
|G|

∑
π∈G

|Cπ
d| c

d1
1 . . . cdkk ,

Now we sum up over all possible choices of the vector d = (d1, . . . , dk), and
we get11 ∑

d

|Cd/G| cd11 . . . cdkk =
∑
d

1
|G|

∑
π∈G

|Cπ
d| c

d1
1 . . . cdkk .

and consequently,∑
d

|Cd/G| cd11 . . . cdkk = 1
|G|

∑
π∈G

∑
d

|Cπ
d| c

d1
1 . . . cdkk ,

Clearly, the left-hand-side of this last equality is precisely the pattern in-
ventory of C. On the other hand, for each π ∈ G,

∑
d

|Cπ
d| c

d1
1 . . . cdkk is

precisely the coloring inventory of Cπ, which (by Lemma 1.4) is precisely
pπ(c1, . . . , ck), where pπ(c1, . . . , ck) is the polynomial obtained by substi-
tuting

∑k
i=1 c

r
i for each xr in xcs(π). So, the pattern inventory of C is

1
|G|

∑
π∈G

pπ(c1, . . . , ck), which (by the definition of cycle index) is precisely

ZG(
∑k

i=1 ci,
∑k

i=1 c
2
i , . . . ,

∑k
i=1 c

n
i ). This completes the argument.

Example 1.5. Compute the number of non-equivalent colorings of a bracelet
with four beads, using colors black and white for the beads. (Two colorings
are equivalent if one can be transformed into the other via a rotation or a
reflection.)

8This means that for all π ∈ Sym(X) and x ∈ X, we have that π · x = π(x).
9That is, for all π ∈ G, c ∈ C, and x ∈ X, we set (π · c)(x) = c(π−1 · x).

10Note that if d1 + · · ·+ dk ̸= n, then Cd = ∅.
11Note that our sums are in fact finite because if d1 + · · ·+ dk ̸= n, then Cd = ∅.
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Solution. In this particular case, it is easy to see that there are exactly six
non-equivalent colorings, represented below.

However, let us apply the Pólya enumeration theorem in order to illustrate
the principle. We label the beads 1, 2, 3, 4 counterclockwise. The group
acting on the beads is simply the dihedral group D8 (symmetries of the
square). The elements of the group are:

� (1)(2)(3)(4) - identity;

� (1234) - rotation by 90◦ ccw;12

� (13)(24) - rotation by 180◦;

� (1432) - rotation by 270◦ ccw;

� (12)(34) - reflection about the axis through the centers of edges 12, 34;

� (14)(23) - reflection about the axis through the centers of edges 14, 23;

� (1)(24)(3) - reflection about the axis through vertices/beads 1, 3;

� (13)(2)(4) - reflection about the axis through vertices/beads 2, 4.

So,
ZD8(x1, . . . , x4) = 1

8(x
4
1 + 2x21x2 + 3x22 + 2x4),

and we have

ZD8(b+ w, b2 + w2, b3 + w3, b4 + w4)

= 1
8

(
(b+ w)4 + 2(b+ w)2(b2 + w2) + 3(b2 + w2)2 + 2(b4 + w4)

)
= b4 + b3w + 2b2w2 + bw3 + w4.

The total number of colorings is equal to the sum of coefficients of the
polynomial above: 1 + 1 + 2 + 1 + 1 = 6.

We also remark that the polynomial above allows us to do more, namely,
to count the number of non-equivalent colorings with a fixed number of black
and white beads. So, there are two non-equivalent colorings with two beads
colored black and two colored white. For any other (fixed) combination of
black and white beads, where the total number of beads adds up to four, we
only have one non-equivalent coloring.

12ccw = counterclockwise
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Proposition 1.6. Let n ≥ 2 and k ≥ 0 be integers. Then the number of
non-isomorphic graphs on n vertices and k edges is equal to the coefficient in

front of the term xk in the polynomial ZSym′(n)(1 + x, 1 + x2, . . . , 1 + x(
n
2)).

Proof. Let C be the set of all colorings of the set
({1,...,n}

2

)
using the color

set {b, w}. We let Sym′(n) act on C in the natural way. Now, colorings in C
correspond to n-vertex graphs in the natural way: the vertex-set is {1, . . . , n},
and edges are pairs colored b (“black”), where as the non-edges are the pairs
colored w (“white”). The number of non-isomorphic five-vertex graphs with k
edges is precisely the number of non-equivalent colorings in C (with respect to
our group action) in which exactly k elements of

({1,...,n}
2

)
are colored b (and

the remaining
(
n
2

)
− k elements are colored w). By the Pólya enumeration

theorem, the latter is precisely the coefficient in front of bkw(
n
2)−k in the

polynomial ZSym′(5)(b+ w, b2 + w2, . . . , b(
n
2) + w(

n
2)). But this is exactly the

coefficient in front of xk in the polynomial ZSym′(n)(1+x, 1+x2, . . . , 1+x(
n
2))

(we replace b by x and w by 1).

Example 1.7. For each non-negative integer k, find the number of non-
isomorphic k-edge graphs on five vertices.

Solution. We apply Proposition 1.6. By Example 1.3, we know that

ZSym′(5)(x1, . . . , x10)

= 1
120

(
x101 + 10x41x

3
2 + 15x21x

4
2 + 20x1x

3
3 + 20x1x3x6 + 30x2x

2
4 + 24x25

)
,

and so

ZSym′(5)(1 + x, . . . , 1 + x10)

= 1
120

(
(1 + x)10 + 10(1 + x)4(1 + x2)3 + 15(1 + x)2(1 + x2)4+

+20(1 + x)(1 + x3)3 + 20(1 + x)(1 + x3)(1 + x6)+

+30(1 + x2)(1 + x4)2 + 24(1 + x5)2
)
,

= 1 + x+ 2x2 + 4x3 + 6x4 + 6x5 + 6x6 + 4x7 + 2x8 + x9 + x10.

Thus, up to isomorphism,

� there is one edgeless graph on five vertices;

� there is one graph on five vertices with one edge;

� there are two graphs on five vertices with two edges;

� there are four graphs on five vertices with three edges;
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� there are six graphs on five vertices with four edges;

� there are six graphs on five vertices with five edges;

� there are six graphs on five vertices with six edges;

� there are four graphs on five vertices with seven edges;

� there are two graphs on five vertices with eight edges;

� there is one graph on five vertices with nine edges;

� there is one graph on five vertices with ten edges;

� there are no graphs on five vertices with more than ten edges.

2 Exponential generating functions

Let {an}∞n=0 be a sequence of real (or complex) numbers. The ordinary
generating function (abbreviated ogf) of {an}∞n=0 is the function

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

The exponential generating function (abbreviated egf) of {an}∞n=0 is the
function

g(x) =
∞∑
n=0

anxn

n! = a0
0! +

a1x
1! + a2x2

2! + a3x3

3! + . . .

Ordinary generating functions (or simply “generating functions”) were
studied in Combinatorics & Graph Theory 1. Here, we give a brief introduc-
tion to exponential generating functions. We begin with a simple example,
in which we contrast the use of ogf’s and egf’s.

Example 2.1.

(a) Find the number of ways that three letters from the word SEQUENCE
can be selected (order does not matter).13

(b) Find the number of ways that three letters from the word SEQUENCE
can be arranged (order matters).14

13Note that the letter E appears three times, and so we may select between zero and
three copies of E. The three E’s are considered the same: so, if we select (say) two E’s, we
do not care which particular two we selected.

14For example, SEE and ESE count as different. However, the E’s are still interchangeable:
we do not care which of the three E’s from the word SEQUENCE correspond to the two
E’s from SEE.
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Solution. (a) The number of ways we can select three letters from the word
SEQUENCE is the coefficient in front of x3 in the polynomial

f(x) = (1 + x+ x2 + x3)(1 + x)5,

which is 26. (Here, the polynomial 1 + x+ x2 + x3 corresponds to the letter
E, and the five terms 1 + x correspond to the remaining five letters of the
word SEQUENCE.)

More generally, the coefficient in front of xk in f(x) is the number of
ways we can select k letters from the word SEQUENCE (when order does
not matter). So in fact, f(x) is the ogf for the sequence {ak}∞k=0, where ak is
the number of ways of selecting k letters from the word SEQUENCE (when
order does not matter).

(b) Here, we use an egf. The number of ways we can arrange three letters

from the word SEQUENCE is the coefficient in front of x3

3! in the polynomial

g(x) = (1 + x+ x2

2! +
x3

3! )(1 + x)5,

which is 136.
Let us explain why this is correct. For each k ∈ {0, 1, 2, 3}, we select k

E’s and 3− k of the remaining five letters. The number of ways of selecting
those 3−k other letters is precisely the coefficient in front of x3−k in (1+x)5,
and then the number of ways of arranging our three chosen letters (k E’s
and 3 − k other letters) is 3!

k! . So, the total number of ways of arranging
three letters from the word SEQUENCE is precisely the coefficient in front
of x3

3! in g(x).

More generally, the coefficient in front of xk

k! in g(x) is the number of
ways we can arrange k letters from the word SEQUENCE (when order
matters). So in fact, g(x) is the egf for the sequence {bk}∞k=0, where bk is
the number of ways of arranging k letters from the word SEQUENCE (when
order matters).

Example 2.2. Find the ogf and egf of the constant sequence 1, 1, 1, 1, . . . .

Solution. The ogf of the sequence is

f(x) =
∞∑
n=0

xn = 1
1−x ,

whereas the egf of the sequence is

g(x) =
∞∑
n=0

xn

n! = ex.
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For some sequences, it is possible to find a closed formula for the egf, but
not for the ogf. For instance, consider the sequence {n!}∞n=0. The ogf of this
sequence is

f(x) =
∞∑
n=0

n!xn,

which has radius of convergence 0,15 i.e. the series only converges for x = 0.
On the other hand, the egf of the sequence is

g(x) =
∞∑
n=0

n!xn

n! =
∞∑
n=0

xn = 1
1−x ,

with the radius of convergence 1 (the series converges when |x| < 1).
The formulas for the basic operations with egf’s are as follows. (Here,

{an}∞n=0 and {bn}∞n=0 are sequences, and c is a constant).

�

( ∞∑
n=0

anxn

n!

)
±
( ∞∑

n=0

bnxn

n!

)
=

∞∑
n=0

(an±bn)xn

n!

� c
( ∞∑

n=0

anxn

n!

)
=

∞∑
n=0

canxn

n! .

�

( ∞∑
n=0

anxn

n!

)( ∞∑
n=0

bnxn

n!

)
=

∞∑
n=0

(
n∑

k=0

(
n
k

)
akbn−k)

xn

n!

�
d
dx

( ∞∑
n=0

anxn

n!

)
=

∞∑
n=0

an+1xn

n!

The first two formulas above are obvious. For the third, we observe that

the coefficient in front of xn is
n∑

k=0

ak
k!

bn−k

(n−k)! =
n∑

k=0

(
n
k

)akbn−k

n! , and the formula

follows. Finally, for the fourth formula, we compute:

a′(x) =
∞∑
n=1

nanxn−1

n! =
∞∑
n=1

anxn−1

(n−1)! =
∞∑
n=0

an+1xn

n! .

Example 2.3. A derangement of a set X is a permutation of X that has no
fixed points.16 For all integers n ≥ 0, let dn be the number of derangements
of an n-element set. Find a recursive formula for the sequence {dn}∞n=0.

Solution. Clearly, d0 = 1 and d1 = 0.17 Now, fix an integer n ≥ 0, and let
X be a set of size n + 2. Fix any a ∈ X. Then a derangement of X can

15This can be shown using, for example, the Ratio Test.
16In other words, a derangement of X is a permutation π of X such that for all x ∈ X,

π(x) ̸= x.
17Indeed, the empty function is a permutation of the empty set, and it has no fixed

points (so, it is a derangement). On the other hand, any one-element set admits only one
permutation (namely, the identity), and this permutation has one fixed point (and so it is
not a derangement).
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map a to any element of b ∈ X \ {a} (so, there n+ 1 choices for b). Now,
suppose we have chosen b. Then our derangement of X either does or does
not map b to a. If it does map b to a, then our derangement swaps a and b
and then deranges X \ {a, b}; for fixed b, there are dn choices for this type
of derangement.18 Suppose now that our derangement π does not map b to
a. The number of such derangement is equal to the number of derangements
of X \ {b},19 which is dn+1. So, dn+2 = (n+ 1)(dn + dn+1).

We have now obtained the desired recursive formula:

� d0 = 1, d1 = 0;

� dn+2 = (n+ 1)(dn + dn+1) for all integers n ≥ 0.

In our next example, we use egf’s to find a non-recursive formula for dn
(from Example 2.3).

Example 2.4. Let the sequence {dn}∞n=0 be defined recursively as follows:

� d0 = 1, d1 = 0;

� dn+2 = (n+ 1)(dn + dn+1) for all integers n ≥ 0.

Find a closed formula for the egf of the sequences {dn}∞n=0, and then find a
non-recursive formula for dn.

Solution. Let d(x) =
∞∑
n=0

dnxn

n! be the egf of the sequence {dn}∞n=0. We first

differentiate d(x), and then we apply the recursive formula, as follows.

d′(x) =
∞∑
n=0

dn+1xn

n!

=
∞∑
n=1

dn+1xn

n! because d1 = 0

=
( ∞∑

n=1

ndn−1xn

n!

)
+

( ∞∑
n=1

ndnxn

n!

)
by the recursive formula

= x
( ∞∑

n=0

dnxn

n!

)
+ x

( ∞∑
n=0

dn+1xn

n!

)
= xd(x) + xd′(x).

18We are using the fact that |X \ {a, b}| = n.
19Indeed any derangement π of X such that π(a) = b and π(b) ̸= a corresponds to a

derangement of X \ {a} that maps a to π(b).
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So, we have obtained a differential equation:

d′(x) = xd(x) + xd′(x).

The differential equation above is equivalent to d′(x)
d(x) = x

1−x , i.e.

d′(x)
d(x) = 1

1−x − 1.

By integrating both sides, we get

ln(d(x)) = − ln(1− x)− x+ C,

and since d(0) = d0 = 1, we have that C = 0. So, ln(d(x)) = − ln(1− x)− x.
By exponentiating both sides, we get

d(x) = e−x

1−x .

We have now obtained a closed formula for the exponential generating

function d(x). To obtain a formula for dn, we note that e−x =
∞∑
n=0

(−1)nxn

n!

and 1
1−x =

∞∑
n=0

xn =
∞∑
n=0

n!xn

n! . By the formula for the product of egf’s, we

now have that, for all integers n ≥ 0,

dn =
n∑

k=0

(
n
k

)
(−1)k(n− k)!,

and we are done.
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