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Lecture #11

Burnside’s lemma and applications

Irena Penev

1 Groups

A group is a set G, together with a binary operation ◦, satisfying the following
properties:

� ◦ is associative, i.e. for all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3);

� there exists some e ∈ G, called the identity element, such that for all
g ∈ G, e ◦ g = g ◦ e = g;

� for all g ∈ G, there exists some g′ ∈ G, called the inverse of g, such
that g ◦ g′ = g′ ◦ g = e.

Usually, for g1, g2 ∈ G, we write “g1g2” instead of “g1 ◦ g2.” It is easy to
show that the identity element is unique;1 typically, this identity element is
denoted by 1G, or simply 1. Furthermore, it can be shown that each element
of G has a unique inverse;2 the unique inverse of an element g ∈ G is usually
denoted by g−1.

For a set X, Sym(X) is the group of all permutations of X;3 the group

1Indeed, suppose e1, e2 are identity elements of G. Then e1e2 = e1 (because e2 is an
identity element), and e1e2 = e2 (because e1 is an identity element). So, e1 = e2.

2Indeed, fix g ∈ G, and suppose that g1, g2 ∈ G are inverses of g. Then

g1 = g11G because 1G is the identity element

= g1(gg2) because g2 is an inverse of g

= (g1g)g2 because ◦ is associative

= 1Gg2 because g1 is an inverse of g

= g2 because 1G is an identity element

which is what we needed.
3A permutation of X is a bijection between X and itself.
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operation is the composition of functions, and the identity element is the
identity function on X, denoted by IdX .4 For a positive integer n, the group
of permutations of the set {1, . . . , n} is denoted by Sym(n) or Symn. A
permutation π ∈ Sym(n) can be denoted by(

1 2 . . . n
π(1) π(2) . . . π(n)

)
.

Recall that each permutation in Sym(n) can be represented as a composition
of disjoint cycles. For example, the following permutation in Sym(5)(

1 2 3 4 5
4 5 1 3 2

)
can be represented as (143)(25). Cycles of length one are usually omitted
(when n is clear from context). For example, in Sym(5), instead of (124)(3)(5),
we typically write simply (124).

2 Group actions and Burnside’s lemma

A left action (or simply action)5 of a group G on a set X is a function
a : G×X → X that satisfies the following two properties:

� for all x ∈ X, a(1G, x) = x.

� for all g1, g2 ∈ G and x ∈ X, a(g1, a(g2, x)) = a(g1g2, x).

Often, instead of a(g, x), we write simply g · x. So, using this notation, the
axioms above become:

� for all x ∈ X, 1G · x = x.

� for all g1, g2 ∈ G and x ∈ X, g1 · (g2 · x) = (g1g2) · x.

Note that these axioms imply that, for all g ∈ G and x, y ∈ X, if g · x = y,
then g−1 · y = x.6

Example 2.1. Any group G acts on itself in a natural way: for all g ∈ G
and x ∈ G,7 we set g · x = gx.

Given an action a : G×X → X of a group G on a set X, and an element
g ∈ G, we define a function ag : X → X by setting ag(x) = a(g, x) for
all x ∈ X. As our next proposition shows, ag is simply a permutation of
X. So, we can think of group action as a collection of permutations (one
permutation of the set X for each member g of the group G), which must
satisfy certain additional properties (as in the definition of group action).

4That is, IdX : X → X satisfies IdX(x) = x for all x ∈ X.
5Yes, there is also such a thing as “right action,” but we will not consider this here.
6Indeed, if g · x = y, then g−1 · y = g−1 · (g · x) = (g−1g) · x = 1G · x = x.
7Here, X = G.
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Proposition 2.2. Let a : G×X → X be an action of a group G on a set
X. Then for all g ∈ G, the function ag is a permutation of X.

Proof. Fix g ∈ G, and consider its inverse g−1. Then for all x ∈ X, we have
that

ag−1 ◦ ag(x) = a(g−1, a(g, x))

= a(g−1g, x)

= a(1G, x)

= x,

and so ag−1 ◦ ag = IdX . A completely analogous argument shows that
ag ◦ ag−1 = IdX . So, ag : X → X is a bijection with inverse ag−1 , and the
result follows.

We remark that a converse of sorts of Proposition 2.2 also holds: for any
set X and any permutation π of X, there is a group G, an action a of G
on X, and an element g ∈ G such that ag = π. Indeed, for fixed X and π,
we set G := Sym(X) (the group operation is the composition of functions),
we define a : G × X → X by (σ, x) 7→ σ(x), and we set g := π. Then for
all x ∈ X, we have that ag(x) = aπ(x) = a(π, x) = π(x), and so ag = π.
So, the study of group actions is essentially the same as the study of set
permutations.

Example 2.3. Consider a cube in R3, and let Rcube be the group of rota-
tions of R3 that map this cube to itself. (Here, the group operation is the
composition of functions/rotations, and the identity element is the identity
function on R3.) The group Rcube acts on the faces of the cube in a natural
way: for each rotation r ∈ Rcube and each face f of the cube, r · f is the face
of the cube to which the rotation r maps/moves the face f . We note that
|Rcube| = 24. Indeed, the rotations in Rcube are as follows:

� the identity function;

� nine rotations about an axis passing though centers of opposite faces of
the cube (there are three choices of axis, and for each choice, we can
rotate by 90◦, 180◦, or 270◦);

3



� six rotations about an axis passing through centers of opposite edges
of the cube (there are six choices of axis, and for each choice, we can
rotate only by 180◦);

� eight rotations around axes passing through opposite vertices of the
cube (there are four choices of axis, and in each case, we can rotate by
120◦ or 240◦).

We now need a few definitions. Suppose that a is an action of a group G
on a set X. Then
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� for each g ∈ G, a fixed point of g is any x ∈ X such that g · x = x, and
we set Xg := {x ∈ X | g · x = x};8

� for each x ∈ X, we define the stabilizer of x to be Gx := {g ∈ G |
g · x = x};

� for each x ∈ X, we define the orbit of x to be G · x := {g · x | g ∈ G}.9

Proposition 2.4. Let a be an action of a group G on a set X. Then

� for all x ∈ X, we have that x ∈ G · x;

� the orbits of the action a form a partition of X.

Proof. First, since 1G · x = x, we see that x ∈ G · x. In particular, each
element of X belongs to some orbit. It remains to show that any two distinct
orbits are disjoint. So, fix x1, x2 ∈ X; we must show that G · x1 and G · x2
are either equal or disjoint. Suppose that G · x1 and G · x2 are not disjoint;
we claim that G · x1 = G · x2. We will show that G · x1 ⊆ G · x2; the
proof of the reverse inclusion is analogous. Fix some y ∈ (G · x1) ∩ (G · x2).
Then there exist g1, g2 ∈ G such that y = g1 · x1 and y = g2 · x2; so,
g1 · x1 = g2 · x2. But then x1 = (g−1

1 g2) · x2.10 Now, for all g ∈ G, we have
that g · x1 = g · ((g−1

1 g2) · x2) = (gg−1
1 g2) · x2, and so g · x1 ∈ G · x2. Thus,

G · x1 ⊆ G · x2, and we are done.

Given an action a of a group G on a set X, we denote by X/G the
partition of X into orbits of a. So, |X/G| is the number of orbits of a.

Next, given an action a of a group G on a set X, and given x, y ∈ X,
we set Ma(x, y) := {g ∈ G | g · x = y}. Note that Ma(x, x) = Gx, and that
Ma(x, y) ̸= ∅ if and only if y ∈ G · x.

Lemma 2.5. Let a be an action of a finite group G on a finite set X, and
let x ∈ X. Then for all y ∈ G · x, we have that |Ma(x, y)| = |Gx|.

Proof. Fix y ∈ G · x, and fix any gy ∈ G such that gy · x = y. We now define
a function f : G → G by setting f(g) = gyg for all g ∈ G; since G is a group,
f is one-to-one. Now, our goal is to show that f [Gx] = Ma(x, y); this will
prove that |Gx| = |Ma(x, y)|, which is what we need.

First, fix g ∈ Gx. Then f(g) · x = (gyg) · x = gy · (g · x) = gy · x = y, and
so f(g) ∈ Ma(x, y). Thus, f [Gx] ⊆ Ma(x, y).

On the other hand, fix any g′ ∈ Ma(x, y). Then g′ · x = y, and so
(g−1

y g′) · x = g−1
y · (g′ · x) = g−1

y · y = g−1
y · (gy · x) = (g−1

y gy) · x = 1G · x = x;
consequently, g−1

y g′ ∈ Gx. But f(g
−1
y g′) = gy(g

−1
y g′) = (gyg

−1
y )g′ = 1Gg

′ =
g′, and so Ma(x, y) ⊆ f [Gx].

8So, Xg is the set of all fixed points of g (with respect to the action a).
9So, the orbit of x is the set of all elements of x that G can “move” x to.

10Indeed, x1 = 1G · x1 = (g−1
1 g1) · x1 = g−1

1 · (g1 · x1) = g−1
1 · (g2 · x2) = (g−1

1 g2) · x2.
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We have now shown that f [Gx] = Ma(x, y). Since f is one-to-one, it
follows that |Ma(x, y)| = |Gx|, which is what we needed.

As an easy corollary of Lemma 2.5, we get the following theorem.

The orbit-stabilizer theorem. Let a be an action of a finite group G on
a finite set X. Then for all x ∈ X, we have that |G · x| = |G|

|Gx| .

Proof. Fix x ∈ X, and note that sets of the form Ma(x, y), with y ∈ G · x,
form a partition of G,11 and so

|G| = |
⋃

y∈G·xMa(x, y)|

=
∑

y∈G·x |Ma(x, y)|

=
∑

y∈G·x |Gx| by Lemma 2.5

= |G · x||Gx|,

and the result follows.

Lemma 2.6. Let a be an action of a finite group G on a finite set X. Then

|X/G| =
∑

x∈X
1

|G·x| .

Proof. Set t := |X/G|, and let O1, . . . , Ot be the orbits of the action a. Then
by Proposition 2.4, we have that

� (O1, . . . , Ot) is a partition of X;

� for all i ∈ {1, . . . , t} and x ∈ Oi, G · x = Oi.
12

We now compute∑
x∈X

1
|G·x| =

∑t
i=1

∑
x∈Oi

1
|G·x| =

∑t
i=1

∑
x∈Oi

1
|Oi| = t,

which is what we needed.

We are now ready to state and prove Burnside’s lemma, which (roughly)
states that the number of orbits of an action is equal to the average number
of fixed points.

11That is: for all distinct y1, y2 ∈ G · x, we have that Ma(x, y1) ∩Ma(x, y2) = ∅, and⋃
y∈G·x Ma(x, y) = G.
12Indeed, by definition, G · x is equal to one of the orbits O1, . . . , Ot. Since (O1, . . . , Ot)

form a partition of X (by Proposition 2.4), it suffices to show that G · x and Oi have
a non-empty intersection. But by Proposition 2.4 and the choice of Oi, we have that
x ∈ (G · x) ∩Oi, and so (G · x) ∩Oi ̸= ∅.
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Burnside’s lemma. Let a be an action of a finite group G on a finite set
X. Then

|X/G| = 1
|G|

∑
g∈G |Xg|.

Proof. Let F := {(g, x) ∈ G×X | g · x = x}. We will count |F | in two ways.
On the one hand, for all g ∈ G and x ∈ X, we have that (g, x) ∈ F if

and only if x ∈ Xg; so,

|F | =
∑

g∈G |Xg|.

On the other hand, for all g ∈ G and x ∈ X, we have that (g, x) ∈ F if
and only if g ∈ Gx, and so

|F | =
∑

x∈X |Gx|

=
∑

x∈X
|G|
|G·x| by the orbit-stabilizer theorem

= |G|
∑

x∈X
1

|G·x| .

But now
|G|

∑
x∈X

1
|G·x| =

∑
g∈G |Xg|,

and consequently, ∑
x∈X

1
|G·x| = 1

|G|
∑

g∈G |Xg|.

But by Lemma 2.6, |X/G| =
∑

x∈X
1

|G·x| , and the result follows.

3 Applications of Burnside’s lemma

Example 3.1. Let Rcube be the group of rotations of the cube, as in Exam-
ple 2.3, and let k be a positive integer. Let Bk be the set of all colorings of
the faces of the cube using the color set {1, . . . , k}. Then Rcube acts on the
set Bk in the natural way: a rotation r ∈ Rcube maps each element of Bk to
an appropriately rotated coloring. Two colorings of the cube are equivalent if
one can be transformed into the other by a rotation in Rcube. Compute the
number of non-equivalent colorings of the cube using the color set {1, . . . , k}.

Solution. Two colorings of the cube using the color set {1, . . . , k} are equiva-
lent if and only if they belong to the same orbit of our group action. So, the
number of non-equivalent colorings of the cube using the color set {1, . . . , k}
is precisely equal to the number of orbits of our action of Rcube on Bk, which
we will compute using Burnside’s lemma. We know that |Rcube| = 24 (see
Example 2.3), and for each r ∈ Rcube, we compute Br

k as follows.

� If r is the identity rotation, then |Br
k| = |Bk| = k6.
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� If r is a rotation by 90◦ or 270◦ about an axis passing though the center
of opposite faces (there are a total of six such r’s), then r fixes precisely
the colorings in which the faces not pierced by the axis have the same
color. So, we choose one of k colors for one of the faces pieced by the
axis, one of k colors for the other face pierced by the axis, and one of
k colors for all the remaining four faces. In total, we get |Br

k| = k3.

� If r is a rotation by 180◦ about an axis passing though the center of
opposite faces (there are a total of three such r’s), then r fixes exactly
the the colorings for which the opposite faces that are not pierced by
the axis have the same color. There are two pairs of opposite faces not
pierced by our axis, and it follows that |Br

k| = k4.

� If r is a rotation by 180◦ about an axis passing though the center of
opposite edges (there are a total of six such r’s), then r fixes exactly
the colorings for which the two opposite faces not incident with the
edges pierced by the axis have the same color, and in which, for each
pierced edge, the two faces incident with this edge have the same color.
So, |Br

k| = k3.

� Finally, if r is a rotation by 120◦ or 240◦ about an axis passing though
opposite vertices (there are a total of eight such r’s), then r fixes exactly
the colorings for which the three incident faces with each of the pierced
vertices have the same color. So, |Br

k| = k2.

So, by Burnside’s lemma and Example 2.3, the total number of orbits of our
action (and therefore, the total number of non-equivalent colorings) is

1
|Rcube|

∑
r∈Rcube

|Br
k| = k6+6k3+3k4+6k3+8k2

24 = k6+3k4+12k3+8k2

24

Example 3.2. Find the number of non-isomorphic graphs on five vertices.

Solution. Let X be the set of all graphs on the vertex set {1, . . . , 5}. We let
Sym(5) act on X in the natural way: given a graph G ∈ X and a permutation
π ∈ Sym(5), we let π ·G be the graph with vertex set {1, . . . , 5}, in which
distinct vertices i, j ∈ {1, . . . , 5} are adjacent if and only if π−1(i) and π−1(j)
are adjacent in G.13 An example is shown below.

π = (123)(45)

1

2 3

4

5

G

2

3 1

5

4

π ·G
13Equivalently: π ·G has the same vertex set as G; each edge ij of G turns into an edge

π(i)π(j) of π ·G; and each non-edge ij of G turns into a non-edge π(i)π(j) of π ·G.
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Clearly, two graphs in X are isomorphic if and only if they belong to the
same orbit of this action. So, the number of non-isomorphic graphs on five
vertices is equal to the number of orbits of our action. We will compute the
number of orbits using Burnside’s lemma.

Clearly, |Sym(5)| = 5!. We compute the number of fixed points of a
permutation π ∈ Sym(5) according to the cycle structure of π.

� If π is the identity function, then π fixes all elements of X, i.e. |Xπ| =
|X| = 2(

5
2) = 210.

� If π = (ab), for distinct a, b ∈ {1, . . . , 5} (note: there are
(
5
2

)
= 10 such

π’s), then π fixes precisely the graphs G ∈ X such that NG(a) \ {b} =
NG(b) \ {a}. So, we can freely select the neighbors of a (the neighbors
of b are then forced), and we can choose adjacency between vertices in
{1, . . . , 5}\{a, b} arbitrarily. There are 24 ways to choose the neighbors

of a, and there are 2(
3
2) = 23 ways to choose adjacency between vertices

in {1, . . . , 5} \ {a, b}. So, |Xπ| = 24 · 23 = 27.

� If π = (ab)(cd) for pairwise distinct a, b, c, d ∈ {1, . . . , 5} (note: there
are 15 such π’s), then π fixes precisely the graphs G ∈ X satisfying the
following three properties:

– ac is an edge if and only if bd is an edge,

– ad is an edge if and only if bc is an edge,

– the fifth vertex ofG (i.e. the unique vertex in {1, . . . , 5}\{a, b, c, d})
is adjacent to a if and only if it is adjacent to b, and is adjacent
to c if and only if it is adjacent to d.

So, |Xπ| = 26.

� If π = (abc), for pairwise distinct a, b, c ∈ {1, . . . , 5} (note: there are
20 such π’s), then π fixes precisely the graphs G ∈ X in which {a, b, c}
is either a clique or a stable set, and each of the remaining two vertices
(i.e. vertices in {1, . . . , 5} \ {a, b, c}) is either complete or anticomplete
to {a, b, c}. So, |Xπ| = 24.

� If π = (abc)(de), for pairwise distinct a, b, c, d, e ∈ {1, . . . , 5} (note:
there are 20 such π’s), then π fixes precisely the graphs G ∈ X in
which {a, b, c} is either a clique or a stable set, and {a, b, c} is either
complete or anticomplete to {d, e}. So, |Xπ| = 23.

� If π = (abcd), for pairwise distinct a, b, c, d ∈ {1, . . . , 5} (note: there
are 30 such π’s), then π fixes precisely the graphs G ∈ X in which all
the following hold:

– ab, bc, cd, da are either all edges or all non-edges,
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– ac and bd are either both edges or both non-edges,

– the fifth vertex ofG (i.e. the unique vertex in {1, . . . , 5}\{a, b, c, d})
is either complete or anticomplete to {a, b, c, d}.

So, |Xπ| = 23.

� If π = (abcde), for pairwise distinct a, b, c, d, e (note: there are 24
such π’s), then π fixes precisely the graphs G ∈ X in which both the
following hold:

– ab, bc, cd, de, ea are either all edges or all non-edges,

– ac, bd, ce, da, eb are either all edges or all non-edges.

So, |Xπ| = 22.

Now, by Burnside’s lemma, we see that the number of orbits of our action is

|X/Sym(5)| = 1
|Sym(5)|

∑
π∈Sym(5)

|Xπ|

= 1
5!

(
210 + 10 · 27 + 15 · 26 + 20 · 24 + 20 · 23 + 30 · 23 + 24 · 22

)
= 34.

So, there are 34 non-isomorphic graphs on five vertices.
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