NDMI012: Combinatorics and Graph Theory 2

Lecture #10

Hamiltonian graphs

Irena Penev

April 26, 2022

A Hamiltonian path (or a Hamilton path) of a graph G is a path of G that passes through all vertices of G.

A Hamiltonian path (or a Hamilton path) of a graph G is a path of G that passes through all vertices of G.

Definition

A Hamiltonian cycle (or a Hamilton cycle) of a graph G is a cycle of G that passes through all vertices of G.

Definition

A graph is Hamiltonian if it has a Hamiltonian cycle.

Definition

A graph is Hamiltonian if it has a Hamiltonian cycle.

• It is NP-hard to determine if a graph is Hamiltonian.

Definition

A graph is *Hamiltonian* if it has a Hamiltonian cycle.

- It is NP-hard to determine if a graph is Hamiltonian.
- Nevertheless, there are a number sufficient conditions for Hamiltonicity, which can easily be checked in polynomial time. (We will state and prove a few such conditions.)

For a real number t > 0, a graph G is t-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

For a real number t > 0, a graph G is *t*-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Equivalently, for a real number t > 0, a graph G is t-tough if ∀S ⊊ V(G), the graph G \ S either is connected or has at most ^{|S|}/_t many components.

For a real number t > 0, a graph G is t-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Equivalently, for a real number t > 0, a graph G is t-tough if ∀S ⊊ V(G), the graph G \ S either is connected or has at most ^{|S|}/_t many components.

Conjecture [Chvátal]

There exists some t > 0 s.t. every *t*-tough graph is Hamiltonian.

• Chvátal's conjecture remains open.

For a real number t > 0, a graph G is *t*-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Equivalently, for a real number t > 0, a graph G is t-tough if ∀S ⊊ V(G), the graph G \ S either is connected or has at most ^{|S|}/_t many components.

Conjecture [Chvátal]

There exists some t > 0 s.t. every *t*-tough graph is Hamiltonian.

- Chvátal's conjecture remains open.
- However, we have the following easy proposition.

Proposition 1.2

Every Hamiltonian graph is 1-tough.

For a real number t > 0, a graph G is t-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Proposition 1.2

Every Hamiltonian graph is 1-tough.

Proof.

For a real number t > 0, a graph G is *t*-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Proposition 1.2

Every Hamiltonian graph is 1-tough.

Proof. Let G be a Hamiltonian graph, and let $S \subsetneq V(G)$. Since G is Hamiltonian, it is connected; so, if $S = \emptyset$, then $G \setminus S = G$ has only one component, and we are done.

For a real number t > 0, a graph G is *t*-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Proposition 1.2

Every Hamiltonian graph is 1-tough.

Proof. Let G be a Hamiltonian graph, and let $S \subsetneq V(G)$. Since G is Hamiltonian, it is connected; so, if $S = \emptyset$, then $G \setminus S = G$ has only one component, and we are done. We may now assume that $S \neq \emptyset$.

For a real number t > 0, a graph G is *t*-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Proposition 1.2

Every Hamiltonian graph is 1-tough.

Proof. Let G be a Hamiltonian graph, and let $S \subsetneq V(G)$. Since G is Hamiltonian, it is connected; so, if $S = \emptyset$, then $G \setminus S = G$ has only one component, and we are done. We may now assume that $S \neq \emptyset$. Let C be a Hamiltonian cycle in G.

For a real number t > 0, a graph G is *t*-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Proposition 1.2

Every Hamiltonian graph is 1-tough.

Proof. Let *G* be a Hamiltonian graph, and let $S \subsetneq V(G)$. Since *G* is Hamiltonian, it is connected; so, if $S = \emptyset$, then $G \setminus S = G$ has only one component, and we are done. We may now assume that $S \neq \emptyset$. Let *C* be a Hamiltonian cycle in *G*. Clearly, $C \setminus S$ is the disjoint union of at most |S| many paths, and so $C \setminus S$ has at most |S| many components.

For a real number t > 0, a graph G is *t*-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Proposition 1.2

Every Hamiltonian graph is 1-tough.

Proof. Let *G* be a Hamiltonian graph, and let $S \subsetneq V(G)$. Since *G* is Hamiltonian, it is connected; so, if $S = \emptyset$, then $G \setminus S = G$ has only one component, and we are done. We may now assume that $S \neq \emptyset$. Let *C* be a Hamiltonian cycle in *G*. Clearly, $C \setminus S$ is the disjoint union of at most |S| many paths, and so $C \setminus S$ has at most |S| many components. Since *C* is a spanning subgraph of *G*, it is clear that $G \setminus S$ has no more components than $C \setminus S$ does.

For a real number t > 0, a graph G is *t*-tough if $\forall S \subsetneq V(G)$, the graph $G \setminus S$ has at most max $\{1, \frac{|S|}{t}\}$ many components.

Proposition 1.2

Every Hamiltonian graph is 1-tough.

Proof. Let *G* be a Hamiltonian graph, and let $S \subsetneq V(G)$. Since *G* is Hamiltonian, it is connected; so, if $S = \emptyset$, then $G \setminus S = G$ has only one component, and we are done. We may now assume that $S \neq \emptyset$. Let *C* be a Hamiltonian cycle in *G*. Clearly, $C \setminus S$ is the disjoint union of at most |S| many paths, and so $C \setminus S$ has at most |S| many components. Since *C* is a spanning subgraph of *G*, it is clear that $G \setminus S$ has at most |S| many components than $C \setminus S$ does. So, $G \setminus S$ has at most |S| many components, and the result follows.

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Proof.

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Proof. It is clear that if G is Hamiltonian, then so is G + xy.

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Proof. It is clear that if G is Hamiltonian, then so is G + xy.

Suppose now that G + xy is Hamiltonian; we must show that G is Hamiltonian. Let C be a Hamiltonian cycle of G + xy. If $xy \notin E(C)$, then C is a Hamiltonian cycle of G, and we are done. So, assume that $xy \in E(C)$.

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Proof. It is clear that if G is Hamiltonian, then so is G + xy.

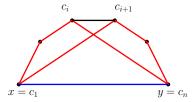
Suppose now that G + xy is Hamiltonian; we must show that G is Hamiltonian. Let C be a Hamiltonian cycle of G + xy. If $xy \notin E(C)$, then C is a Hamiltonian cycle of G, and we are done. So, assume that $xy \in E(C)$. Now, consider the path $C - xy = c_1, \ldots, c_n$, with $c_1 = x$ and $c_n = y$.

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Proof (continued). Let $S_x := \{i \mid 1 \le i \le n-1, xc_{i+1} \in E(G)\}$ and $S_y := \{i \mid 1 \le i \le n-1, yc_i \in E(G)\}.$

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Proof (continued). Let $S_x := \{i \mid 1 \le i \le n - 1, xc_{i+1} \in E(G)\}$ and $S_y := \{i \mid 1 \le i \le n - 1, yc_i \in E(G)\}$. Note that $|S_x| + |S_y| = d_G(x) + d_G(y) \ge |V(G)|$, whereas $|S_x \cup S_y| \le |V(G)| - 1$. So, $S_x \cap S_y \ne \emptyset$. Fix $i \in S_x \cap S_y$.



But now $\underbrace{x}_{=c_1}, c_2, \dots, c_i, \underbrace{y}_{=c_n}, c_{n-1}, \dots, c_{i+1}, \underbrace{x}_{=c_1}$ is a Hamiltonian cycle of *G*, and so *G* is Hamiltonian.

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Definition

The *Chvátal closure* of a graph *G* is the graph obtained by repeatedly adding edges between non-adjacent vertices x, y s.t. $d(x) + d(y) \ge |V(G)|$, until no more such edges can be added.

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Definition

The *Chvátal closure* of a graph *G* is the graph obtained by repeatedly adding edges between non-adjacent vertices x, y s.t. $d(x) + d(y) \ge |V(G)|$, until no more such edges can be added.

• The Chvátal closure of a graph is uniquely defined (i.e. the order in which edges are added does not matter).

Let G be a graph, and let x and y be distinct, non-adjacent vertices of G that satisfy $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian iff G + xy is Hamiltonian.

Definition

The *Chvátal closure* of a graph *G* is the graph obtained by repeatedly adding edges between non-adjacent vertices x, y s.t. $d(x) + d(y) \ge |V(G)|$, until no more such edges can be added.

• The Chvátal closure of a graph is uniquely defined (i.e. the order in which edges are added does not matter).

Theorem 2.2

A graph is Hamiltonian iff its Chvátal closure is Hamiltonian.

Proof. This follows from Lemma 2.1 by an easy induction.

Theorem 2.3 [Ore]

Let G be a graph on at least three vertices. Assume that for all distinct, non-adjacent vertices x, y of G, we have that $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian.

Proof. The Chvátal closure of G is the complete graph on |V(G)| vertices, which (since $|V(G)| \ge 3$) is clearly Hamiltonian. So, by Theorem 2.2, G is also Hamiltonian.

Theorem 2.3 [Ore]

Let G be a graph on at least three vertices. Assume that for all distinct, non-adjacent vertices x, y of G, we have that $d_G(x) + d_G(y) \ge |V(G)|$. Then G is Hamiltonian.

Proof. The Chvátal closure of G is the complete graph on |V(G)| vertices, which (since $|V(G)| \ge 3$) is clearly Hamiltonian. So, by Theorem 2.2, G is also Hamiltonian.

Theorem 2.4 [Dirac]

Let G be a graph on at least three vertices. If $\delta(G) \ge \frac{|V(G)|}{2}$, then G is Hamiltonian.

Proof. This is an immediate corollary of Theorem 2.3.

Let $\mathbf{a} = (a_1, \ldots, a_n)$ be a list (vector) of integers s.t. $0 \le a_1 \le \cdots \le a_n \le n-1$. A graph *G* on *n* vertices *dominates* \mathbf{a} if for some ordering v_1, \ldots, v_n of the vertices of *G*, we have that $d_G(v_1) \ge a_1, \ldots, d_G(v_n) \ge a_n$. We say that \mathbf{a} is *Hamiltonian* if every *n*-vertex graph that dominates \mathbf{a} is Hamiltonian.

Let $\mathbf{a} = (a_1, \ldots, a_n)$ be a list (vector) of integers s.t. $0 \le a_1 \le \cdots \le a_n \le n-1$. A graph *G* on *n* vertices *dominates* \mathbf{a} if for some ordering v_1, \ldots, v_n of the vertices of *G*, we have that $d_G(v_1) \ge a_1, \ldots, d_G(v_n) \ge a_n$. We say that \mathbf{a} is *Hamiltonian* if every *n*-vertex graph that dominates \mathbf{a} is Hamiltonian.

Theorem 2.5

Let $n \ge 3$ be an integer, and let $\mathbf{a} = (a_1, \ldots, a_n)$ be a sequence of integers s.t. $0 \le a_1 \le \cdots \le a_n \le n-1$. Then the following are equivalent:

(a) for all indices
$$i < \frac{n}{2}$$
, if $a_i \le i$, then $a_{n-i} \ge n-i$;

(b) a is Hamiltonian.

(a) for all indices i < n/2, if a_i ≤ i, then a_{n-i} ≥ n − i;
(b) a is Hamiltonian.
Proof.

(a) for all indices $i < \frac{n}{2}$, if $a_i \le i$, then $a_{n-i} \ge n-i$;

(b) **a** is Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose otherwise.

(a) for all indices $i < \frac{n}{2}$, if $a_i \le i$, then $a_{n-i} \ge n-i$;

(b) **a** is Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose otherwise. Then there exists a graph on n vertices that dominates **a**, but is not Hamiltonian; among all such graphs, let G be one with as many edges as possible.

(a) for all indices $i < \frac{n}{2}$, if $a_i \le i$, then $a_{n-i} \ge n-i$;

(b) **a** is Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose otherwise. Then there exists a graph on n vertices that dominates **a**, but is not Hamiltonian; among all such graphs, let G be one with as many edges as possible. Since G has at least three vertices and is not Hamiltonian, we see that G is not complete.

(b) a is Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose otherwise. Then there exists a graph on *n* vertices that dominates **a**, but is not Hamiltonian; among all such graphs, let *G* be one with as many edges as possible. Since *G* has at least three vertices and is not Hamiltonian, we see that *G* is not complete. Fix distinct, non-adjacent vertices $u, v \in V(G)$ s.t. $d_G(u) + d_G(v)$ is maximum; by symmetry, we may assume that $d_G(u) \leq d_G(v)$.

(b) a is Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose otherwise. Then there exists a graph on *n* vertices that dominates **a**, but is not Hamiltonian; among all such graphs, let *G* be one with as many edges as possible. Since *G* has at least three vertices and is not Hamiltonian, we see that *G* is not complete. Fix distinct, non-adjacent vertices $u, v \in V(G)$ s.t. $d_G(u) + d_G(v)$ is maximum; by symmetry, we may assume that $d_G(u) \leq d_G(v)$. Then G + uv dominates **a** and has more edges than *G*, and so G + uv is Hamiltonian.

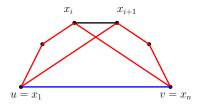
(b) a is Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose otherwise. Then there exists a graph on *n* vertices that dominates **a**, but is not Hamiltonian; among all such graphs, let G be one with as many edges as possible. Since G has at least three vertices and is not Hamiltonian, we see that G is not complete. Fix distinct, non-adjacent vertices $u, v \in V(G)$ s.t. $d_G(u) + d_G(v)$ is maximum; by symmetry, we may assume that $d_G(u) \leq d_G(v)$. Then G + uv dominates **a** and has more edges than G, and so G + uv is Hamiltonian. Let C be a Hamiltonian cycle in G + uv. Then $uv \in E(C)$, for otherwise, C would be a Hamiltonian cycle in G, contrary to the fact that G is not Hamiltonian.

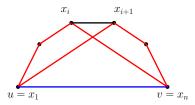
(b) a is Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose otherwise. Then there exists a graph on *n* vertices that dominates **a**, but is not Hamiltonian; among all such graphs, let G be one with as many edges as possible. Since G has at least three vertices and is not Hamiltonian, we see that G is not complete. Fix distinct, non-adjacent vertices $u, v \in V(G)$ s.t. $d_G(u) + d_G(v)$ is maximum; by symmetry, we may assume that $d_G(u) \leq d_G(v)$. Then G + uv dominates **a** and has more edges than G, and so G + uv is Hamiltonian. Let C be a Hamiltonian cycle in G + uv. Then $uv \in E(C)$, for otherwise, C would be a Hamiltonian cycle in G, contrary to the fact that G is not Hamiltonian. We now consider the path $C - uv = x_1, \ldots, x_n$, with $x_1 = u$ and $x_n = v$.

Proof (continued). Let $S := \{i \mid 1 \le i \le n-1, ux_{i+1} \in E(G)\}$; clearly, $s := |S| = d_G(u)$. If there exists some $i \in S$ s.t. $vx_i \in E(G)$, then $\underbrace{x_1}_{=u}, x_2, \dots, x_i, \underbrace{x_n}_{=v}, x_{n-1}, \dots, x_{i+1}, \underbrace{x_1}_{=u}$ would be a Hamiltonian cycle in G, contrary to the fact that G is not Hamiltonian.



Proof (continued). Let $S := \{i \mid 1 \le i \le n-1, ux_{i+1} \in E(G)\}$; clearly, $s := |S| = d_G(u)$. If there exists some $i \in S$ s.t. $vx_i \in E(G)$, then $\underbrace{x_1}_{=u}, x_2, \dots, x_i, \underbrace{x_n}_{=v}, x_{n-1}, \dots, x_{i+1}, \underbrace{x_1}_{=u}$ would be a Hamiltonian cycle in G, contrary to the fact that G is not Hamiltonian.



So, no such *i* exists, and it follows that $d_G(v) \le n - 1 - s$.

(a) for all indices i < n/2, if a_i ≤ i, then a_{n-i} ≥ n − i;
(b) a is Hamiltonian.

Proof (continued). Reminder: $S = \{i \mid 1 \le i \le n-1, ux_{i+1} \in E(G)\}, s = |S| = d_G(u),$ $d_G(v) \le n-1-s, v$ is non-adjacent to all x_i 's with $i \in S$.

Proof (continued). Reminder: $S = \{i \mid 1 \le i \le n-1, ux_{i+1} \in E(G)\}, s = |S| = d_G(u), d_G(v) \le n-1-s, v$ is non-adjacent to all x_i 's with $i \in S$. But now $d_G(u) + d_G(v) \le s + (n-1-s) = n-1$; since $d_G(u) \le d_G(v)$, we deduce that $d_G(u) < \frac{n}{2}$, and so $s < \frac{n}{2}$.

Proof (continued). Reminder: $S = \{i \mid 1 \le i \le n-1, ux_{i+1} \in E(G)\}, s = |S| = d_G(u),$ $d_G(v) \le n-1-s, v$ is non-adjacent to all x_i 's with $i \in S$. But now $d_G(u) + d_G(v) \le s + (n-1-s) = n-1$; since $d_G(u) \le d_G(v)$, we deduce that $d_G(u) < \frac{n}{2}$, and so $s < \frac{n}{2}$. Further, by the maximality of $d_G(u) + d_G(v)$, we see that $\forall i \in S$, we have that $d_G(x_i) \le d_G(u) = s$.

Proof (continued). Reminder: $S = \{i \mid 1 \le i \le n-1, ux_{i+1} \in E(G)\}, s = |S| = d_G(u), d_G(v) \le n-1-s, v$ is non-adjacent to all x_i 's with $i \in S$. But now $d_G(u) + d_G(v) \le s + (n-1-s) = n-1$; since $d_G(u) \le d_G(v)$, we deduce that $d_G(u) < \frac{n}{2}$, and so $s < \frac{n}{2}$. Further, by the maximality of $d_G(u) + d_G(v)$, we see that $\forall i \in S$, we have that $d_G(x_i) \le d_G(u) = s$. So, at least s vertices of G (i.e. all the x_i 's with $i \in S$) have degree at most $s < \frac{n}{2}$ in G, and it follows that $a_1, \ldots, a_s \le s < \frac{n}{2}$.

Proof (continued). Reminder: $S = \{i \mid 1 \le i \le n-1, ux_{i+1} \in E(G)\}, s = |S| = d_G(u),$ $d_G(v) \leq n-1-s$, v is non-adjacent to all x_i 's with $i \in S$. But now $d_{G}(u) + d_{G}(v) \le s + (n - 1 - s) = n - 1$; since $d_G(u) \leq d_G(v)$, we deduce that $d_G(u) < \frac{n}{2}$, and so $s < \frac{n}{2}$. Further, by the maximality of $d_G(u) + d_G(v)$, we see that $\forall i \in S$, we have that $d_G(x_i) \leq d_G(u) = s$. So, at least s vertices of G (i.e. all the x_i 's with $i \in S$) have degree at most $s < \frac{n}{2}$ in G, and it follows that $a_1, \ldots, a_s \leq s < \frac{n}{2}$. But since $a_s \leq s < \frac{n}{2}$, (a) guarantees that $a_{n-s} \geq n-s$;

Proof (continued). Reminder: $S = \{i \mid 1 \le i \le n-1, ux_{i+1} \in E(G)\}, s = |S| = d_G(u),$ $d_G(v) \leq n-1-s$, v is non-adjacent to all x_i 's with $i \in S$. But now $d_{G}(u) + d_{G}(v) \le s + (n - 1 - s) = n - 1$; since $d_G(u) \leq d_G(v)$, we deduce that $d_G(u) < \frac{n}{2}$, and so $s < \frac{n}{2}$. Further, by the maximality of $d_G(u) + d_G(v)$, we see that $\forall i \in S$, we have that $d_G(x_i) \leq d_G(u) = s$. So, at least s vertices of G (i.e. all the x_i 's with $i \in S$) have degree at most $s < \frac{n}{2}$ in G, and it follows that $a_1, \ldots, a_s \leq s < \frac{n}{2}$. But since $a_s \leq s < \frac{n}{2}$, (a) guarantees that $a_{n-s} \geq n-s$; but now $n-s < a_{n-s} < \cdots < a_n$, i.e. at least s+1 vertices of G have degree at least n - s.

Proof (continued). Reminder: $S = \{i \mid 1 \le i \le n-1, ux_{i+1} \in E(G)\}, s = |S| = d_G(u),$ $d_G(v) \leq n-1-s$, v is non-adjacent to all x_i 's with $i \in S$. But now $d_{G}(u) + d_{G}(v) \le s + (n - 1 - s) = n - 1$; since $d_G(u) \leq d_G(v)$, we deduce that $d_G(u) < \frac{n}{2}$, and so $s < \frac{n}{2}$. Further, by the maximality of $d_G(u) + d_G(v)$, we see that $\forall i \in S$, we have that $d_G(x_i) \leq d_G(u) = s$. So, at least s vertices of G (i.e. all the x_i 's with $i \in S$) have degree at most $s < \frac{n}{2}$ in G, and it follows that $a_1, \ldots, a_s \leq s < \frac{n}{2}$. But since $a_s \leq s < \frac{n}{2}$, (a) guarantees that $a_{n-s} \geq n-s$; but now $n-s < a_{n-s} < \cdots < a_n$, i.e. at least s+1 vertices of G have degree at least n - s. Since $d_G(u) = s$, we see that u is non-adjacent to at least one of these s + 1 vertices, call it y. But now $d_G(u) + d_G(v) \ge s + (n-s) = n > n-1 \ge d_G(u) + d_G(v)$, contrary to the maximality of $d_G(u) + d_G(v)$. So, (b) holds.

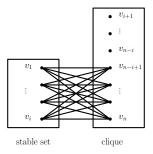
(a) for all indices i < n/2, if a_i ≤ i, then a_{n-i} ≥ n − i;
(b) a is Hamiltonian.
Proof (continued).

Proof (continued). Suppose now that (a) does not hold; we must show that (b) does not hold either. (So, we must exhibit an n-vertex graph that dominates **a** and is not Hamiltonian.)

Proof (continued). Suppose now that (a) does not hold; we must show that (b) does not hold either. (So, we must exhibit an *n*-vertex graph that dominates **a** and is not Hamiltonian.) Since (a) does not hold, there exists some index $i < \frac{n}{2}$ s.t. $a_i \le i$ and $a_{n-i} \le n - i - 1$.

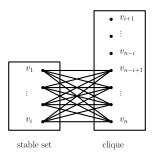
(a) for all indices i < n/2, if a_i ≤ i, then a_{n-i} ≥ n − i;
(b) a is Hamiltonian.

Proof (continued). Suppose now that (a) does not hold; we must show that (b) does not hold either. (So, we must exhibit an *n*-vertex graph that dominates **a** and is not Hamiltonian.) Since (a) does not hold, there exists some index $i < \frac{n}{2}$ s.t. $a_i \le i$ and $a_{n-i} \le n - i - 1$. Now the graph below dominates **a** (details: Lecture Notes).



(a) for all indices i < n/2, if a_i ≤ i, then a_{n-i} ≥ n − i;
(b) a is Hamiltonian.

Proof (continued).



(a) for all indices i < n/2, if a_i ≤ i, then a_{n-i} ≥ n − i;
(b) a is Hamiltonian.
Proof (continued).

 v_{i+1} v_{i-i} v_{n-i} v_{n-i+1} v_{n-i+1}

Also, the graph is not 1-tough, because deleting $\{v_{n-i+1}, \ldots, v_n\}$ yields a graph with i + 1 components. So, by Proposition 1.2, G is not Hamiltonian, and it follows that (b) does not hold.

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

• We'll prove Lemma 3.1, but let's first prove a corollary (Theorem 3.2).

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

• We'll prove Lemma 3.1, but let's first prove a corollary (Theorem 3.2).

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

• We'll prove Lemma 3.1, but let's first prove a corollary (Theorem 3.2).

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

• The bound from Theorem 3.2 is best possible: indeed, K_4 has precisely three Hamiltonian cycles.

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

• We'll prove Lemma 3.1, but let's first prove a corollary (Theorem 3.2).

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

- The bound from Theorem 3.2 is best possible: indeed, *K*₄ has precisely three Hamiltonian cycles.
- Let's now prove Theorem 3.2 (assuming Lemma 3.1).

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1).

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1). Let C_1 be a Hamiltonian cycle of G, and let e be some edge of C_1 .

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1). Let C_1 be a Hamiltonian cycle of G, and let e be some edge of C_1 . Then by Lemma 3.1, there exists a Hamiltonian cycle $C_2 \neq C_1$ that also contains the edge e.

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1). Let C_1 be a Hamiltonian cycle of G, and let e be some edge of C_1 . Then by Lemma 3.1, there exists a Hamiltonian cycle $C_2 \neq C_1$ that also contains the edge e. Since C_1, C_2 are distinct Hamiltonian cycles, we see that there exists an edge $e_1 \in E(C_1) \setminus E(C_2)$;

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1). Let C_1 be a Hamiltonian cycle of G, and let e be some edge of C_1 . Then by Lemma 3.1, there exists a Hamiltonian cycle $C_2 \neq C_1$ that also contains the edge e. Since C_1, C_2 are distinct Hamiltonian cycles, we see that there exists an edge $e_1 \in E(C_1) \setminus E(C_2)$; but then Lemma 3.1 guarantees that there exists a Hamiltonian cycle $C_3 \neq C_1$ that contains e_1 .

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1). Let C_1 be a Hamiltonian cycle of G, and let e be some edge of C_1 . Then by Lemma 3.1, there exists a Hamiltonian cycle $C_2 \neq C_1$ that also contains the edge e. Since C_1, C_2 are distinct Hamiltonian cycles, we see that there exists an edge $e_1 \in E(C_1) \setminus E(C_2)$; but then Lemma 3.1 guarantees that there exists a Hamiltonian cycle $C_3 \neq C_1$ that contains e_1 . Since $e_1 \in E(C_3) \setminus E(C_2)$, we see that $C_3 \neq C_2$.

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Theorem 3.2

Let G be a Hamiltonian graph, all of whose vertices are of odd degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1). Let C_1 be a Hamiltonian cycle of G, and let e be some edge of C_1 . Then by Lemma 3.1, there exists a Hamiltonian cycle $C_2 \neq C_1$ that also contains the edge e. Since C_1, C_2 are distinct Hamiltonian cycles, we see that there exists an edge $e_1 \in E(C_1) \setminus E(C_2)$; but then Lemma 3.1 guarantees that there exists a Hamiltonian cycle $C_3 \neq C_1$ that contains e_1 . Since $e_1 \in E(C_3) \setminus E(C_2)$, we see that $C_3 \neq C_2$. But now C_1, C_2, C_3 are pairwise distinct Hamiltonian cycles of G.

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Proof.

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Proof. Let e = xy be an edge of *G*; we must show that *e* belongs to an even number of Hamiltonian cycles of *G*.

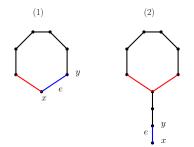
Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Proof. Let e = xy be an edge of G; we must show that e belongs to an even number of Hamiltonian cycles of G. A *lollipop* is a connected subgraph H of G s.t. V(H) = V(G),

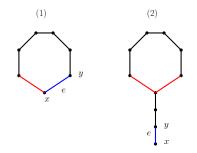
 $e \in E(H)$, and H satisfies one of the following:

- (1) H is a cycle;
- (2) $d_H(x) = 1$, *H* has one vertex of degree three, and all other vertices of *H* are of degree two.

Proof (continued).



Proof (continued).



If H is a lollipop that satisfies (1), then H has a unique *tail*, namely the unique edge of H incident with x and distinct from e. On the other hand, if H is a lollipop that satisfies (2), then H has two *tails*, namely, the two edges of the unique cycle of H that are incident with the unique vertex of degree three in H.

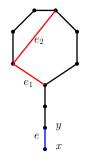
Proof (continued). We now form an auxiliary graph *L*, as follows.

Proof (continued). We now form an auxiliary graph L, as follows. The vertices of L are the lollipops.

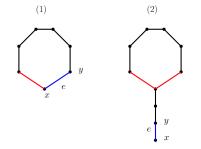
Proof (continued). We now form an auxiliary graph *L*, as follows. The vertices of *L* are the lollipops. Two lollipops, H_1 and H_2 , are adjacent in *L* iff there exist tails e_1 of H_1 and e_2 of H_2 s.t. $H_1 - e_1 = H_2 - e_2$.

Proof (continued). We now form an auxiliary graph *L*, as follows. The vertices of *L* are the lollipops. Two lollipops, H_1 and H_2 , are adjacent in *L* iff there exist tails e_1 of H_1 and e_2 of H_2 s.t. $H_1 - e_1 = H_2 - e_2$.

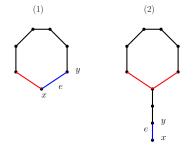
For example, in the picture below, if H_i (for $i \in \{1, 2\}$) consists of the blue and black edges, plus the red edge e_i , then lollipops H_1 and H_2 are adjacent in L.



Proof (continued). WTS the odd-degree vertices of the auxiliary graph L are precisely the lollipops satisfying (1).



Proof (continued). WTS the odd-degree vertices of the auxiliary graph L are precisely the lollipops satisfying (1).



This is enough because the number of odd-degree vertices in L is even (true for any graph), and the lollipops satisfying (1) are precisely the Hamiltonian cycles of G that contain the edge e.

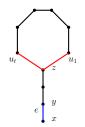
Proof (continued). Suppose that $H = x, y, u_1, \ldots, u_t, z, x \ (t \ge 0)$ is a lollipop satisfying (1), i.e. H is a Hamiltonian cycle of G containing e.

Proof (continued). Suppose that $H = x, y, u_1, \ldots, u_t, z, x \ (t \ge 0)$ is a lollipop satisfying (1), i.e. H is a Hamiltonian cycle of G containing e.

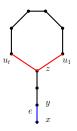
Then xz is the unique tail of H, and the neighbors of H in L are precisely the graphs that can be obtained from H - xz by adding an edge between z and a vertex in $N_G(z) \setminus N_H(z)$.

Proof (continued). Suppose that $H = x, y, u_1, \ldots, u_t, z, x \ (t \ge 0)$ is a lollipop satisfying (1), i.e. H is a Hamiltonian cycle of G containing e.

Then xz is the unique tail of H, and the neighbors of H in L are precisely the graphs that can be obtained from H - xz by adding an edge between z and a vertex in $N_G(z) \setminus N_H(z)$. So, $d_L(H) = |N_G(z) \setminus N_H(z)| = d_G(z) - 2$; since $d_G(z)$ is odd, so is $d_L(H)$. *Proof (continued).* Suppose now that H is a lollipop satisfying (2); let z, u_1, \ldots, u_t, z ($t \ge 2$) be the unique cycle of H, where z is the unique vertex of degree three in H.



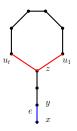
Proof (continued).



Then the lollipop H has two tails, namely zu_1 and zu_t , and the neighbors of H in L are precisely the graphs that an be obtained in one of the following two ways as follows:

- by starting with H − zu₁, and then adding an edge between u₁ and N_G(u₁) \ {z, u₂};
- by starting with $H zu_t$, and then adding an edge between u_t and $N_G(u_t) \setminus \{z, u_{t-1}\}$.

Proof (continued).



Then the lollipop H has two tails, namely zu_1 and zu_t , and the neighbors of H in L are precisely the graphs that an be obtained in one of the following two ways as follows:

- by starting with H − zu₁, and then adding an edge between u₁ and N_G(u₁) \ {z, u₂};
- by starting with $H zu_t$, and then adding an edge between u_t and $N_G(u_t) \setminus \{z, u_{t-1}\}$.

So, $d_L(H) = (d_G(u_1) - 2) + (d_G(u_t) - 2) = d_G(u_1) + d_G(u_t) - 4$. Since all vertices of *G* have odd degree, we deduce that $d_L(H)$ is even.

Lemma 3.1

Let G be a graph in which all vertices are of odd degree. Then every edge of G belongs to an even number of Hamiltonian cycles. In particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at least two Hamiltonian cycles.

Proof (continued). We have now shown that the odd-degree vertices of our auxiliary graph L are precisely the Hamiltonian cycles of H that contain the edge e. This completes the argument.