
NDMI012: Combinatorics and Graph Theory 2

Lecture #9

The Tutte polynomial

Irena Penev

April 19, 2022

Definition
A multigraph is an ordered pair G = (V (G), E (G)) s.t. V (G) and
E (G) are finite sets (called the vertex set and edge set,
respectively), and each edge (i.e. element of E (G)) is associated
with two (possibly identical) vertices (i.e. elements of V (G)),
called its endpoints. If an edge has only one endpoint (i.e. its two
endpoints are the same), then this edge is called a loop. If two
distinct edges have the same endpoints, then those edges are
parallel.

parallel edges

loop

parallel edges

loop

A proper (vertex) coloring of a loopless multigraph G is an
assignment of colors to the vertices of G in such a way that,
whenever two distinct vertices are joined by an edge (i.e. are
the endpoints of the same edge), they receive different colors.

If a multigraph has a loop, then it has no proper colorings.
A k-coloring of a multigraph G is a proper coloring of G that
uses colors 1, . . . , k (not all of these colors need be used).

parallel edges

loop

A proper (vertex) coloring of a loopless multigraph G is an
assignment of colors to the vertices of G in such a way that,
whenever two distinct vertices are joined by an edge (i.e. are
the endpoints of the same edge), they receive different colors.
If a multigraph has a loop, then it has no proper colorings.

A k-coloring of a multigraph G is a proper coloring of G that
uses colors 1, . . . , k (not all of these colors need be used).

parallel edges

loop

A proper (vertex) coloring of a loopless multigraph G is an
assignment of colors to the vertices of G in such a way that,
whenever two distinct vertices are joined by an edge (i.e. are
the endpoints of the same edge), they receive different colors.
If a multigraph has a loop, then it has no proper colorings.
A k-coloring of a multigraph G is a proper coloring of G that
uses colors 1, . . . , k (not all of these colors need be used).

For an edge e of a multigraph G , we denote by G − e the
multigraph obtained by deleting e from G .

If e is a non-loop edge of a multigraph G , then the multigraph
G/e obtained by contracting e is the multigraph obtained by
first deleting e, and then identifying its endpoints to a single
vertex.

e

G G/e

Note that edges parallel to e become loops, and it is also
possible that new parallel edges are created.

For an edge e of a multigraph G , we denote by G − e the
multigraph obtained by deleting e from G .
If e is a non-loop edge of a multigraph G , then the multigraph
G/e obtained by contracting e is the multigraph obtained by
first deleting e, and then identifying its endpoints to a single
vertex.

e

G G/e

Note that edges parallel to e become loops, and it is also
possible that new parallel edges are created.

The topic of this lecture are graph polynomials, or more
precisely, multigraph polynomials.

For recursive purposes, it is convenient to allow loops and
parallel edges.

There are a number of such polynomials.
Here, we consider two: the chromatic polynomial and the
Tutte polynomial.

The topic of this lecture are graph polynomials, or more
precisely, multigraph polynomials.

For recursive purposes, it is convenient to allow loops and
parallel edges.

There are a number of such polynomials.

Here, we consider two: the chromatic polynomial and the
Tutte polynomial.

The topic of this lecture are graph polynomials, or more
precisely, multigraph polynomials.

For recursive purposes, it is convenient to allow loops and
parallel edges.

There are a number of such polynomials.
Here, we consider two: the chromatic polynomial and the
Tutte polynomial.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

The chromatic polynomial of a multigraph G is the
polynomial πG from the statement of Lemma 2.1.
If G is a loopless multigraph, then χ(G) is equal to the
smallest non-negative integer k s.t. πG(k) ̸= 0.
Note that this implies that computing the chromatic
polynomial is NP-hard.
However, in some special cases, the chromatic polynomial is
easy to compute. For example:

πKn (x) = x(x − 1)(x − 2) . . . (x − n + 1);
πT (x) = x(x − 1)n−1, for any tree T on n vertices.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

The chromatic polynomial of a multigraph G is the
polynomial πG from the statement of Lemma 2.1.

If G is a loopless multigraph, then χ(G) is equal to the
smallest non-negative integer k s.t. πG(k) ̸= 0.
Note that this implies that computing the chromatic
polynomial is NP-hard.
However, in some special cases, the chromatic polynomial is
easy to compute. For example:

πKn (x) = x(x − 1)(x − 2) . . . (x − n + 1);
πT (x) = x(x − 1)n−1, for any tree T on n vertices.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

The chromatic polynomial of a multigraph G is the
polynomial πG from the statement of Lemma 2.1.
If G is a loopless multigraph, then χ(G) is equal to the
smallest non-negative integer k s.t. πG(k) ̸= 0.

Note that this implies that computing the chromatic
polynomial is NP-hard.
However, in some special cases, the chromatic polynomial is
easy to compute. For example:

πKn (x) = x(x − 1)(x − 2) . . . (x − n + 1);
πT (x) = x(x − 1)n−1, for any tree T on n vertices.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

The chromatic polynomial of a multigraph G is the
polynomial πG from the statement of Lemma 2.1.
If G is a loopless multigraph, then χ(G) is equal to the
smallest non-negative integer k s.t. πG(k) ̸= 0.
Note that this implies that computing the chromatic
polynomial is NP-hard.

However, in some special cases, the chromatic polynomial is
easy to compute. For example:

πKn (x) = x(x − 1)(x − 2) . . . (x − n + 1);
πT (x) = x(x − 1)n−1, for any tree T on n vertices.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

The chromatic polynomial of a multigraph G is the
polynomial πG from the statement of Lemma 2.1.
If G is a loopless multigraph, then χ(G) is equal to the
smallest non-negative integer k s.t. πG(k) ̸= 0.
Note that this implies that computing the chromatic
polynomial is NP-hard.
However, in some special cases, the chromatic polynomial is
easy to compute. For example:

πKn (x) = x(x − 1)(x − 2) . . . (x − n + 1);
πT (x) = x(x − 1)n−1, for any tree T on n vertices.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof.

We proceed by induction on the number of edges. Fix a
multigraph G , and assume inductively that the lemma is true for
multigrpahs with fewer than |E (G)| edges.
Uniqueness follows immediately from the fact that for any
non-negative integer d , any two polynomials of degree at most d
that agree on at least d + 1 points are identical. It remains to
prove existence.
If G is edgeless, then πG(x) = x |V (G)| is the polynomial that we
need.
If G has at least one loop, then πG(x) = 0 is the polynomial we
need.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof. We proceed by induction on the number of edges. Fix a
multigraph G , and assume inductively that the lemma is true for
multigrpahs with fewer than |E (G)| edges.

Uniqueness follows immediately from the fact that for any
non-negative integer d , any two polynomials of degree at most d
that agree on at least d + 1 points are identical. It remains to
prove existence.
If G is edgeless, then πG(x) = x |V (G)| is the polynomial that we
need.
If G has at least one loop, then πG(x) = 0 is the polynomial we
need.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof. We proceed by induction on the number of edges. Fix a
multigraph G , and assume inductively that the lemma is true for
multigrpahs with fewer than |E (G)| edges.
Uniqueness follows immediately from the fact that for any
non-negative integer d , any two polynomials of degree at most d
that agree on at least d + 1 points are identical.

It remains to
prove existence.
If G is edgeless, then πG(x) = x |V (G)| is the polynomial that we
need.
If G has at least one loop, then πG(x) = 0 is the polynomial we
need.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof. We proceed by induction on the number of edges. Fix a
multigraph G , and assume inductively that the lemma is true for
multigrpahs with fewer than |E (G)| edges.
Uniqueness follows immediately from the fact that for any
non-negative integer d , any two polynomials of degree at most d
that agree on at least d + 1 points are identical. It remains to
prove existence.

If G is edgeless, then πG(x) = x |V (G)| is the polynomial that we
need.
If G has at least one loop, then πG(x) = 0 is the polynomial we
need.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof. We proceed by induction on the number of edges. Fix a
multigraph G , and assume inductively that the lemma is true for
multigrpahs with fewer than |E (G)| edges.
Uniqueness follows immediately from the fact that for any
non-negative integer d , any two polynomials of degree at most d
that agree on at least d + 1 points are identical. It remains to
prove existence.
If G is edgeless, then πG(x) = x |V (G)| is the polynomial that we
need.

If G has at least one loop, then πG(x) = 0 is the polynomial we
need.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof. We proceed by induction on the number of edges. Fix a
multigraph G , and assume inductively that the lemma is true for
multigrpahs with fewer than |E (G)| edges.
Uniqueness follows immediately from the fact that for any
non-negative integer d , any two polynomials of degree at most d
that agree on at least d + 1 points are identical. It remains to
prove existence.
If G is edgeless, then πG(x) = x |V (G)| is the polynomial that we
need.
If G has at least one loop, then πG(x) = 0 is the polynomial we
need.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof (continued).

From now on, we assume that G is loopless
and has at least one edge, say e. The induction hypothesis applied
to G − e and G/e yields polynomials πG−e and πG/e of degree at
most |V (G)|, and having the desired properties. Set

πG := πG−e − πG/e .

Since πG−e and πG/e are of degree at most |V (G)|, so is πG .
Now, fix a non-negative integer k. We must show that there are
precisely πG(k) many k-colorings of G .

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof (continued). From now on, we assume that G is loopless
and has at least one edge, say e.

The induction hypothesis applied
to G − e and G/e yields polynomials πG−e and πG/e of degree at
most |V (G)|, and having the desired properties. Set

πG := πG−e − πG/e .

Since πG−e and πG/e are of degree at most |V (G)|, so is πG .
Now, fix a non-negative integer k. We must show that there are
precisely πG(k) many k-colorings of G .

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof (continued). From now on, we assume that G is loopless
and has at least one edge, say e. The induction hypothesis applied
to G − e and G/e yields polynomials πG−e and πG/e of degree at
most |V (G)|, and having the desired properties.

Set

πG := πG−e − πG/e .

Since πG−e and πG/e are of degree at most |V (G)|, so is πG .
Now, fix a non-negative integer k. We must show that there are
precisely πG(k) many k-colorings of G .

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof (continued). From now on, we assume that G is loopless
and has at least one edge, say e. The induction hypothesis applied
to G − e and G/e yields polynomials πG−e and πG/e of degree at
most |V (G)|, and having the desired properties. Set

πG := πG−e − πG/e .

Since πG−e and πG/e are of degree at most |V (G)|, so is πG .
Now, fix a non-negative integer k. We must show that there are
precisely πG(k) many k-colorings of G .

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof (continued). From now on, we assume that G is loopless
and has at least one edge, say e. The induction hypothesis applied
to G − e and G/e yields polynomials πG−e and πG/e of degree at
most |V (G)|, and having the desired properties. Set

πG := πG−e − πG/e .

Since πG−e and πG/e are of degree at most |V (G)|, so is πG .

Now, fix a non-negative integer k. We must show that there are
precisely πG(k) many k-colorings of G .

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Proof (continued). From now on, we assume that G is loopless
and has at least one edge, say e. The induction hypothesis applied
to G − e and G/e yields polynomials πG−e and πG/e of degree at
most |V (G)|, and having the desired properties. Set

πG := πG−e − πG/e .

Since πG−e and πG/e are of degree at most |V (G)|, so is πG .
Now, fix a non-negative integer k. We must show that there are
precisely πG(k) many k-colorings of G .

Proof (continued). Reminder: πG := πG−e − πG/e ; WTS there are
precisely πG(k) many k-colorings of G .

G

G/eG− e

e

Clearly, every k-coloring of G is also a proper coloring of G − e.
On the other hand, a k-coloring of G − e is a k-coloring of G iff
the two endpoints of e have different colors. Further, k-colorings
of G − e in which both endpoints of e receive the same color
correspond to k-colorings of G/e in the natural way. So, the
number of k-colorings of G is equal to
πG−e(k) − πG/e(k) = πG(k), which is what we needed.

Proof (continued). Reminder: πG := πG−e − πG/e ; WTS there are
precisely πG(k) many k-colorings of G .

G

G/eG− e

e

Clearly, every k-coloring of G is also a proper coloring of G − e.

On the other hand, a k-coloring of G − e is a k-coloring of G iff
the two endpoints of e have different colors. Further, k-colorings
of G − e in which both endpoints of e receive the same color
correspond to k-colorings of G/e in the natural way. So, the
number of k-colorings of G is equal to
πG−e(k) − πG/e(k) = πG(k), which is what we needed.

Proof (continued). Reminder: πG := πG−e − πG/e ; WTS there are
precisely πG(k) many k-colorings of G .

G

G/eG− e

e

Clearly, every k-coloring of G is also a proper coloring of G − e.
On the other hand, a k-coloring of G − e is a k-coloring of G iff
the two endpoints of e have different colors.

Further, k-colorings
of G − e in which both endpoints of e receive the same color
correspond to k-colorings of G/e in the natural way. So, the
number of k-colorings of G is equal to
πG−e(k) − πG/e(k) = πG(k), which is what we needed.

Proof (continued). Reminder: πG := πG−e − πG/e ; WTS there are
precisely πG(k) many k-colorings of G .

G

G/eG− e

e

Clearly, every k-coloring of G is also a proper coloring of G − e.
On the other hand, a k-coloring of G − e is a k-coloring of G iff
the two endpoints of e have different colors. Further, k-colorings
of G − e in which both endpoints of e receive the same color
correspond to k-colorings of G/e in the natural way.

So, the
number of k-colorings of G is equal to
πG−e(k) − πG/e(k) = πG(k), which is what we needed.

Proof (continued). Reminder: πG := πG−e − πG/e ; WTS there are
precisely πG(k) many k-colorings of G .

G

G/eG− e

e

Clearly, every k-coloring of G is also a proper coloring of G − e.
On the other hand, a k-coloring of G − e is a k-coloring of G iff
the two endpoints of e have different colors. Further, k-colorings
of G − e in which both endpoints of e receive the same color
correspond to k-colorings of G/e in the natural way. So, the
number of k-colorings of G is equal to
πG−e(k) − πG/e(k) = πG(k), which is what we needed.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Reminder: The polynomial πG is called the chromatic
polynomial of G .
The proof of that lemma in fact gives us a recursive formula
for πG , as follows:

if G is edgeless, then πG(x) = x |V (G)|;
if G has a loop, then πG(x) = 0;
if G is loopless and has at least one edge, say e, then

πG(x) = πG−e(x) − πG/e(x).

Note that G − e and G/e have fewer edges than G , and so
our formula really is recursive.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Reminder: The polynomial πG is called the chromatic
polynomial of G .

The proof of that lemma in fact gives us a recursive formula
for πG , as follows:

if G is edgeless, then πG(x) = x |V (G)|;
if G has a loop, then πG(x) = 0;
if G is loopless and has at least one edge, say e, then

πG(x) = πG−e(x) − πG/e(x).

Note that G − e and G/e have fewer edges than G , and so
our formula really is recursive.

Lemma 2.1
For each multigraph G , there exists a unique polynomial πG (with
integer coefficients) of degree at most |V (G)| s.t. for any
non-negative integer k, πG(k) is the number of k-colorings of G .

Reminder: The polynomial πG is called the chromatic
polynomial of G .
The proof of that lemma in fact gives us a recursive formula
for πG , as follows:

if G is edgeless, then πG(x) = x |V (G)|;
if G has a loop, then πG(x) = 0;
if G is loopless and has at least one edge, say e, then

πG(x) = πG−e(x) − πG/e(x).

Note that G − e and G/e have fewer edges than G , and so
our formula really is recursive.

For a multigraph G , let k(G) be the number of components
of G .

For a set A ⊆ E (G), let kG(A) be the number of components
of the multigraph on vertex set V (G) and edge set A.

Note that kG(A) ≥ max{k(G), |V (G)| − |A|}, and set
rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|.
In the example above (where the edges of A are in red), we
have that k(G) = 1, kG(A) = 3, |A| = 5, and |V (G)| = 6; so,
rG(A) = 2 and cG(A) = 2.

For a multigraph G , let k(G) be the number of components
of G .
For a set A ⊆ E (G), let kG(A) be the number of components
of the multigraph on vertex set V (G) and edge set A.

Note that kG(A) ≥ max{k(G), |V (G)| − |A|}, and set
rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|.
In the example above (where the edges of A are in red), we
have that k(G) = 1, kG(A) = 3, |A| = 5, and |V (G)| = 6; so,
rG(A) = 2 and cG(A) = 2.

For a multigraph G , let k(G) be the number of components
of G .
For a set A ⊆ E (G), let kG(A) be the number of components
of the multigraph on vertex set V (G) and edge set A.

Note that kG(A) ≥ max{k(G), |V (G)| − |A|}, and set
rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|.

In the example above (where the edges of A are in red), we
have that k(G) = 1, kG(A) = 3, |A| = 5, and |V (G)| = 6; so,
rG(A) = 2 and cG(A) = 2.

For a multigraph G , let k(G) be the number of components
of G .
For a set A ⊆ E (G), let kG(A) be the number of components
of the multigraph on vertex set V (G) and edge set A.

Note that kG(A) ≥ max{k(G), |V (G)| − |A|}, and set
rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|.
In the example above (where the edges of A are in red), we
have that k(G) = 1, kG(A) = 3, |A| = 5, and |V (G)| = 6; so,
rG(A) = 2 and cG(A) = 2.

Reminder: rG(A) := kG(A) − k(G) and
cG(A) := kG(A) + |A| − |V (G)|.

Definition
The Tutte polynomial TG(x , y) of a multigraph G is defined by

TG(x , y) :=
∑

A⊆E(G)
(x − 1)rG (A)(y − 1)cG (A).

As we shall see (later), the Tutte polynomial is more “general”
than the chromatic polynomial, i.e. if we know the Tutte
polynomial, we can easily compute the chromatic polynomial.
Since it is NP-hard to compute the chromatic polynomial, it is
NP-hard to compute the Tutte polynomial.
Clearly, if G is edgeless, then TG(x , y) = 1.
Otherwise, we can get a recursive formula for TG(x , y), as
follows (two slides from now; first, a definition).

Reminder: rG(A) := kG(A) − k(G) and
cG(A) := kG(A) + |A| − |V (G)|.

Definition
The Tutte polynomial TG(x , y) of a multigraph G is defined by

TG(x , y) :=
∑

A⊆E(G)
(x − 1)rG (A)(y − 1)cG (A).

As we shall see (later), the Tutte polynomial is more “general”
than the chromatic polynomial, i.e. if we know the Tutte
polynomial, we can easily compute the chromatic polynomial.
Since it is NP-hard to compute the chromatic polynomial, it is
NP-hard to compute the Tutte polynomial.
Clearly, if G is edgeless, then TG(x , y) = 1.
Otherwise, we can get a recursive formula for TG(x , y), as
follows (two slides from now; first, a definition).

Reminder: rG(A) := kG(A) − k(G) and
cG(A) := kG(A) + |A| − |V (G)|.

Definition
The Tutte polynomial TG(x , y) of a multigraph G is defined by

TG(x , y) :=
∑

A⊆E(G)
(x − 1)rG (A)(y − 1)cG (A).

As we shall see (later), the Tutte polynomial is more “general”
than the chromatic polynomial, i.e. if we know the Tutte
polynomial, we can easily compute the chromatic polynomial.

Since it is NP-hard to compute the chromatic polynomial, it is
NP-hard to compute the Tutte polynomial.
Clearly, if G is edgeless, then TG(x , y) = 1.
Otherwise, we can get a recursive formula for TG(x , y), as
follows (two slides from now; first, a definition).

Reminder: rG(A) := kG(A) − k(G) and
cG(A) := kG(A) + |A| − |V (G)|.

Definition
The Tutte polynomial TG(x , y) of a multigraph G is defined by

TG(x , y) :=
∑

A⊆E(G)
(x − 1)rG (A)(y − 1)cG (A).

As we shall see (later), the Tutte polynomial is more “general”
than the chromatic polynomial, i.e. if we know the Tutte
polynomial, we can easily compute the chromatic polynomial.
Since it is NP-hard to compute the chromatic polynomial, it is
NP-hard to compute the Tutte polynomial.

Clearly, if G is edgeless, then TG(x , y) = 1.
Otherwise, we can get a recursive formula for TG(x , y), as
follows (two slides from now; first, a definition).

Reminder: rG(A) := kG(A) − k(G) and
cG(A) := kG(A) + |A| − |V (G)|.

Definition
The Tutte polynomial TG(x , y) of a multigraph G is defined by

TG(x , y) :=
∑

A⊆E(G)
(x − 1)rG (A)(y − 1)cG (A).

As we shall see (later), the Tutte polynomial is more “general”
than the chromatic polynomial, i.e. if we know the Tutte
polynomial, we can easily compute the chromatic polynomial.
Since it is NP-hard to compute the chromatic polynomial, it is
NP-hard to compute the Tutte polynomial.
Clearly, if G is edgeless, then TG(x , y) = 1.

Otherwise, we can get a recursive formula for TG(x , y), as
follows (two slides from now; first, a definition).

Reminder: rG(A) := kG(A) − k(G) and
cG(A) := kG(A) + |A| − |V (G)|.

Definition
The Tutte polynomial TG(x , y) of a multigraph G is defined by

TG(x , y) :=
∑

A⊆E(G)
(x − 1)rG (A)(y − 1)cG (A).

As we shall see (later), the Tutte polynomial is more “general”
than the chromatic polynomial, i.e. if we know the Tutte
polynomial, we can easily compute the chromatic polynomial.
Since it is NP-hard to compute the chromatic polynomial, it is
NP-hard to compute the Tutte polynomial.
Clearly, if G is edgeless, then TG(x , y) = 1.
Otherwise, we can get a recursive formula for TG(x , y), as
follows (two slides from now; first, a definition).

Definition
A bridge in a multigraph G is an edge e of G s.t. G − e has more
components than G .

bridge

Reminder:
rG(A) := kG(A) − k(G);
cG(A) := kG(A) + |A| − |V (G)|;
TG(x , y) :=

∑
A⊆E(G)

(x − 1)rG (A)(y − 1)cG (A).

Lemma 3.1
Let e be an edge of a multigraph G . Then

TG(x , y) =



xTG/e(x , y) if e is a bridge of G

yTG−e(x , y) if e is a loop of G

TG−e(x , y) + TG/e(x , y) otherwise

Proof. Lecture Notes.

Lemma 3.2
If multigraphs G1 and G2 have at most one vertex and no edges in
common, then TG1∪G2 = TG1TG2 .

G1 G2 G1 G2

OR

Proof (outline).

This follows by induction (on the number of
edges) from Lemma 3.1. The details are in the Lecture Notes, but
here’s an idea. For edgeless (multi)graphs, the Tutte polynomial is
1, and the result is immediate. Now suppose G := G1 ∪ G2 has an
edge e; by symmetry, we may assume that e ∈ E (G2).
Furthermore, G − e = G1 ∪ (G2 − e) and (if e is not a loop)
G/e = G1 ∪ (G2/e).

Lemma 3.2
If multigraphs G1 and G2 have at most one vertex and no edges in
common, then TG1∪G2 = TG1TG2 .

G1 G2 G1 G2

OR

Proof (outline). This follows by induction (on the number of
edges) from Lemma 3.1. The details are in the Lecture Notes, but
here’s an idea.

For edgeless (multi)graphs, the Tutte polynomial is
1, and the result is immediate. Now suppose G := G1 ∪ G2 has an
edge e; by symmetry, we may assume that e ∈ E (G2).
Furthermore, G − e = G1 ∪ (G2 − e) and (if e is not a loop)
G/e = G1 ∪ (G2/e).

Lemma 3.2
If multigraphs G1 and G2 have at most one vertex and no edges in
common, then TG1∪G2 = TG1TG2 .

G1 G2 G1 G2

OR

Proof (outline). This follows by induction (on the number of
edges) from Lemma 3.1. The details are in the Lecture Notes, but
here’s an idea. For edgeless (multi)graphs, the Tutte polynomial is
1, and the result is immediate.

Now suppose G := G1 ∪ G2 has an
edge e; by symmetry, we may assume that e ∈ E (G2).
Furthermore, G − e = G1 ∪ (G2 − e) and (if e is not a loop)
G/e = G1 ∪ (G2/e).

Lemma 3.2
If multigraphs G1 and G2 have at most one vertex and no edges in
common, then TG1∪G2 = TG1TG2 .

G1 G2 G1 G2

OR

Proof (outline). This follows by induction (on the number of
edges) from Lemma 3.1. The details are in the Lecture Notes, but
here’s an idea. For edgeless (multi)graphs, the Tutte polynomial is
1, and the result is immediate. Now suppose G := G1 ∪ G2 has an
edge e; by symmetry, we may assume that e ∈ E (G2).

Furthermore, G − e = G1 ∪ (G2 − e) and (if e is not a loop)
G/e = G1 ∪ (G2/e).

Lemma 3.2
If multigraphs G1 and G2 have at most one vertex and no edges in
common, then TG1∪G2 = TG1TG2 .

G1 G2 G1 G2

OR

Proof (outline). This follows by induction (on the number of
edges) from Lemma 3.1. The details are in the Lecture Notes, but
here’s an idea. For edgeless (multi)graphs, the Tutte polynomial is
1, and the result is immediate. Now suppose G := G1 ∪ G2 has an
edge e; by symmetry, we may assume that e ∈ E (G2).
Furthermore, G − e = G1 ∪ (G2 − e) and (if e is not a loop)
G/e = G1 ∪ (G2/e).

Lemma 3.2
If multigraphs G1 and G2 have at most one vertex and no edges in
common, then TG1∪G2 = TG1TG2 .

Proof (outline). If e is neither a bridge nor a loop of G , then it is
neither a bridge nor a loop of G2, and so

TG(x , y)
= TG−e(x , y) + TG/e(x , y) by Lemma 3.1
= TG1∪(G2−e)(x , y) + TG1∪(G2/e)(x , y)
= TG1(x , y)TG2−e(x , y) + TG1(x , y)TG2/e(x , y) by the

ind. hyp.
= TG1(x , y)

(
TG2−e(x , y) + TG/e(x , y)

)
= TG1(x , y)TG2(x , y) by Lemma 3.1

Other cases: Lecture Notes.

Lemma 3.2
If multigraphs G1 and G2 have at most one vertex and no edges in
common, then TG1∪G2 = TG1TG2 .

Proof (outline). If e is neither a bridge nor a loop of G , then it is
neither a bridge nor a loop of G2, and so

TG(x , y)
= TG−e(x , y) + TG/e(x , y) by Lemma 3.1
= TG1∪(G2−e)(x , y) + TG1∪(G2/e)(x , y)
= TG1(x , y)TG2−e(x , y) + TG1(x , y)TG2/e(x , y) by the

ind. hyp.
= TG1(x , y)

(
TG2−e(x , y) + TG/e(x , y)

)
= TG1(x , y)TG2(x , y) by Lemma 3.1

Other cases: Lecture Notes.

Definition
A block of a multigraph G is a maximal connected subgraph of G
that has no cut-vertices.a

aA loop with its unique endpoint is considered a block.

For example, the (disconnected) graph below has six blocks,
in dotted bags.

Note that a (multi)graph can be built from its blocks by
repeatedly taking disjoint unions and gluing along single
vertices.
Lemma 3.2 guarantees that the Tutte polynomial of a
multigraph G is the product of the Tutte polynomials of its
blocks.

Definition
A block of a multigraph G is a maximal connected subgraph of G
that has no cut-vertices.a

aA loop with its unique endpoint is considered a block.

For example, the (disconnected) graph below has six blocks,
in dotted bags.

Note that a (multi)graph can be built from its blocks by
repeatedly taking disjoint unions and gluing along single
vertices.
Lemma 3.2 guarantees that the Tutte polynomial of a
multigraph G is the product of the Tutte polynomials of its
blocks.

Definition
A block of a multigraph G is a maximal connected subgraph of G
that has no cut-vertices.a

aA loop with its unique endpoint is considered a block.

For example, the (disconnected) graph below has six blocks,
in dotted bags.

Note that a (multi)graph can be built from its blocks by
repeatedly taking disjoint unions and gluing along single
vertices.

Lemma 3.2 guarantees that the Tutte polynomial of a
multigraph G is the product of the Tutte polynomials of its
blocks.

Definition
A block of a multigraph G is a maximal connected subgraph of G
that has no cut-vertices.a

aA loop with its unique endpoint is considered a block.

For example, the (disconnected) graph below has six blocks,
in dotted bags.

Note that a (multi)graph can be built from its blocks by
repeatedly taking disjoint unions and gluing along single
vertices.
Lemma 3.2 guarantees that the Tutte polynomial of a
multigraph G is the product of the Tutte polynomials of its
blocks.

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline).

We proceed by induction on the number of edges.
Suppose first that G is edgeless. Then:

πG(x) = x |V (G)|;
TG(x , y) = 1, and so TG(1 − x , 0) = 1;
k(G) = |V (G)|, and so (−1)|V (G)|−k(G) = 1.

But now it is clear that
πG(x) = x |V (G)|

= (−1)|V (G)|−k(G) · x |V (G)| · 1

= (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0)

which is what we needed.

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline). We proceed by induction on the number of edges.

Suppose first that G is edgeless. Then:
πG(x) = x |V (G)|;
TG(x , y) = 1, and so TG(1 − x , 0) = 1;
k(G) = |V (G)|, and so (−1)|V (G)|−k(G) = 1.

But now it is clear that
πG(x) = x |V (G)|

= (−1)|V (G)|−k(G) · x |V (G)| · 1

= (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0)

which is what we needed.

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline). We proceed by induction on the number of edges.
Suppose first that G is edgeless.

Then:
πG(x) = x |V (G)|;
TG(x , y) = 1, and so TG(1 − x , 0) = 1;
k(G) = |V (G)|, and so (−1)|V (G)|−k(G) = 1.

But now it is clear that
πG(x) = x |V (G)|

= (−1)|V (G)|−k(G) · x |V (G)| · 1

= (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0)

which is what we needed.

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline). We proceed by induction on the number of edges.
Suppose first that G is edgeless. Then:

πG(x) = x |V (G)|;

TG(x , y) = 1, and so TG(1 − x , 0) = 1;
k(G) = |V (G)|, and so (−1)|V (G)|−k(G) = 1.

But now it is clear that
πG(x) = x |V (G)|

= (−1)|V (G)|−k(G) · x |V (G)| · 1

= (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0)

which is what we needed.

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline). We proceed by induction on the number of edges.
Suppose first that G is edgeless. Then:

πG(x) = x |V (G)|;
TG(x , y) = 1, and so TG(1 − x , 0) = 1;

k(G) = |V (G)|, and so (−1)|V (G)|−k(G) = 1.
But now it is clear that

πG(x) = x |V (G)|

= (−1)|V (G)|−k(G) · x |V (G)| · 1

= (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0)

which is what we needed.

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline). We proceed by induction on the number of edges.
Suppose first that G is edgeless. Then:

πG(x) = x |V (G)|;
TG(x , y) = 1, and so TG(1 − x , 0) = 1;
k(G) = |V (G)|, and so (−1)|V (G)|−k(G) = 1.

But now it is clear that
πG(x) = x |V (G)|

= (−1)|V (G)|−k(G) · x |V (G)| · 1

= (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0)

which is what we needed.

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline). We proceed by induction on the number of edges.
Suppose first that G is edgeless. Then:

πG(x) = x |V (G)|;
TG(x , y) = 1, and so TG(1 − x , 0) = 1;
k(G) = |V (G)|, and so (−1)|V (G)|−k(G) = 1.

But now it is clear that
πG(x) = x |V (G)|

= (−1)|V (G)|−k(G) · x |V (G)| · 1

= (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0)

which is what we needed.

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline, continued). From now on, we assume that G has at
least one edge, say e.

There are three cases: when e is a bridge,
when e is a loop, and when e is neither a bridge nor a loop.
We consider the case when e is a bridge; the other two cases are
similar (details: Lecture Notes).
Then either G − e and G/e have exactly the same blocks, or G − e
can be obtained from G/e by adding an isolated vertex. Since
TK1(x , y) = 1, Lemma 3.2 now guarantees that TG−e = TG/e . We
now compute (next slide):

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline, continued). From now on, we assume that G has at
least one edge, say e. There are three cases: when e is a bridge,
when e is a loop, and when e is neither a bridge nor a loop.

We consider the case when e is a bridge; the other two cases are
similar (details: Lecture Notes).
Then either G − e and G/e have exactly the same blocks, or G − e
can be obtained from G/e by adding an isolated vertex. Since
TK1(x , y) = 1, Lemma 3.2 now guarantees that TG−e = TG/e . We
now compute (next slide):

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline, continued). From now on, we assume that G has at
least one edge, say e. There are three cases: when e is a bridge,
when e is a loop, and when e is neither a bridge nor a loop.
We consider the case when e is a bridge; the other two cases are
similar (details: Lecture Notes).

Then either G − e and G/e have exactly the same blocks, or G − e
can be obtained from G/e by adding an isolated vertex. Since
TK1(x , y) = 1, Lemma 3.2 now guarantees that TG−e = TG/e . We
now compute (next slide):

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline, continued). From now on, we assume that G has at
least one edge, say e. There are three cases: when e is a bridge,
when e is a loop, and when e is neither a bridge nor a loop.
We consider the case when e is a bridge; the other two cases are
similar (details: Lecture Notes).
Then either G − e and G/e have exactly the same blocks, or G − e
can be obtained from G/e by adding an isolated vertex.

Since
TK1(x , y) = 1, Lemma 3.2 now guarantees that TG−e = TG/e . We
now compute (next slide):

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

Proof (outline, continued). From now on, we assume that G has at
least one edge, say e. There are three cases: when e is a bridge,
when e is a loop, and when e is neither a bridge nor a loop.
We consider the case when e is a bridge; the other two cases are
similar (details: Lecture Notes).
Then either G − e and G/e have exactly the same blocks, or G − e
can be obtained from G/e by adding an isolated vertex. Since
TK1(x , y) = 1, Lemma 3.2 now guarantees that TG−e = TG/e . We
now compute (next slide):

Proof (outline, continued). Reminder: e is a bridge; TG−e = TG/e .
WTS πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).
πG(x) = πG−e(x) − πG/e(x)

ind. hyp.= (−1)|V (G−e)|−k(G−e) xk(G−e) TG−e(1 − x , 0)−
−(−1)|V (G/e)|−k(G/e) xk(G/e) TG/e(1 − x , 0)

= (−1)|V (G)|−k(G)−1 xk(G)+1 TG−e(1 − x , 0)−
−(−1)|V (G)|−k(G)−1 xk(G) TG/e(1 − x , 0)

= (−1)|V (G)|−k(G)−1 xk(G)(
xTG−e(1 − x , 0) − TG/e(1 − x , 0)

)
TG−e=TG/e= (−1)|V (G)|−k(G) xk(G) (1 − x)TG/e(1 − x , 0)

Lemma 3.1= (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0)

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

So, if we know the Tutte polynomial of a (multi)graph, then
we can easily compute the chromatic polynomial.
However, computing the Tutte polynomial is hard!

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

So, if we know the Tutte polynomial of a (multi)graph, then
we can easily compute the chromatic polynomial.

However, computing the Tutte polynomial is hard!

Lemma 4.1
Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1 − x , 0).

So, if we know the Tutte polynomial of a (multi)graph, then
we can easily compute the chromatic polynomial.
However, computing the Tutte polynomial is hard!

Proposition 5.1
For all multigraphs G , TG(2, 2) = 2|E(G)|.

Proposition 5.2
For all multigraphs G , TG(2, 1) is the number of acyclic spanning
subgraphs of G .

Proposition 5.3
If G is a connected multigraph, then TG(1, 2) is the number of
connected spanning subgraphs of G .

Proposition 5.4
If G is a connected multigraph, then TG(1, 1) is the number of
spanning trees of G .

rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|;
TG(x , y) :=

∑
A⊆E(G)

(x − 1)rG (A)(y − 1)cG (A).

Proposition 5.1
For all multigraphs G , TG(2, 2) = 2|E(G)|.

Proof.

By the definition of the Tutte polynomial, we have that

TG(2, 2) =
∑

A⊆E(G)
(2 − 1)rG (A)(2 − 1)cG (A) =

∑
A⊆E(G)

1.

So, TG(2, 2) is equal to the number of subsets A of E (G), which is
precisely 2|E(G)|.

rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|;
TG(x , y) :=

∑
A⊆E(G)

(x − 1)rG (A)(y − 1)cG (A).

Proposition 5.1
For all multigraphs G , TG(2, 2) = 2|E(G)|.

Proof. By the definition of the Tutte polynomial, we have that

TG(2, 2) =
∑

A⊆E(G)
(2 − 1)rG (A)(2 − 1)cG (A) =

∑
A⊆E(G)

1.

So, TG(2, 2) is equal to the number of subsets A of E (G), which is
precisely 2|E(G)|.

rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|;
TG(x , y) :=

∑
A⊆E(G)

(x − 1)rG (A)(y − 1)cG (A).

Proposition 5.2
For all multigraphs G , TG(2, 1) is the number of acyclic spanning
subgraphs of G .

Proof.

By the definition of the Tutte polynomial, we have that

TG(2, 1) =
∑

A⊆E(G)
(2 − 1)rG (A)(1 − 1)cG (A) =

∑
A⊆E(G)

0cG (A)

Now, 0cG (A) = 1 if cG(A) = 0, and 0cG (A) = 0 otherwise. So,
TG(2, 1) is equal to the number of subsets A of E (G) s.t.
cG(A) = 0, i.e. kG(A) + |A| − |V (G)| = 0, which is equivalent to
kG(A) = |V (G)| − |A|. But this last equality holds precisely when
the multigraph (V (G), A) is a forest. The result is now immediate.

rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|;
TG(x , y) :=

∑
A⊆E(G)

(x − 1)rG (A)(y − 1)cG (A).

Proposition 5.2
For all multigraphs G , TG(2, 1) is the number of acyclic spanning
subgraphs of G .

Proof. By the definition of the Tutte polynomial, we have that

TG(2, 1) =
∑

A⊆E(G)
(2 − 1)rG (A)(1 − 1)cG (A) =

∑
A⊆E(G)

0cG (A)

Now, 0cG (A) = 1 if cG(A) = 0, and 0cG (A) = 0 otherwise. So,
TG(2, 1) is equal to the number of subsets A of E (G) s.t.
cG(A) = 0, i.e. kG(A) + |A| − |V (G)| = 0, which is equivalent to
kG(A) = |V (G)| − |A|. But this last equality holds precisely when
the multigraph (V (G), A) is a forest. The result is now immediate.

rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|;
TG(x , y) :=

∑
A⊆E(G)

(x − 1)rG (A)(y − 1)cG (A).

Proposition 5.3
If G is a connected multigraph, then TG(1, 2) is the number of
connected spanning subgraphs of G .

Proof.

Let G be a connected multigraph. Then by the definition of
the Tutte polynomial, we have that

TG(1, 2) =
∑

A⊆E(G)
(1 − 1)rG (A)(2 − 1)cG (A) =

∑
A⊆E(G)

0rG (A)

Now, 0rG (A) = 1 if rG(A) = 0, and 0rG (A) = 0 otherwise. So,
TG(1, 2) is equal to the number of subsets A of E (G) s.t.
rG(A) = 0, i.e. kG(A) − k(G) = 0. Since G is connected, we have
that k(G) = 1, and so TG(1, 2) is equal to the number of subsets
A of E (G) s.t. kG(A) = 1, i.e. to the number of connected
spanning subgraphs of G .

rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|;
TG(x , y) :=

∑
A⊆E(G)

(x − 1)rG (A)(y − 1)cG (A).

Proposition 5.3
If G is a connected multigraph, then TG(1, 2) is the number of
connected spanning subgraphs of G .

Proof. Let G be a connected multigraph. Then by the definition of
the Tutte polynomial, we have that

TG(1, 2) =
∑

A⊆E(G)
(1 − 1)rG (A)(2 − 1)cG (A) =

∑
A⊆E(G)

0rG (A)

Now, 0rG (A) = 1 if rG(A) = 0, and 0rG (A) = 0 otherwise. So,
TG(1, 2) is equal to the number of subsets A of E (G) s.t.
rG(A) = 0, i.e. kG(A) − k(G) = 0. Since G is connected, we have
that k(G) = 1, and so TG(1, 2) is equal to the number of subsets
A of E (G) s.t. kG(A) = 1, i.e. to the number of connected
spanning subgraphs of G .

rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|;
TG(x , y) :=

∑
A⊆E(G)

(x − 1)rG (A)(y − 1)cG (A).

Proposition 5.4
If G is a connected multigraph, then TG(1, 1) is the number of
spanning trees of G .

Proof.

Let G be a connected multigraph. Then by the definition of
the Tutte polynomial, we have that

TG(1, 1) =
∑

A⊆E(G)
(1 − 1)rG (A)(1 − 1)cG (A) =

∑
A⊆E(G)

0rG (A)+cG (A)

Now, 0rG (A)+cG (A) = 1 if rG(A) + cG(A) = 0, and 0rG (A)+cG (A) = 0
otherwise. So, TG(1, 1) is the number of subsets A of E (G) s.t.
rG(A) = cG(A) = 0. But rG(A) + cG(A) = 0 iff the multigraph
(V (G), A) is connected and acyclic (as in the proof of
Propositions 5.2 and 5.3). So, rG(A) = cG(A) = 0 iff (V (G), A) is
a tree (equivalently: a spanning tree of G).

rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|;
TG(x , y) :=

∑
A⊆E(G)

(x − 1)rG (A)(y − 1)cG (A).

Proposition 5.4
If G is a connected multigraph, then TG(1, 1) is the number of
spanning trees of G .

Proof. Let G be a connected multigraph. Then by the definition of
the Tutte polynomial, we have that

TG(1, 1) =
∑

A⊆E(G)
(1 − 1)rG (A)(1 − 1)cG (A) =

∑
A⊆E(G)

0rG (A)+cG (A)

Now, 0rG (A)+cG (A) = 1 if rG(A) + cG(A) = 0, and 0rG (A)+cG (A) = 0
otherwise. So, TG(1, 1) is the number of subsets A of E (G) s.t.
rG(A) = cG(A) = 0. But rG(A) + cG(A) = 0 iff the multigraph
(V (G), A) is connected and acyclic (as in the proof of
Propositions 5.2 and 5.3). So, rG(A) = cG(A) = 0 iff (V (G), A) is
a tree (equivalently: a spanning tree of G).

Proposition 5.1
For all multigraphs G , TG(2, 2) = 2|E(G)|.

Proposition 5.2
For all multigraphs G , TG(2, 1) is the number of acyclic spanning
subgraphs of G .

Proposition 5.3
If G is a connected multigraph, then TG(1, 2) is the number of
connected spanning subgraphs of G .

Proposition 5.4
If G is a connected multigraph, then TG(1, 1) is the number of
spanning trees of G .

