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Definition
A graph is perfect if all its induced subgraphs H satisfy
χ(H) = ω(H).

The Perfect Graph Theorem [Lovász, 1972]
A graph is perfect if and only if its complement is perfect.

The Perfect Graph Theorem was originally conjectured by
Berge (1961).
Before it was proven, the Perfect Graph Theorem was known
as the Weak Perfect Graph Conjecture.
We will prove the theorem, but first we need some
terminology and a lemma.
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Duplicating a vertex x of a graph G produces a supergraph
G ◦ x by adding to G a vertex x ′ and making it adjacent to all
the neighbors of x in G , and to no other vertices of G (in
particular, x and x ′ are nonadjacent in G ◦ x).

x x

x′

G G ◦ x



Vertex multiplication of a graph G with vertex set
V (G) = {x1, . . . , xn} by a nonnegative integer vector
h = (h1, . . . , hn) is the graph G ◦ h having hi pairwise
nonadjacent copies of xi , such that copies of xi and xj are
adjacent in G ◦ x if and only if xixj ∈ E (G).
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h = (1, 0, 3, 2, 1) G ◦ h



A clique cover of a graph G is a partition of V (G) into cliques.

The clique cover number of G , denoted by χ(G), is the
smallest size of a clique cover of G .
A minimum clique cover of G is a clique cover of size χ(G).
Clearly, χ(G) = χ(G) and α(G) ≤ χ(G).

Initially, Berge defined two types of perfection, “χ-perfection”
and “α-perfection.”

A graph G is χ-perfect if every induced subgraph H of G
satisfies χ(H) = ω(H).

So, χ-perfection is the same as perfection.

A graph G is α-perfect if every induced subgraph H of G
satisfies χ(H) = α(H).

Obviously, a graph is χ-perfect (i.e. perfect) if and only if its
complement is α-perfect.
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Lemma 1.1 [Berge, 1961]
Vertex multiplication preserves χ-perfection and α-perfection.a

aThis means that for every graph G with vertex set V (G) = {x1, . . . , xn},
and every nonnegative integer vector h = (h1, . . . , hn), we have the following:

if G is χ-perfect, then so is G ◦ h;
if G is α-perfect, then so is G ◦ h.

Proof.



Claim 1. Vertex duplication preserves χ-perfection.
Proof of Claim 1.

Let G be a χ-perfect graph, and assume
inductively that any graph obtained by duplicating one vertex of a
χ-perfect graph on fewer than |V (G)| vertices is χ-perfect. Let
x ∈ V (G); we must show that G ◦ x is χ-perfect. Let x ′ be the
“duplicate” of x in G ◦ x . It suffices to show that
χ(G ◦ x) = ω(G ◦ x), for the rest follows from the induction
hypothesis.
Clearly, we can extend an optimal coloring of G to a proper coloring
of G ◦ x , by giving x ′ the same color as x . So, χ(G ◦ x) = χ(G).
Further, no clique contains both x and x ′, and it readily follows
that ω(G ◦ x) = ω(G).
Since G is χ-perfect, we have that χ(G) = ω(G), and we now see
that χ(G ◦ x) = χ(G) = ω(G) = ω(G ◦ x). This proves Claim 1.
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Claim 2. Vertex duplication preserves α-perfection.
Proof of Claim 2.

Let G be an α-perfect graph, and assume
inductively that any graph obtained by duplicating one vertex of an
α-perfect graph on fewer than |V (G)| vertices is α-perfect. Let
x ∈ V (G); we must show that G ◦ x is α-perfect. Let x ′ be the
“duplicate” of x in G ◦ x . It suffices to show that
χ(G ◦ x) = α(G ◦ x), for the rest follows from the induction
hypothesis.
Suppose first that x belongs to a maximum stable set of G . Then
α(G ◦ x) = α(G) + 1. Since χ(G) = α(G) (because G is
α-perfect), we can obtain a clique cover of size α(G) + 1 by
adding {x ′} as a one-vertex clique to some set of χ(G) many
cliques covering G . This is enough because now we have that
χ(G) + 1 = α(G) + 1 = α(G ◦ x) ≤ χ(G ◦ x) ≤ χ(G) + 1, and so
χ(G ◦ x) = α(G ◦ x).
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Claim 2. Vertex duplication preserves α-perfection.
Proof of Claim 2 (continued). We may now assume that x does not
belong to any maximum stable set of G .

Then α(G ◦ x) = α(G).
Let Q be the clique containing x in a minimum clique cover of G .

x
Q

Since χ(G) = α(G), Q intersects every maximum stable set of G .
Since x belongs to no maximum stable set, Q′ = Q \ {x} also
intersects every maximum stable set, and hence
α(G \ Q′) = α(G) − 1. Since G is α-perfect,
χ(G \ Q′) = α(G \ Q′). To a set of α(G) − 1 many cliques
covering G \ Q′, add the clique Q′ ∪ {x ′} to obtain a set of
α(G) = α(G ◦ x) many cliques covering G ◦ x ; we now have that
χ(G ◦ x) = α(G ◦ x). This proves Claim 2.
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α(G) = α(G ◦ x) many cliques covering G ◦ x ;

we now have that
χ(G ◦ x) = α(G ◦ x). This proves Claim 2.
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V (G) = {x1, . . . , xn}, and let h = (h1, . . . , hn) be a nonnegative
integer vector.

Let A be the set of vertices xi for which hi > 0.
Clearly, if G is χ-perfect (resp. α-perfect), then G [A] is also
χ-perfect (resp. α-perfect).
Now, G ◦ h can be obtained from G [A] by a sequence of vertex
duplications: if every hi is 0 or 1 then G ◦ h = G [A], and
otherwise, G ◦ h can be obtained from G [A] by repeatedly
duplicating vertices until there are hi copies of each xi .
Since vertex duplication preserves χ-perfection and α-perfection
(by Claims 1 and 2), an easy induction now guarantees that if G is
χ-perfect (resp. α-perfect), then G ◦ h is also χ-perfect (resp.
α-perfect). This completes the argument.
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The Perfect Graph Theorem [Lovász, 1972]
A graph is perfect if and only if its complement is perfect.

Proof.

Obviously, it is enough to prove that if a graph is perfect,
then so is its complement. For this, it is in fact enough to prove
that every α-perfect graph is χ-perfect, for then we will have the
following sequence of implications for each graph G :

G is (χ-)perfect =⇒ G is α-perfect =⇒ G is (χ-)perfect,

which is what we need.
Now, fix an α-perfect graph G , and assume inductively that all
α-perfect graphs on fewer than |V (G)| vertices are χ-perfect. We
must show that G is χ-perfect. In view of the induction
hypothesis, it suffices to show that χ(G) = ω(G).
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The Perfect Graph Theorem [Lovász, 1972]
A graph is perfect if and only if its complement is perfect.

Proof (continued).

Reminder: G is α-perfect.
Suppose first that G has a stable set S that intersects every
maximum clique of G . Then by the minimality of G ,
χ(G \ S) = ω(G \ S) = ω(G) − 1. But now χ(G) = ω(G), since
we can properly color G \ S with ω(G) − 1 colors, and then color
all vertices of S with the same new color.
From now on, we assume that every stable set S of G misses (i.e.
has an empty intersection with) some maximum clique Q(S); our
goal is to derive a contradiction. Set V (G) = {x1, . . . , xn}, and let
S = {S1, . . . , St} be the set of all maximal stable sets of G . For
every vertex xj , let hj be the number of stable sets S in S such
that xj ∈ Q(S). Set h := (h1, . . . , hn). By Lemma 1.1, H := G ◦ h
is α-perfect, and so χ(H) = α(H).
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A graph is perfect if and only if its complement is perfect.

Proof (continued). Reminder: G is α-perfect; hj is the number of
Si ’s such that xj ∈ Q(S); H = G ◦ h.

Let A = [ai ,j ]t×n be a 0,1-matrix of the incidence relation between
the set of Q(S)’s for S ∈ S and V (G). So, ai ,j = 1 if and only if
xj ∈ Q(Si).

x1 . . . xj . . . xn

Q(S1)
...

Q(Si)
...

Q(St)

ai,j

By construction, hj is the number of 1’s in column j of A, and
|V (H)| is the total number of 1’s in A.
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Since each row contributes ω(G) ones, we have |V (H)| = ω(G)|S|.
Since vertex duplication cannot enlarge cliques, we have
ω(H) ≤ ω(G). Therefore χ(H) ≥ |V (H)|

ω(H) ≥ |V (H)|
ω(G) = |S|.
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Every stable set of H consists of copies of elements in some stable
set of G ; so, a maximum stable set of H consists of all copies of all
vertices in some maximal stable set of G . Consequently,
α(H) = max

T∈S

∑
j:xj ∈T

hj .

The sum above counts the 1’s in A that appear in the columns
indexed by the vertices of T . If we count these 1’s by rows, we get
α(H) = max

T∈S

∑
S∈S

|T ∩ Q(S)|.
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Since T is a stable set, it has at most one vertex in each chosen
clique Q(S). Also, T ∩ Q(T ) = ∅. So, |T ∩ Q(S)| ≤ 1 for every
S ∈ S, and |T ∩ Q(T )| = 0. It follows that α(H) ≤ |S| − 1.
Therefore α(H) < χ(H), contrary to the fact that H is α-perfect.
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A partial order of a set X is a binary relation on X that is
reflexive, antisymmetric, and transitive.

A partially ordered set (or poset) is an ordered pair (X , ⪯)
such that X is a set and ⪯ is a partial order on X .
A maximal element of (X , ⪯) is x ∈ X such that no
y ∈ X \ {x} satisfies x ⪯ y .
A minimal element of (X , ⪯) is x ∈ X such that no
y ∈ X \ {x} satisfies y ⪯ x .
We say that x , y ∈ X are comparable with respect to ⪯ if
either x ⪯ y or y ⪯ x ; two elements of X are incomparable
with respect to ⪯ if they are not comparable with respect to
⪯.
A chain in (X , ⪯) is a set C ⊆ X such that any two elements
of C are comparable with respect to ⪯.
A chain decomposition of (X , ⪯) is a partition of X into
chains of (X , ⪯).
An antichain in (X , ⪯) is a set A ⊆ X such that no two
elements of A are comparable with respect to ⪯.
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Dilworth’s theorem
In any finite partially ordered set (X , ⪯), the maximum size of an
antichain is equal to the minimum size of a chain decomposition of
(X , ⪯).

Proof.

Let (X , ⪯) be a finite partially ordered set, and assume
inductively that the theorem is true for smaller partially ordered
sets. We may assume that X ̸= ∅, for otherwise, the result is
immediate. First, it is clear that if (X , ⪯) has an antichain of size
k, then no chain decomposition of (X , ⪯) is of size smaller than k
(this is because no chain can contain two elements of an
antichain). It remains to exhibit an antichain of (X , ⪯) and a
chain decomposition of (X , ⪯) of the same size.
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Proof (continued).

Since (X , ⪯) is a nonempty, finite partial order,
we see that (X , ⪯) has a maximal element, say x0. Set
X0 := X \ {x0}, and let A0 be a maximum antichain in (X0, ⪯); set
k := |A0|. By the induction hypothesis, (X0, ⪯) has a chain
decomposition of size k, say {C1, . . . , Ck}.

Claim 1. Any antichain of size k in (X0, ⪯) intersects
each of C1, . . . , Ck in exactly one element.

Proof of Claim 1. Let B be a antichain of size k in (X0, ⪯). Since
B is a antichain and C1, . . . , Ck are chains in (X0, ⪯), we see that
B intersects each of C1, . . . , Ck in at most one element. But since
B ⊆ C1 ∪ · · · ∪ Ck , and since |B| = k, we see that B intersects
each of C1, . . . , Ck in exactly one element. This proves Claim 1.
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Proof (continued).

Now, for all i ∈ {1, . . . , k}, let C ′
i be the set of

all elements of Ci that belong to some antichain of (X0, ⪯) of size
k; then C ′

i ̸= ∅ (because, by Claim 1, Ci ∩ A0 ̸= ∅), and we deduce
that C ′

i has a unique maximal element, call it xi .
Claim 2. {x1, . . . , xk} is an antichain in (X0, ⪯).
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Claim 2. {x1, . . . , xk} is an antichain in (X0, ⪯).
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Suppose first that {x0, x1, . . . , xk} is an
antichain in (X , ⪯). Then this antichain is of size k + 1, and
{C1, . . . , Ck , {x0}} is a chain decomposition of (X , ⪯) of size
k + 1, and we are done.
So, we may assume that {x0, x1, . . . , xk} is not an antichain in
(X , ⪯). By Claim 2, and by symmetry, we may assume that x0 and
x1 are comparable; since x0 is a maximal element of (X , ⪯), we see
that x1 ⪯ x0. Now, set D1 := {x0} ∪ {x ∈ C1 | x ⪯ x1}; since C1 is
a chain, and x1 ⪯ x0, the transitivity of ⪯ guarantees that D1 is a
chain in (X , ⪯).
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Proof (continued). Reminder: D1 := {x0} ∪ {x ∈ C1 | x ⪯ x1} is a
chain.

Further, by Claim 1, and by the choice of x1, we know that
(X \ D1, ⪯) does not have an antichain of size k. Since
{x2, . . . , xk} is an antichain of size k − 1 in (X \ D1, ⪯), we deduce
that the maximum size of an antichain in (X \ D1, ⪯) is k − 1.
Then by the induction hypothesis, (X \ D1, ⪯) has a chain
decomposition of size k − 1, say {E1, . . . , Ek−1}. But now
{D1, E1, . . . , Ek−1} is a chain decomposition of size k in (X , ⪯),
and we are done.
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Definition
A comparability graph (or a transitively orientable graph) is a
graph G such that there exists a partial order ⪯ on V (G) such
that for all distinct x , y ∈ V (G), we have that xy ∈ E (G) if and
only if x and y are comparable with respect to ⪯.

Equivalently, G is a comparability graph if there exists an
orientation G⃗ = (V (G), A(G)) of G such that for all
u⃗v , v⃗w ∈ A(G), we have that u⃗w ∈ A(G).
Note that in a comparability graph, cliques correspond to
chains, and stable sets correspond to antichains.
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Dilworth’s theorem
In any finite partially ordered set (X , ⪯), the maximum size of an
antichain is equal to the minimum size of a chain decomposition of
(X , ⪯).

Corollary 2.1
Every comparability graph is perfect. The complement of any
comparability graph is perfect.

Proof (outline). In view of the Perfect Graph Theorem, it suffices
to show that the complement of any comparability graph is
perfect. But this follows from Dilworth’s theorem by an easy
induction (details: Lecture Notes).



Dilworth’s theorem
In any finite partially ordered set (X , ⪯), the maximum size of an
antichain is equal to the minimum size of a chain decomposition of
(X , ⪯).

Corollary 2.1
Every comparability graph is perfect. The complement of any
comparability graph is perfect.

Proof (outline). In view of the Perfect Graph Theorem, it suffices
to show that the complement of any comparability graph is
perfect. But this follows from Dilworth’s theorem by an easy
induction (details: Lecture Notes).



Lemma 3.1
Every bipartite graph is perfect.

Proof. Obvious.

Lemma 3.2
The complement of any bipartite graph is perfect.

Proof. This follows immediately from Lemma 3.1 and the Perfect
Graph Theorem.
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Definition
Given a graph G , the line graph of G , denoted by L(G), is the
graph with vertex set E (G), in which distinct e, f ∈ E (G) are
adjacent if and only if they share an endpoint in G .

e1

e2 e3

e4

e5

G L(G)

e1

e2 e3

e4

e5



Lemma 3.3
The line graph of any bipartite graph is perfect.

Proof (outline).

This essentially follows from the fact that every
bipartite graph G satisfies χ′(G) = ∆(G). (Details: Lecture
Notes.)

Lemma 3.4
The complement of the line graph of any bipartite graph is perfect.

Proof. This follows immediately from Lemma 3.3 and the Perfect
Graph Theorem.
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Definition
A hole in a graph G is an induced cycle of length at least four. An
antihole in G is an induced subgraph H of G such that H is a hole
in G .

Holes:

C4 C5 C6 C7

Antiholes:

C4
∼= 2K2 C5

∼= C5 C6 C7



Definition
An odd hole (resp. odd antihole) is a hole (resp. antihole) that has
an odd number of vertices.

Definition
A graph is Berge if it contains no odd holes and no odd antiholes.

The Strong Perfect Graph Theorem [Chudnovsky, Robertson,
Seymour, Thomas, 2002]
A graph is perfect if and only if it is Berge.

Clearly, a graph is Berge if and only if its complement is Berge.
So, the Strong Perfect Graph Theorem immediately implies
the Perfect Graph Theorem.
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The Strong Perfect Graph Theorem [Chudnovsky, Robertson,
Seymour, Thomas, 2002]
A graph is perfect if and only if it is Berge.

One direction of the Strong Perfect Graph Theorem (“every
perfect graph is Berge”) is an easy exercise.

Indeed, it is easy to check that for each integer n ≥ 2, we
have that

ω(C2n+1) = 2 and χ(C2n+1) = 3;
ω(C2n+1) = n and χ(C2n+1) = n + 1.

So, odd holes and antiholes are imperfect, and therefore, no
perfect graph contains an odd hole or an odd antihole. Thus,
every perfect graph is Berge.



The Strong Perfect Graph Theorem [Chudnovsky, Robertson,
Seymour, Thomas, 2002]
A graph is perfect if and only if it is Berge.

One direction of the Strong Perfect Graph Theorem (“every
perfect graph is Berge”) is an easy exercise.
Indeed, it is easy to check that for each integer n ≥ 2, we
have that

ω(C2n+1) = 2 and χ(C2n+1) = 3;
ω(C2n+1) = n and χ(C2n+1) = n + 1.

So, odd holes and antiholes are imperfect, and therefore, no
perfect graph contains an odd hole or an odd antihole. Thus,
every perfect graph is Berge.



The Strong Perfect Graph Theorem [Chudnovsky, Robertson,
Seymour, Thomas, 2002]
A graph is perfect if and only if it is Berge.

One direction of the Strong Perfect Graph Theorem (“every
perfect graph is Berge”) is an easy exercise.
Indeed, it is easy to check that for each integer n ≥ 2, we
have that

ω(C2n+1) = 2 and χ(C2n+1) = 3;
ω(C2n+1) = n and χ(C2n+1) = n + 1.

So, odd holes and antiholes are imperfect, and therefore, no
perfect graph contains an odd hole or an odd antihole. Thus,
every perfect graph is Berge.



The Strong Perfect Graph Theorem [Chudnovsky, Robertson,
Seymour, Thomas, 2002]
A graph is perfect if and only if it is Berge.

What about the other direction (“every Berge graph is
perfect”)?

It relies on a “decomposition theorem” for Berge graphs,
which, roughly, states that every Berge graph either is “basic”
or admits a “decomposition.”

The proof of this decomposition theorem is by far the most
complicated part of the proof of the Strong Perfect Graph
Theorem, and it is over 100 pages long.

The “basic” graphs are bipartite graphs and their
complements, line graphs of bipartite graphs, complements of
line graphs of bipartite graphs, and “double split” graphs (we
omit the definition).
All basic graphs are perfect: we proved this for the first four
types of basic graphs, and the proof for double split graphs is
easy.
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There are several “decompositions” (we omit the definitions),
and it can be shown that no imperfect Berge graph of
minimum possible size admits any of these decompositions.

It now follows that all Berge graphs are perfect.
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Algorithmic considerations:

Berge graphs can be recognized in O(n9) time (Chudnovsky,
Cornuéjols, Liu, Seymour and Vušković 2005).

By the Strong Perfect Graph Theorem, it follows that perfect
graphs can be recognized in O(n9) time.

Grötschel, Lovász, and Schrijver (1981) showed that the
following optimization problems can be solved in polynomial
time for perfect graphs: Maximum Clique, Maximum
Stable Set, Graph Coloring (i.e. Vertex
Coloring), and Minimum Clique Cover.

In fact, weighted versions of these problems can also be solved
in polynomial time.
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