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Lecture #8

Perfect graphs

Irena Penev

Remark: Recall that “maximal” means “inclusion-wise maximal,” and
“maximum” means “of maximum possible cardinality.” This applies (for
example) to cliques, stable sets, chains, and antichains.1

1 The Perfect Graph Theorem

Recall that a graph H is an induced subgraph of a graph G if V (H) ⊆ V (G)
and for all distinct u, v ∈ V (H), we have that uv ∈ E(H) if and only if
uv ∈ E(G).

Recall that a graph is perfect if all its induced subgraphs H satisfy
χ(H) = ω(H).

In 1961, Berge conjectured that a graph is perfect if and only if its
complement is perfect (this conjecture is known as the “Weak Perfect Graph
Conjecture”).2 In 1972, Lovász proved the conjecture, which is now known
as the Perfect Graph Theorem.

Duplicating a vertex x of a graph G produces a supergraph G ◦ x by
adding to G a vertex x′ and making it adjacent to all the neighbors of x in
G, and to no other vertices of G (in particular, x and x′ are nonadjacent in
G ◦ x). An example is shown below.

x x

x′

G G ◦ x
1Chains and antichains are defined in the section on Dilworth’s theorem.
2Recall that for a graph G, the complement of G, denoted by G, is the graph whose

vertex set is V (G), and in which any two distinct vertices are adjacent if and only if they
are nonadjacent in G.
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Vertex multiplication of a graph G with vertex set V (G) = {x1, . . . , xn} by
a nonnegative integer vector h = (h1, . . . , hn) is the graph G ◦ h having hi
pairwise nonadjacent copies of xi, such that copies of xi and xj are adjacent
in G ◦ x if and only if xixj ∈ E(G). An example is shown below.

G

x1

x2 x3

x4

x5

h = (1, 0, 3, 2, 1) G ◦ h

Recall that a clique cover of a graph G is a partition of V (G) into cliques.
The clique cover number of G, denoted by χ(G), is the smallest size of a
clique cover of G; a minimum clique cover of G is a clique cover of size
precisely χ(G). Clearly, χ(G) = χ(G) and α(G) ≤ χ(G).

Initially, Berge defined two types of perfection, “χ-perfection” and “α-
perfection.”3

� A graph G is χ-perfect if every induced subgraph H of G satisfies
χ(H) = ω(H).4

� A graph G is α-perfect if every induced subgraph H of G satisfies
χ(H) = α(H).

Obviously, a graph is χ-perfect (i.e. perfect) if and only if its complement is
α-perfect.

Lemma 1.1. [Berge, 1961] Vertex multiplication preserves χ-perfection and
α-perfection.5

Proof.

Claim 1. Vertex duplication preserves χ-perfection.

Proof of Claim 1. Let G be a χ-perfect graph, and assume inductively that
any graph obtained by duplicating one vertex of a χ-perfect graph on fewer
than |V (G)| vertices is χ-perfect. Let x ∈ V (G); we must show that G ◦ x

3By the Perfect Graph Theorem, χ-perfection and α-perfection are equivalent. However,
we have not proven this yet.

4In other words, χ-perfection is, by definition, the same as perfection.
5This means that for every graph G with vertex set V (G) = {x1, . . . , xn}, and every

nonnegative integer vector h = (h1, . . . , hn), we have the following:

� if G is χ-perfect, then so is G ◦ h;
� if G is α-perfect, then so is G ◦ h.
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is χ-perfect. Let x′ be the “duplicate” of x in G ◦ x. It suffices to show
that χ(G ◦ x) = ω(G ◦ x), for the rest follows from the induction hypothesis.
Clearly, we can extend an optimal coloring of G to a proper coloring of
G ◦ x, by giving x′ the same color as x. So, χ(G ◦ x) = χ(G). Further, no
clique contains both x and x′, and it readily follows that ω(G ◦ x) = ω(G).
Since G is χ-perfect, we have that χ(G) = ω(G), and we now see that
χ(G ◦ x) = χ(G) = ω(G) = ω(G ◦ x). This proves Claim 1. ♦

Claim 2. Vertex duplication preserves α-perfection.

Proof of Claim 2. Let G be an α-perfect graph, and assume inductively that
any graph obtained by duplicating one vertex of an α-perfect graph on fewer
than |V (G)| vertices is α-perfect. Let x ∈ V (G); we must show that G ◦ x is
α-perfect. Let x′ be the “duplicate” of x in G ◦ x. It suffices to show that
χ(G ◦ x) = α(G ◦ x), for the rest follows from the induction hypothesis.

Suppose first that x belongs to a maximum stable set of G. Then
α(G ◦ x) = α(G) + 1. Since χ(G) = α(G) (because G is α-perfect), we can
obtain a clique cover of size α(G) + 1 by adding {x′} as a one-vertex clique
to some set of χ(G) cliques covering G. This is enough because now we
have that χ(G) + 1 = α(G) + 1 = α(G ◦ x) ≤ χ(G ◦ x) ≤ χ(G) + 1, and so
χ(G ◦ x) = α(G ◦ x).

We may now assume that x does not belong to any maximum stable set
of G. Then α(G◦x) = α(G). Let Q be the clique containing x in a minimum
clique cover of G. Since χ(G) = α(G), Q intersects every maximum stable
set of G.6 Since x belongs to no maximum stable set, Q′ = Q \ {x} also
intersects every maximum stable set, and hence α(G \Q′) = α(G)− 1. Since
G is α-perfect, χ(G \ Q′) = α(G \ Q′). To a set of α(G) − 1 many cliques
covering G \Q′, add the clique Q′ ∪ {x′} to obtain a set of α(G) = α(G ◦ x)
many cliques covering G ◦ x; we now have that χ(G ◦ x) = α(G ◦ x). This
proves Claim 2. ♦

Let G be a graph with vertex set V (G) = {x1, . . . , xn}, and let h =
(h1, . . . , hn) be a nonnegative integer vector. Let A be the set of vertices xi
for which hi > 0. Clearly, if G is χ-perfect (resp. α-perfect), then G[A] is
also χ-perfect (resp. α-perfect). Now, G ◦ h can be obtained from G[A] by
a sequence of vertex duplications: if every hi is 0 or 1 then G ◦ h = G[A],
and otherwise, G ◦ h can be obtained from G[A] by repeatedly duplicating
vertices until there are hi copies of each xi. Since vertex duplication preserves
χ-perfection and α-perfection (by Claims 1 and 2), an easy induction now

6Let us check this. Let S be a maximum stable of G, i.e. a stable set of G such
that |S| = α(G). Let {Q1, . . . , Qt} be any optimal clique cover of G, i.e. t = χ(G).
Since a clique and a stable set can have at most one vertex in common, we see that S
intersects each of Q1, . . . , Qt in at most one vertex. But since S ⊆ Q1 ∪ · · · ∪ Qt, and
since |S| = α(G) = χ(G) = t, it follows that S intersects each of Q1, . . . , Qt in exactly one
vertex. Since Q belongs to some optimal clique-cover of G, we deduce that |Q ∩ S| = 1.
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guarantees that if G is χ-perfect (resp. α-perfect), then G◦h is also χ-perfect
(resp. α-perfect). This completes the argument.

The Perfect Graph Theorem (Lovász, 1972). A graph is perfect if and
only if its complement is perfect.

Proof. Obviously, it is enough to prove that if a graph is perfect, then so is its
complement. For this, it is in fact enough to prove that every α-perfect graph
is χ-perfect, for then we will have the following sequence of implications for
each graph G:

G is (χ-)perfect =⇒ G is α-perfect =⇒ G is (χ-)perfect,

which is what we need.7

Now, fix an α-perfect graph G, and assume inductively that all α-perfect
graphs on fewer than |V (G)| vertices are χ-perfect. We must show that G
is χ-perfect. In view of the induction hypothesis, it suffices to show that
χ(G) = ω(G).8

Suppose first that G has a stable set S that intersects every maximum
clique of G. Then by the minimality of G, χ(G \ S) = ω(G \ S) = ω(G)− 1.
But now χ(G) = ω(G), since we can properly color G \ S with ω(G) − 1
colors, and then color all vertices of S with the same new color.

From now on, we assume that every stable set S of G misses (i.e. has an
empty intersection with) some maximum clique Q(S); our goal is to derive a
contradiction. Set V (G) = {x1, . . . , xn}, and let S = {S1, . . . , St} be the set
of all maximal stable sets of G. For every vertex xj , let hj be the number of
stable sets S in S such that xj ∈ Q(S). Set h := (h1, . . . , hn). By Lemma 1.1,
H := G ◦ h is α-perfect, and so χ(H) = α(H).

Let A = [ai,j ]t×n be a 0,1-matrix of the incidence relation between the
set of Q(S)’s for S ∈ S and V (G). So, ai,j = 1 if and only if xj ∈ Q(Si).

x1 . . . xj . . . xn

Q(S1)
...

Q(Si)
...

Q(St)

ai,j

By construction, hj is the number of 1’s in column j of A, and |V (H)| is the
total number of 1’s in A.

7The first of the implications above (“G is χ-perfect =⇒ G is α-perfect”) follows
straight from the definition of χ-perfection and α-perfection.

8Indeed, suppose that H is a proper induced subgraph of G. Then H is an α-perfect
graph on fewer than |V (G)| vertices, and consequently, H is χ-perfect. So, χ(H) = ω(H).
Thus, to show that G is χ-perfect, it suffices to show that χ(G) = ω(G).
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Since each row contributes ω(G) many 1’s, we have |V (H)| = ω(G)|S|.
Since vertex duplication cannot enlarge cliques, we have ω(H) ≤ ω(G).

Therefore χ(H) ≥ |V (H)|
ω(H) ≥ |V (H)|

ω(G) = |S|.
Every stable set of H consists of copies of elements in some stable set

of G; so, a maximum stable set of H consists of all copies of all vertices in
some maximal stable set of G. Consequently,

α(H) = max
T∈S

∑
j:xj∈T

hj .

The sum above counts the 1’s in A that appear in the columns indexed by
the vertices of T . If we count these 1’s by rows, we get

α(H) = max
T∈S

∑
S∈S

|T ∩Q(S)|.

Since T is a stable set, it has at most one vertex in each chosen clique Q(S).
Also, T ∩Q(T ) = ∅. So, |T ∩Q(S)| ≤ 1 for every S ∈ S, and |T ∩Q(T )| = 0.
It follows that α(H) ≤ |S|− 1. Therefore α(H) < χ(H), contrary to the fact
that H is α-perfect.

2 Dilworth’s theorem and comparability graphs

Recall that a partial order of a set X is a binary relation on X that is
reflexive, antisymmetric, and transitive.9 A partially ordered set (or poset)
is an ordered pair (X,⪯) such that X is a set and ⪯ is a partial order on
X. A maximal element of (X,⪯) is x ∈ X such that no y ∈ X \ {x} satisfies
x ⪯ y.10 Similarly, a minimal element of (X,⪯) is x ∈ X such that no
y ∈ X \ {x} satisfies y ⪯ x.11 We say that x, y ∈ X are comparable with
respect to ⪯ if either x ⪯ y or y ⪯ x; two elements of X are incomparable
with respect to ⪯ if they are not comparable with respect to ⪯. A chain
in (X,⪯) is a set C ⊆ X such that any two elements of C are comparable
with respect to ⪯. A chain decomposition of (X,⪯) is a partition of X into
chains of (X,⪯). An antichain in (X,⪯) is a set A ⊆ X such that no two
elements of A are comparable with respect to ⪯.

9A binary relation ⪯ on a set X is

� reflexive if for all x ∈ X, we have x ⪯ x;

� antisymmetric if for all x, y ∈ X, if x ⪯ y and y ⪯ x, then x = y;

� transitive if for all x, y, z ∈ X, if x ⪯ y and y ⪯ z, then x ⪯ z.

10A partially ordered set may or may not contain a maximal element. Furthermore, if a
partially ordered set does contain a maximal element, then this maximal element may or
may not be unique.

11A partially ordered set may or may not contain a minimal element. Furthermore, if a
partially ordered set does contain a minimal element, then this minimal element may or
may not be unique.
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Dilworth’s theorem. In any finite partially ordered set (X,⪯),12 the
maximum size of an antichain is equal to the minimum size of a chain
decomposition of (X,⪯).13

Proof. Let (X,⪯) be a finite partially ordered set, and assume inductively
that the theorem is true for smaller partially ordered sets.14 We may assume
that X ̸= ∅, for otherwise, the result is immediate. First, it is clear that if
(X,⪯) has an antichain of size k, then no chain decomposition of (X,⪯) is
of size smaller than k (this is because no chain can contain two elements of
an antichain).15 It remains to exhibit an antichain of (X,⪯) and a chain
decomposition of (X,⪯) of the same size.16

Since (X,⪯) is a nonempty, finite partial order, we see that (X,⪯) has a
maximal element, say x0. Set X0 := X \ {x0}, and let A0 be a maximum
antichain in (X0,⪯);17 set k := |A0|. By the induction hypothesis, (X0,⪯)
has a chain decomposition of size k, say {C1, . . . , Ck}.

Claim 1. Any antichain of size k in (X0,⪯) intersects each of
C1, . . . , Ck in exactly one element.

Proof of Claim 1. Let B be an antichain of size k in (X0,⪯). Since B is an
antichain and C1, . . . , Ck are chains in (X0,⪯), we see that B intersects each
of C1, . . . , Ck in at most one element. But since B ⊆ C1 ∪ · · · ∪Ck, and since
|B| = k, we see that B intersects each of C1, . . . , Ck in exactly one element.
This proves Claim 1. ♦

Now, for all i ∈ {1, . . . , k}, let C ′
i be the set of all elements of Ci that

belong to some antichain of (X0,⪯) of size k; then C ′
i ̸= ∅ (because, by

Claim 1, Ci∩A0 ̸= ∅), and we deduce that C ′
i has a unique maximal element,

call it xi.
18

Claim 2. {x1, . . . , xk} is an antichain in (X0,⪯).19

Proof of Claim 2. We may assume that k ≥ 2, for otherwise, this is immediate.
By symmetry, it suffices to show that x1 and x2 are incomparable. Let A1

12Here, “finite” simply means that X is finite.
13The size of a chain decomposition is the number of chains in it.
14So, we are assuming that for all finite partially ordered sets (X ′,⪯′) such that |X ′| <

|X|, the maximum size of an antichain is equal to the minimum size of a chain decomposition
of (X ′,⪯′).

15Thus, the maximum size of an antichain in (X,⪯) is no greater than the minimum
size of a chain decomposition of (X,⪯).

16This will imply that the maximum size of an antichain in (X,⪯) is no smaller than
the minimum size of a chain decomposition of (X,⪯).

17That is: A0 is an antichain in (X0,⪯) of largest possible cardinality.
18Since C′

i ⊆ Ci, and Ci is a chain, we know that C′
i is a chain. Furthermore, since X0

is finite, C′
i is finite, and we already saw that C′

i is nonempty. So, C′
i is a nonempty, finite

chain in (X0,⪯), and it follows that it has a unique maximal element.
19Obviously, this means that {x1, . . . , xk} is an antichain in (X,⪯) as well.
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be an antichain of size k in (X0,⪯) such that x1 ∈ A1 ∩ C1.
20 By Claim 1,

|A1 ∩ C2| = 1; set A1 ∩ C2 = {x′2}. Then x′2 ∈ C ′
2, and so (since x2 is a

maximal element of the chain C ′
2) we have that x′2 ⪯ x2.

21 Now, if x2 ⪯ x1,
then by the transitivity of ⪯, we have that x′2 ⪯ x1, which is impossible
since x1 and x′2 are distinct elements of the antichain A1.

22 So, x2 ̸⪯ x1.
An analogous argument establishes that x1 ̸⪯ x2. Thus, x1 and x2 are
incomparable. This proves Claim 2. ♦

Suppose first that {x0, x1, . . . , xk} is an antichain in (X,⪯). Then this
antichain is of size k + 1, and {C1, . . . , Ck, {x0}} is a chain decomposition of
(X,⪯) of size k+1, and we are done. So, we may assume that {x0, x1, . . . , xk}
is not an antichain in (X,⪯). By Claim 2, and by symmetry, we may assume
that x0 and x1 are comparable; since x0 is a maximal element of (X,⪯), we
see that x1 ⪯ x0. Now, set D1 := {x0} ∪ {x ∈ C1 | x ⪯ x1}; since C1 is
a chain, and x1 ⪯ x0, the transitivity of ⪯ guarantees that D1 is a chain
in (X,⪯). Further, by Claim 1, and by the choice of x1, we know that
(X \D1,⪯) does not have an antichain of size k. Since {x2, . . . , xk} is an
antichain of size k − 1 in (X \ D1,⪯), we deduce that the maximum size
of an antichain in (X \D1,⪯) is k − 1. Then by the induction hypothesis,
(X \D1,⪯) has a chain decomposition of size k− 1, say {E1, . . . , Ek−1}. But
now {D1, E1, . . . , Ek−1} is a chain decomposition of size k in (X,⪯), and we
are done.

A comparability graph (or a transitively orientable graph) is a graph G
such that there exists a partial order ⪯ on V (G) such that for all distinct
x, y ∈ V (G), we have that xy ∈ E(G) if and only if x and y are comparable
with respect to ⪯.23 Equivalently,24 G is a comparability graph if there exists
an orientation G⃗ = (V (G), A(G)) of G such that for all u⃗v, v⃗w ∈ A(G), we
have that u⃗w ∈ A(G).

Corollary 2.1. Every comparability graph is perfect. The complement of
any comparability graph is perfect.

Proof. In view of the Perfect Graph Theorem, it suffices to show that the
complement of any comparability graph is perfect. So, fix a comparability
graph G, and assume inductively that for all comparability graphs G′ on
fewer than |V (G)| vertices, the graph G′ is perfect. We must show that G is
perfect. Clearly, it suffices to show that χ(G) = ω(G), for the rest follows

20Such an A1 exists because x1 ∈ C′
1.

21Since C′
2 is a chain, we know that x′

2, x2 are comparable. Since x2 is maximal in C2,
we have that x′

2 ⪯ x2.
22The fact that x1 ̸= x′

2 follows from the fact that x1 ∈ C1, x
′
2 ∈ C2, and C1 ∩ C2 = ∅.

23Note that in a comparability graph, cliques correspond to chains, and stable sets
correspond to antichains.

24Check that this is really equivalent!
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from the induction hypothesis.25

Let ⪯ be a partial order on V (G) such that for all distinct x, y ∈ V (G),
we have that xy ∈ E(G) if and only if x and y are comparable with respect
to ⪯. Let A be a maximum antichain in (V (G),⪯), and let (C1, . . . , Ck) be a
chain decomposition of minimum size in (V (G),⪯). By Dilworth’s theorem,
we have that |A| = k. Now, note that A is a stable set in G, and therefore a
clique in G; so, ω(G) ≥ |A| = k. On the other hand, C1, . . . , Ck are cliques
in G, and therefore stable sets in G; thus, {C1, . . . , Ck} is a partition of V (G)
into stable sets, and it follows that χ(G) ≤ k. So, χ(G) ≤ k ≤ ω(G). But
obviously, χ(G) ≥ ω(G), and we deduce that χ(G) = ω(G). This completes
the argument.

3 Some further examples of perfect graphs

Lemma 3.1. Every bipartite graph is perfect.

Proof. Since all induced subgraphs of a bipartite graph are bipartite, it
suffices to show that every bipartite graph G satisfies χ(G) = ω(G). But this
is obvious: if G is an edgeless bipartite graph, then χ(G) = ω(G) = 1, and if
G is a bipartite graph that has at least one edge, then χ(G) = ω(G) = 2.

Lemma 3.2. The complement of any bipartite graph is perfect.

Proof. This follows immediately from Lemma 3.1 and the Perfect Graph
Theorem.

Given a graph G, the line graph of G, denoted by L(G), is the graph
with vertex set E(G), in which distinct e, f ∈ E(G) are adjacent if and only
if they share an endpoint in G. An example is shown below.

e1

e2 e3

e4

e5

G L(G)

e1

e2 e3

e4

e5

Lemma 3.3. The line graph of any bipartite graph is perfect.

Proof. Let G be a bipartite graph, and let H = L(G). We must show that
H is perfect. Consider any induced subgraph H ′ = H[M ] of H. So, we have
that M ⊆ V (H), and therefore, M ⊆ E(G). Let G′ be a subgraph of G with
vertex set V (G) and edge set M . Since H ′ is an induced subgraph of H, it
follows that H ′ = L(G′), and consequently, χ(H ′) = χ′(G′). On the other

25Indeed, suppose that H is a proper induced subgraph of G. Then H is a comparability

graph, and so by the induction hypothesis, H = H is perfect. Thus, χ(H) = ω(H). It only
remains to show that χ(G) = ω(G).
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hand, since G′ is bipartite, Theorem 3.4 from Lecture Notes 6 guarantees
that χ′(G′) = ∆(G′). Clearly, ∆(G′) ≤ ω(H ′), and so it follows that

χ(H ′) = χ′(G′) = ∆(G′) ≤ ω(H ′).

Since we also know that χ(H ′) ≥ ω(H ′), we deduce that χ(H ′) = ω(H ′). It
follows that H is perfect.

Lemma 3.4. The complement of the line graph of any bipartite graph is
perfect.

Proof. This follows immediately from Lemma 3.4 and the Perfect Graph
Theorem.

4 The Strong Perfect Graph Theorem

A hole in a graph G is an induced cycle of length at least four.26 An antihole
in G is an induced subgraph H of G such that H is a hole in G. An odd
hole (resp. odd antihole) is a hole (resp. antihole) that has an odd number of
vertices. Even holes and even antiholes are defined analogously. A graph is
Berge if it contains no odd holes and no odd antiholes.

The Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour,
Thomas, 2002). A graph is perfect if and only if it is Berge.

Clearly, a graph is Berge if and only if its complement is Berge. So,
the Strong Perfect Graph Theorem immediately implies the Perfect Graph
Theorem.

One direction of the Strong Perfect Graph Theorem (“every perfect graph
is Berge”) is an easy exercise. Indeed, it is easy to check that for each integer
n ≥ 2, we have that

� ω(C2n+1) = 2 and χ(C2n+1) = 3;

� ω(C2n+1) = n and χ(C2n+1) = n+ 1.

So, odd holes and antiholes are imperfect, and therefore, no perfect graph
contains an odd hole or an odd antihole. Thus, every perfect graph is Berge.

What about the other direction (“every Berge graph is perfect”)? It
relies on a “decomposition theorem” for Berge graphs, which, roughly, states
that every Berge graph either is “basic” or admits a “decomposition.” (The
proof of this decomposition theorem is by far the most complicated part of
the proof of the Strong Perfect Graph Theorem, and it is over 100 pages
long.) The “basic” graphs are bipartite graphs and their complements, line

26Note that this means that chordal graphs are precisely the graphs that contain no
holes.
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graphs of bipartite graphs, complements of line graphs of bipartite graphs,
and “double split” graphs (we omit the definition). All basic graphs are
perfect: we proved this for the first four types of basic graphs, and the
proof for double split graphs is easy. There are several “decompositions” (we
omit the definitions), and it can be shown that no imperfect Berge graph of
minimum possible size admits any of these decompositions. It now follows
that all Berge graphs are perfect.

5 Algorithmic considerations

Berge graphs can be recognized in O(n9) time (Chudnovsky, Cornuéjols, Liu,
Seymour and Vušković 2005). By the Strong Perfect Graph Theorem, it
follows that perfect graphs can be recognized in O(n9) time.

Further, Grötschel, Lovász, and Schrijver (1981) showed that the fol-
lowing optimization problems can be solved in polynomial time for perfect
graphs: Maximum Clique, Maximum Stable Set, Graph Coloring
(i.e. Vertex Coloring), and Minimum Clique Cover. In fact, weighted
versions of these problems can also be solved in polynomial time.
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