NDMI012: Combinatorics and Graph Theory 2

Lecture #6

Vertex and edge coloring: Brooks’ theorem and
Vizing's theorem

Irena Penev

March 22, 2022



@ A greedy coloring of a graph G with vertex ordering

V(G) ={wv1,...,vn} is a coloring of G obtained as follows:
for each i € {1,...,n}, we assign to v; the smallest positive
integer that was not used on any smaller-indexed neighbor of
Vi.

@ For example, the greedy coloring applied to the graph below,
with the ordering v1, v2, v3, v4, yields the coloring c(v;) =1,
C(Vz) = 1r C(V3) = 2, and C(V4) = 3.
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@ A greedy coloring of a graph G with vertex ordering

V(G) ={wv1,..., vy} is a coloring of G obtained as follows:
for each i € {1,...,n}, we assign to v; the smallest positive
integer that was not used on any smaller-indexed neighbor of
Vi.

e For example, the greedy coloring applied to the graph below,
with the ordering v1, v2, v3, v4, yields the coloring c(v;) =1,
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@ The greedy coloring of a graph G always produces a proper
coloring of G, but the coloring need not be optimal, i.e. it
may use more than x(G) colors.



Every graph G satisfies x(G) < A(G) + 1.

Proof. A greedy coloring of a graph G (using any ordering of
V(G)) produces a proper coloring of G that uses at most
A(G) + 1 colors; so, x(G) < A(G) + 1.
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Every graph G satisfies x(G) < A(G) + 1.

Proof. A greedy coloring of a graph G (using any ordering of
V(G)) produces a proper coloring of G that uses at most
A(G) + 1 colors; so, x(G) < A(G) + 1.

e If G is a complete graph or an odd cycle, then it is easy to see
that x(G) = A(G) + 1.

@ However, if G is a connected graph other than a complete
graph or odd cycle, then x(G) < A(G).

Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

o First, we prove a technical lemma.
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Proof (outline).



If G is connected and not regular, then x(G) < A(G).

Proof (outline). Let G be a connected graph that is not regular,
and fix a vertex v € V(G) such that dg(v) < A(G) — 1. We order
V(G) according to the distance from v, that is, we list v first, then
we list all vertices at distance one from v (in any order), then we
list all vertices at distance two from v (in any order), etc. Let
Vi,...,Vp be the resulting ordering of G.

dg(v) < A(G) =1
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If G is connected and not regular, then x(G) < A(G).

Proof (outline). Let G be a connected graph that is not regular,
and fix a vertex v € V(G) such that dg(v) < A(G) — 1. We order
V(G) according to the distance from v, that is, we list v first, then
we list all vertices at distance one from v (in any order), then we
list all vertices at distance two from v (in any order), etc. Let
Vi,...,Vp be the resulting ordering of G.

dg(v) < A(G) =1

v

We now color G greedily using the ordering v, ..., v1, and we
obtain a proper coloring of G that uses at most A(G) colors.
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Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). To simplify notation, we set A := A(G). WTS
x(G) < A.

Since G is connected and not complete, we see that A > 2. Next,
suppose that A = 2. Since G is connected, it follows that G is
either a path on at least two edges or a cycle. But by hypothesis,
G is not an odd cycle, and so G is either a path on at least two
edges or an even cycle. It is now obvious that x(G) < A.



Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). To simplify notation, we set A := A(G). WTS
x(G) < A.

Since G is connected and not complete, we see that A > 2. Next,
suppose that A = 2. Since G is connected, it follows that G is
either a path on at least two edges or a cycle. But by hypothesis,
G is not an odd cycle, and so G is either a path on at least two
edges or an even cycle. It is now obvious that x(G) < A.

From now on, we assume that A > 3. Note that this implies that
|V(G)| > 4. We may further assume that G is regular, for
otherwise, we are done by Lemma 1.2.
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Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). Reminder: G is A-regular, A > 3.
Claim 1. If G has a clique-cutset, then x(G) < A.

Proof of Claim 1 (outline). Suppose that G has a clique-cutset,
and let C be a minimal clique-cutset of G. Let A1,..., A: (t >2)
be the vertex sets of the components of G\ C. For all

i € {1,...,t}, let G; := G[A,UC]

A
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Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). Reminder: G is A-regular, A > 3.
Claim 1. If G has a clique-cutset, then x(G) < A.

Proof of Claim 1 (outline, continued).

Ay
C
A
xX(G) = max{x(Gi1),...,x(G:)} by Lemma 2.1 from
Lecture Notes 4
< A(G) by Lemma 1.2

This proves Claim 1.
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Proof (outline). Reminder: G is A-regular, A > 3.
Claim 2. If G is not 3-connected, then x(G) < A.

Proof of Claim 2 (outline).
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s1 has a neighbor in both A and B, and it has at least two
neighbors in at least one of them. (Same for s,.)



Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). Reminder: G is A-regular, A > 3.
Claim 2. If G is not 3-connected, then x(G) < A.

Proof of Claim 2 (outline). Assume that G is not 3-connected.
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s1 has a neighbor in both A and B, and it has at least two
neighbors in at least one of them. (Same for s,.) WMA either
@ s; has at least two neighbors in A, and s, has at least two
neighbors in B, or
@ s1, s> each have exactly one neighbor in A, and at least two
neighbors in B.



Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). Reminder: G is A-regular, A > 3.
Claim 2. If G is not 3-connected, then x(G) < A.

Proof of Claim 2 (outline, continued). Suppose s; has at least two
neighbors in A, and s, has at least two neighbors in B.




Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). Reminder: G is A-regular, A > 3.
Claim 2. If G is not 3-connected, then x(G) < A.

Proof of Claim 2 (outline, continued). Suppose s; has at least two
neighbors in A, and s, has at least two neighbors in B.

Then X(6) < x(G + s152) = max{x(Ga), x(Gg)} < A(G).



Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). Reminder: G is A-regular, A > 3.
Claim 2. If G is not 3-connected, then x(G) < A.

Proof of Claim 2 (outline, continued). The other case (i.e. when
s1, > each have exactly one neighbor in A, and at least two
neighbors in B) can be reduced to the previous case. (Details:
Lecture Notes.)
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Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). Reminder: G is A-regular, A > 3.
In view of Claim 2, we may now assume that G is 3-connected.



Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). Reminder: G is A-regular, A > 3.

In view of Claim 2, we may now assume that G is 3-connected.
Since G is connected and not complete, G has two vertices, call
them v and v, at distance two from each other; let w be a
common neighbor of u and v.

Since G is 3-connected, G’ := G \ {u, v} is connected. We now
order V/(G’) according to the distance from w (starting with w),
and we add u, v at the end of our list. This produces an ordering
Vi, ..., vy of V(G) (with vi = w, v,—1 = u, and v, = v).



Brooks' theorem

Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then x(G) < A(G).

Proof (outline). Reminder: G is A-regular, A >3, G is
3-connected.

We now color G greedily using the ordering v,,...,v;. This
produces a proper coloring of G that uses at most A colors.



Definition

An Euler circuit (or Eulerian circuit) is a walk in the graph that
passes through every edge exactly once and comes back to the
origin vertex. A graph is Eulerian if it has an Eulerian circuit.




An Euler circuit (or Eulerian circuit) is a walk in the graph that
passes through every edge exactly once and comes back to the

origin vertex. A graph is Eulerian if it has an Eulerian circuit.

A connected graph is Eulerian if and only if all its vertices are of
even degree.

\

Proof. Discrete Math.



Definition

A k-edge-coloring of a graph G is a mapping ¢ : E(G) — C, with
|C| = k. Elements of C are called colors. An edge-coloring is
proper if for any two distinct edges e and f that share an endpoint,
we have that c(e) # c(f).

<>
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A graph G is k-edge-colorable if it has a proper k-edge-coloring.
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Definition

A k-edge-coloring of a graph G is a mapping ¢ : E(G) — C, with
|C| = k. Elements of C are called colors. An edge-coloring is
proper if for any two distinct edges e and f that share an endpoint,
we have that c(e) # c(f).
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Definition
A graph G is k-edge-colorable if it has a proper k-edge-coloring.

Definition

The edge chromatic number (or chromatic index) of a graph G,
denoted by x/(G), is the minimum k such that G is
k-edge-colorable.
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@ Clearly, in any proper edge-coloring of a graph G, all edges
incident with the same vertex must receive a different color.

o Consequently, X'(G) > A(G).
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@ Clearly, in any proper edge-coloring of a graph G, all edges

incident with the same vertex must receive a different color.
o Consequently, X'(G) > A(G).

e Note that any k-edge-coloring (not necessarily proper) can be
represented by a partition C = (Eq, ..., Ex) of E(G), where E;
denotes the subset of E(G) assigned color i.

o Sets Eq, ..., Ex are called color classes.
o A proper k-edge-coloring is one where each E; is a matching.
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@ Clearly, in any proper edge-coloring of a graph G, all edges

incident with the same vertex must receive a different color.
o Consequently, X'(G) > A(G).

e Note that any k-edge-coloring (not necessarily proper) can be
represented by a partition C = (Eq, ..., Ex) of E(G), where E;
denotes the subset of E(G) assigned color i.
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Every graph G satisfied x'(G)v(G) > |E(G)|. Consequently, if G

has at least one edge, then x/(G) > [ 2(C)

Proof. Let G be a graph, and let k = x/(G). Let (Ey,...,Ex) be a
proper edge-coloring of G.



Every graph G satisfied x'(G)v(G) > |E(G)|. Consequently, if G

has at least one edge, then x/(G) > [ 2(C)

Proof. Let G be a graph, and let k = x/(G). Let (Ey,...,Ex) be a
proper edge-coloring of G. Then

|E(G)|] = K IE because (E, ..., Ex) is a
partition of E(G)

IN

Sk v(G) because E, ..., Ex are
matchings of G

This proves that x'(G)v(G) > |E(G)|.



Every graph G satisfied x'(G)v(G) > |E(G)|. Consequently, if G
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Proof (continued). Reminder: x'(G)v(G) > |E(G)|



Every graph G satisfied x'(G)v(G) > |E(G)|. Consequently, if G

has at least one edge, then x/(G) > [ 2(C) W

Proof (continued). Reminder: x'(G)v(G) > |E(G)|
If G has at least one edge, then clearly, »(G) > 1, and we deduce

that \/(G) > ()], since X'(G) is an integer, it follows that
v(G)

¥ie) = 5]




@ Our goal is to prove the following two theorems.

Theorem 3.4
If G is a bipartite graph, then \'(G) = A(G).

Vizing's theorem

Every graph G satisfies x'(G) < A(G) + 1.




@ Our goal is to prove the following two theorems.

Theorem 3.4
If G is a bipartite graph, then \'(G) = A(G).

Vizing's theorem

Every graph G satisfies x'(G) < A(G) + 1.

@ First, we need some definitions and technical lemmas.



@ Given a (not necessarily proper) edge-coloring of a graph G,
we say that color i is represented at a vertex v of G if some
edge incident with v has color i.
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Let G be a connected graph that is not an odd cycle. Then G has
a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.



Let G be a connected graph that is not an odd cycle. Then G has
a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.

Proof (outline).



Let G be a connected graph that is not an odd cycle. Then G has
a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.

Proof (outline). We may assume that A(G) > 2, for otherwise
there is nothing to show. By hypothesis, G is connected and not an
odd cycle; consequently, if G is 2-regular, then G is an even cycle.
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Euler circuit of G, with vy chosen so that dg(wv) > 4 if possible,
and chosen arbitrarily otherwise.



Let G be a connected graph that is not an odd cycle. Then G has
a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.

Proof (outline). We may assume that A(G) > 2, for otherwise
there is nothing to show. By hypothesis, G is connected and not an
odd cycle; consequently, if G is 2-regular, then G is an even cycle.

Suppose first that G is Eulerian. Let vy, e1, vi, e, o, ..., vy be an
Euler circuit of G, with vy chosen so that dg(wv) > 4 if possible,
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Let G be a connected graph that is not an odd cycle. Then G has
a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.

Proof (outline). We may assume that A(G) > 2, for otherwise
there is nothing to show. By hypothesis, G is connected and not an
odd cycle; consequently, if G is 2-regular, then G is an even cycle.

Suppose first that G is Eulerian. Let vy, e1, vi, e, o, ..., vy be an
Euler circuit of G, with vy chosen so that dg(wv) > 4 if possible,
and chosen arbitrarily otherwise. Let E; be the set of odd indexed
edges, and let E; the set of even indexed edges. Then (£, E)
satisfies the lemma.
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represented at each vertex of degree at least 2.

Proof (outline, continued).
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Eulerian.
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Eulerian. Construct G* by adding a new vertex v* and joining it to
each vertex of odd degree in G.

Then by G* is Eulerian.
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Proof (outline, continued). So we may assume that G is not
Eulerian. Construct G* by adding a new vertex v* and joining it to
each vertex of odd degree in G.

Then by G* is Eulerian. Now, let vy, €1, vi, €, Vo, ..., Vo, with
vg = v*, be an Euler circuit of G*. Let E; be the set of odd
indexed edges, and let E, the set of even indexed edges.



Let G be a connected graph that is not an odd cycle. Then G has
a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.

Proof (outline, continued). So we may assume that G is not
Eulerian. Construct G* by adding a new vertex v* and joining it to
each vertex of odd degree in G.

Then by G* is Eulerian. Now, let vy, €1, vi, €, Vo, ..., Vo, with

vg = v*, be an Euler circuit of G*. Let E; be the set of odd
indexed edges, and let E, the set of even indexed edges. Then the
edge-coloring (El NE(G),EanN E(G)) of G has the desired
property.
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colors represented at v.
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@ Given a (not necessarily proper) k-edge-coloring C and a
vertex v of G, we denote by c¢(v) the number of distinct
colors represented at v.

e Note that c¢(v) < dg(v) for all v € V(G).

@ Furthermore, C is a proper k-edge-coloring if and only if
ce(v) = dg(v) for every vertex v € V(G).

@ A k-edge-coloring C’ of G is an improvement of C if

> c(v) > X celv)
veV(G) veV(G)

@ An unimprovable k-edge-coloring is one that cannot be
improved.

@ Note that any proper edge-coloring of a graph G is
unimprovable. However, the converse does not hold in general.



Let C = (Ey, ..., Ex) be an unimprovable k-edge-coloring of a
graph G. If there is a vertex u of G and colors i and j such that i
is not represented at u and j is represented at least twice at u,
then the component of G[E; U E;] that contains u is an odd cycle.

Proof (outline).
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represented at every vertex of degree at least 2 in H.
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Let C = (Ey, ..., Ex) be an unimprovable k-edge-coloring of a
graph G. If there is a vertex u of G and colors i and j such that i
is not represented at u and j is represented at least twice at u,
then the component of G[E; U E;] that contains u is an odd cycle.

Proof (outline). Let H be the component of G[E; U Ej] that
contains u. Suppose that H is not an odd cycle. Then by
Lemma 3.2, H has a 2-edge-coloring in which both colors are
represented at every vertex of degree at least 2 in H.

Recolor the edges of H with colors i and j in this way to get a new
k-edge-coloring C" = (Ej, ..., E}) of G. Then the resulting
coloring is an improvement of C, a contradiction.
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Proof. Let G be a bipartite graph, and let A = A(G). Clearly,
X'(G) > A, and we need only show that x'(G) < A. Let

C = (E1,...,EA) be an unimprovable A-edge-coloring of G.
Suppose that C is not a proper edge-coloring of G. Then there
exists a vertex u € V(G) such that some color j is represented at
least twice at u, and (consequently) some color i is not represented
at u. But now by Lemma 3.3, the component of G[E; U Ej] that
contains u is an odd cycle, contrary to the fact that bipartite
graphs contain no odd cycles.



Theorem 3.4
If G is a bipartite graph, then \'(G) = A(G).

Proof. Let G be a bipartite graph, and let A = A(G). Clearly,
X'(G) > A, and we need only show that x'(G) < A. Let

C = (E1,...,EA) be an unimprovable A-edge-coloring of G.
Suppose that C is not a proper edge-coloring of G. Then there
exists a vertex u € V(G) such that some color j is represented at
least twice at u, and (consequently) some color i is not represented
at u. But now by Lemma 3.3, the component of G[E; U Ej] that
contains u is an odd cycle, contrary to the fact that bipartite
graphs contain no odd cycles. So, C is a proper A-edge-coloring of
G, and it follows that x/(G) < A.



Vizing's theorem
Every graph G satisfies x'(G) < A(G) + 1.

Proof (outline).
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A + 1 colors, we know that for each vertex of G, at least one of
our A + 1 colors is not represented at that vertex.
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edge-coloring of G, and consequently, at some vertex of G, some
color is represented at least twice.




Vizing's theorem
Every graph G satisfies x'(G) < A(G) + 1.

Proof (outline). Let A = A(G), and suppose that x'(G) > A + 1.
Let C = (E1,...,Ea+1) be an unimprovable (A + 1)-edge-coloring.
Since no vertex of G has degree greater than A, and since we have
A + 1 colors, we know that for each vertex of G, at least one of
our A + 1 colors is not represented at that vertex. On the other
hand, since x’(G) > A + 1, we know that C is not a proper
edge-coloring of G, and consequently, at some vertex of G, some
color is represented at least twice.

Let vertex u € V(G) and colors iy, i1 € {1,...,A+1} be such that
ip is not represented at u, and i is represented at least twice at wu.




Vizing's theorem
Every graph G satisfies x'(G) < A(G) + 1.

Proof (outline, continued).
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Vizing's theorem
Every graph G satisfies x'(G) < A(G) + 1.

Proof (outline, continued).

Let H' be the component of G[E] U E] ] that contains u. By
Lemma 3.3, H' is an odd cycle.



Vizing's theorem
Every graph G satisfies x'(G) < A(G) + 1.

Proof (outline, continued).

Let H" be the component of G[E; U E ] that contains u. By
Lemma 3.3, H” is an odd cycle.



Vizing's theorem
Every graph G satisfies x/(G) < A(G) + 1.

Proof (outline, continued).




Vizing's theorem
Every graph G satisfies x/(G) < A(G) + 1.

Proof (outline, continued).
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11 = 19 =iy,
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1 = iy

But H" and H” are the same, except for one edge! This is
impossible because they are both odd cycles.



Theorem 3.4
If G is a bipartite graph, then x'(G) = A(G).

Vizing's theorem

Every graph G satisfies x'(G) < A(G) + 1.




Theorem 3.4
If G is a bipartite graph, then x'(G) = A(G).

Vizing's theorem

Every graph G satisfies x'(G) < A(G) + 1.

e It is NP-complete to decide whether x’ = A (even when
A = 3). We omit the details.



Definition

Given a graph G, the line graph of G, denoted by L(G), is the
graph with vertex set E(G), in which distinct e, f € E(G) are
adjacent if and only if they share an endpoint in G.

€1 €y

€1 €y > 2.
=
€3 €3 (&) €3
G




Definition

Given a graph G, the line graph of G, denoted by L(G), is the
graph with vertex set E(G), in which distinct e, f € E(G) are
adjacent if and only if they share an endpoint in G.

€1 €y €1 €y
=
€3 €3 (&) €3
G

e Obviously, x(L(G)) = X'(G).




Every graph G satisfies x(L(G)) < w(L(G)) + 1.

Proof.



Every graph G satisfies x(L(G)) < w(L(G)) + 1.

Proof. Let G be a graph. Then clearly, x(L(G)) = X'(G).
Furthermore, for any vertex v, the set of all edges incident with v
in G is a clique of size dg(v) in L(G); consequently,

w(L(G)) > A(G). But now

X(L(G)) = X'(G)

< A(G)+1 by Vizing's theorem
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