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Lecture #6

Vertex and edge coloring: Brooks’ theorem and

Vizing’s theorem

Irena Penev

1 Vertex coloring: Brooks’ theorem

A greedy coloring of a graph G with vertex ordering V (G) = {v1, . . . , vn} is a
coloring of G obtained as follows: for each i ∈ {1, . . . , n}, we assign to vi the
smallest positive integer that was not used on any smaller-indexed neighbor
of vi.

For example, the greedy coloring applied to the graph below, with the
ordering v1, v2, v3, v4, yields the coloring c(v1) = 1, c(v2) = 1, c(v3) = 2, and
c(v4) = 3.

v1

v4

v3

v2

Note that the greedy coloring of a graph G always produces a proper coloring
of G, but the coloring need not be optimal, i.e. it may use more than χ(G)
colors (indeed, this was the case in the example above).

As usual, for a graph G, ∆(G) is the maximum degree of G, i.e. ∆(G) :=
max{dG(v) | v ∈ V (G)}.

Lemma 1.1. Every graph G satisfies χ(G) ≤ ∆(G) + 1.

Proof. A greedy coloring of a graph G (using any ordering of V (G)) produces
a proper coloring of G that uses at most ∆(G) + 1 colors; so, χ(G) ≤
∆(G) + 1.

If G is a complete graph or an odd cycle, then it is easy to see that
χ(G) = ∆(G)+1, i.e. the inequality from Lemma 1.1 is an equality. However,
as we shall see, if G is a connected graph other than a complete graph or
odd cycle, then the inequality from Lemma 1.1 is strict, i.e. χ(G) ≤ ∆(G)
(see Brooks’ theorem below). First, we prove a technical lemma.
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Lemma 1.2. If G is connected and not regular, then χ(G) ≤ ∆(G).

Proof. Let G be a connected graph that is not regular, and fix a vertex
v ∈ V (G) such that dG(v) ≤ ∆(G) − 1. We order V (G) according to the
distance from v, that is, we list v first, then we list all vertices at distance
one from v (in any order), then we list all vertices at distance two from
v (in any order), etc. Let v1, . . . , vn be the resulting ordering of G. We
now color G greedily using the ordering vn, . . . , v1.

1 By construction, every
vertex in the ordering vn, . . . , v1, other than the vertex v1, has at least one
neighbor to the right of it, and therefore at most ∆(G)− 1 neighbors to the
left of it in the ordering vn, . . . , v1. But since dG(v) ≤ ∆(G)− 1, we see that
v1 = v also has at most ∆(G)− 1 neighbors to the left of it in the ordering
vn, . . . , v1. So, our coloring of G uses at most ∆(G) colors, and we deduce
that χ(G) ≤ ∆(G).

Brooks’ theorem. Let G be a connected graph that is neither a complete
graph nor an odd cycle. Then χ(G) ≤ ∆(G).

Proof. To simplify notation, we set ∆ := ∆(G). We must show that χ(G) ≤
∆.

Since G is connected and not complete, we see that ∆ ≥ 2. Next, suppose
that ∆ = 2. Since G is connected, it follows that G is either a path on at
least two edges or a cycle. But by hypothesis, G is not an odd cycle, and so
G is either a path on at least two edges or an even cycle. It is now obvious
that χ(G) ≤ ∆.

From now on, we assume that ∆ ≥ 3. Note that this implies that
|V (G)| ≥ 4.2 We may further assume that G is regular, for otherwise, we
are done by Lemma 1.2.

Claim 1. If G has a clique-cutset,3 then χ(G) ≤ ∆.

Proof of Claim 1. Suppose that G has a clique-cutset, and let C be a
minimal clique-cutset of G. Let A1, . . . , At (t ≥ 2) be the vertex sets of
the components of G \ C. For all i ∈ {1, . . . , t}, let Gi := G[Ai ∪ C]. By
Lemma 2.1 from Lecture Notes 4, we have that

χ(G) = max{χ(G1), . . . , χ(Gt)}.

Now, since G is connected, we know that C is non-empty. Further, by the
minimality of C, we know that each vertex of C has a neighbor in each of

1Technically, we are applying the greedy coloring algorithm to the graph G with the
ordering u1, . . . , un, where ui = vn−i+1 for all i ∈ {1, . . . , n}. So, “smaller indexed” from
the description of the greedy coloring algorithm refers to the indices of the ui’s, not the
vi’s.

2Indeed, consider a vertex of degree ∆, plus all its neighbors.
3Recall that a clique-cutset of G is a clique C of G such that G \ C is disconnected.
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A1, . . . , At. This implies that G1, . . . , Gt are all connected and not regular.4

But now Lemma 1.2 guarantees that χ(Gi) ≤ ∆(Gi) ≤ ∆ for all i ∈ {1, . . . , t}.
Consequently, χ(G) ≤ ∆. This proves Claim 1. ♦

Claim 2. If G is not 3-connected, then χ(G) ≤ ∆.

Proof of Claim 2. Assume that G is not 3-connected; we must show that
χ(G) ≤ ∆. We may assume that G does not have a clique-cutset, for
otherwise, we are done by Claim 1. Since |V (G)| ≥ 4, but G is not 3-
connected, we see that there exists some S ⊆ V (G) such that |S| ≤ 2 and
G \ S is disconnected. Since G does not admit a clique-cutset, we see that S
is not a clique; consequently, |S| = 2 (say, S = {s1, s2}), and s1s2 /∈ E(G).
Let (A,B) be a partition of V (G) \ S into non-empty sets such that there
are no edges between A and B.

s1

s2

A BS

Note that each vertex of S has a neighbor both in A and in B (otherwise,
s1 or s2 would be a cut-vertex of G, contrary to the fact that G has no
clique-cutset). Furthermore, since s1s2 /∈ E(G), and since G is ∆-regular,
with ∆ ≥ 3, we see that each of s1, s2 has at least two neighbors in at least
one of A,B. So, by symmetry, there are two cases to consider:

(i) s1 has at least two neighbors in A, and s2 has at least two neighbors in
B;

(ii) s1, s2 each have exactly one neighbor in A.

Suppose first that (i) holds. Let GA := G[A∪S]+ s1s2 and GB := G[B∪
S]+s1s2.

5 Then both GA and GB are connected, with ∆(GA),∆(GB) = ∆.6

Furthermore, note that dGA
(s2) ≤ dG(s2) − 1 = ∆ − 1, and so GA is

not regular; thus, Lemma 1.2 guarantees that χ(GA) ≤ ∆(GA) = ∆, and
similarly, χ(GB) ≤ ∆.

4Indeed, for all i ∈ {1, . . . , t} and ai ∈ Ai, we have that dGi(a) = dG(a) = ∆, whereas
each c ∈ C has a neighbor in V (G)\V (Gi) and consequently satisfies dGi(c) ≤ dG(c)−1 ≤
∆− 1. So, Gi is not regular.

5Thus, GA is obtained from G[A ∪ S] by adding an edge between s1 and s2. Similarly,
GB is obtained from G[B ∪ S] by adding an edge between s1 and s2.

6Indeed, for any a ∈ A, we have that dGA(a) = dG(a) = ∆, and dGA(s1), dGA(s2) ≤ ∆;
so, ∆(GA) = ∆, and similarly, ∆(GB) = ∆.
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s1

s2

A BS

GA GB

Now, note that S is a clique-cutset of G+ s1s2. Lemma 2.1 from Lecture
Notes 4 now implies that χ(G+ s1s2) = max{χ(GA), χ(GB)} ≤ ∆,7 and it
follows that χ(G) ≤ ∆.

Suppose now that (ii) holds. Note that this implies that each of s1, s2
has at least two neighbors in B. Let s′1 be the unique neighbor of s1 in A.
Set S′ := {s′1, s2}, A′ := A \ {s′1}, and B′ := B ∪ {s1}. Since G is ∆-regular,
with ∆ ≥ 3, we know that s′1 has at least three neighbors; since all neighbors
of s′1 are in A∪S, and |S| = 2, we see that s′1 has a neighbor in A. It follows
that A′ ̸= ∅. Now S′ separates A′ ̸= ∅ from B′ ̸= ∅. Further, if s′1s2 ∈ E(G),
then S′ is a clique-cutset of G, a contradiction. So, we may assume that
s′1s2 /∈ E(G). Since s′1 has at least three neighbors, and they all belong to
A ∪ S, we deduce that s′1 in fact has at least two neighbors in A′. But now
if we consider S′, A′, B′ instead of S,A,B, we are back in case (i), and so
an argument analogous to the one above guarantees that χ(G) ≤ ∆. This
proves Claim 2. ♦

In view of Claim 2, we may now assume that G is 3-connected. Since
G is connected and not complete, G has two vertices, call them u and v, at
distance two from each other; let w be a common neighbor of u and v. Since
G is 3-connected, we know that G′ := G \ {u, v} is connected. We now order
V (G′) according to the distance from w, that is, we list w first, then we
list all vertices at distance one from w in G′ (in any order), then we list all
vertices at distance two from w in G′ (in any order), etc. Finally, we list u, v
at the end of our list. This produces an ordering v1, . . . , vn of V (G) (with
v1 = w, vn−1 = u, and vn = v). We now color G greedily using the ordering
vn, . . . , v1. All vertices in the ordering vn, . . . , v1 other than the vertex v1
have at least one neighbor to the right, and therefore at most ∆−1 neighbors
to the left; so, all vertices other than v1 get a color from the set {1, . . . ,∆}.
But v1 has exactly ∆ neighbors, and two of those (namely, vn−1 = u and
vn = v) got assigned the same color (namely, color 1) by our greedy coloring.
So, v1 also got assigned a color from the color set {1, . . . ,∆}. It follows that
χ(G) ≤ ∆.

7We are using the fact that A is the union of the vertex sets of some components
of G \ S = (G + s1s2) \ S, whereas B is the union of the vertex sets of the remaining
components of G \ S = (G+ s1s2) \ S.
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2 Eulerian graphs

An Euler circuit (or Eulerian circuit) is a walk in the graph that passes
through every edge exactly once and comes back to the origin vertex. A
graph is Eulerian if it has an Eulerian circuit. The following theorem was
proven in Discrete Mathematics.

Theorem 2.1. A connected graph is Eulerian if and only if all its vertices
are of even degree.

3 Vizing’s theorem

A k-edge-coloring of a graph G is a mapping c : E(G) → C, with |C| = k.
Elements of C are called colors. An edge-coloring is proper if for any two
distinct edges e and f that share an endpoint, we have that c(e) ̸= c(f).

A graph G is k-edge-colorable if it has a proper k-edge-coloring.
The edge chromatic number (or chromatic index) of a graph G, denoted

by χ′(G), is the minimum k such that G is k-edge-colorable.
Clearly, in any proper edge-coloring of a graph G, all edges incident with

the same vertex must receive a different color; consequently, χ′(G) ≥ ∆(G).
Note that any k-edge-coloring (not necessarily proper) can be represented

by a partition C = (E1, . . . , Ek) of E(G), where Ei denotes the subset of
E(G) assigned color i. (Sets E1, . . . , Ek are called color classes.) A proper
k-edge-coloring is one where each Ei is a matching.

Lemma 3.1. Every graph G satisfies χ′(G)ν(G) ≥ |E(G)|.8 Consequently,

if G has at least one edge, then χ′(G) ≥
⌈
|E(G)|
ν(G)

⌉
.

Proof. Let G be a graph, and let k = χ′(G). Let (E1, . . . , Ek) be a proper
edge-coloring of G. Then

|E(G)| =
k∑

i=1
|Ei| because (E1, . . . , Ek) is a partition of E(G)

≤
k∑

i=1
ν(G) because E1, . . . , Ek are matchings of G

= kν(G)

= χ′(G)ν(G).

8Recall that ν(G) is the matching number of G, i.e. the maximum size of a matching in
G.
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This proves that χ′(G)ν(G) ≥ |E(G)|. If G has at least one edge, then clearly,

ν(G) ≥ 1, and we deduce that χ′(G) ≥ |E(G)|
ν(G) ; since χ′(G) is an integer, it

follows that χ′(G) ≥
⌈
|E(G)|
ν(G)

⌉
.

Given a (not necessarily proper) edge-coloring of a graph G, we say that
color i is represented at a vertex v of G if some edge incident with v has
color i.

Lemma 3.2. Let G be a connected graph that is not an odd cycle. Then
G has a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.

Proof. We may assume that ∆(G) ≥ 2, for otherwise there is nothing to
show. By hypothesis, G is connected and not an odd cycle; consequently, if
G is 2-regular, then G is an even cycle.

Suppose first that G is Eulerian. Then (by Theorem 2.1) all vertices of
G are of even degree. If G has a vertex of degree at least four, then let v0 be
such a vertex, and otherwise let v0 be any vertex. (Note that in the latter
case, G is 2-regular, and therefore, by the above, G is an even cycle.) Let
v0, e1, v1, e2, v2, . . . , v0 be an Euler circuit of G. Let E1 be the set of odd
indexed edges, and let E2 the set of even indexed edges. If G is an even
cycle, then clearly, the edge-coloring (E1, E2) satisfies the lemma. Otherwise,
v0 is of degree at least four, and the edge-coloring (E1, E2) has the desired
property since each vertex of G is an internal vertex of v0, e1, v1, e2, v2, . . . , v0.

So we may assume that G is not Eulerian. Construct G∗ by adding a
new vertex v∗ and joining it to each vertex of odd degree in G. Then by
Theorem 2.1, G∗ is Eulerian.9 Now, let v0, e1, v1, e2, v2, . . . , v0, with v0 = v∗,
be an Euler circuit of G∗. Let E1 be the set of odd indexed edges, and let E2

the set of even indexed edges. Then the edge-coloring
(
E1∩E(G), E2∩E(G)

)
of G has the desired property.10

Given a (not necessarily proper) k-edge-coloring C and a vertex v of G,
we denote by cC(v) the number of distinct colors represented at v. Note that
cC(v) ≤ dG(v) for all v ∈ V (G). Furthermore, C is a proper k-edge-coloring
if and only if cC(v) = dG(v) for every vertex v ∈ V (G). A k-edge-coloring C′

of G is an improvement of C if∑
v∈V (G)

cC′(v) >
∑

v∈V (G)

cC(v).

9Since G is connected and not Eulerian, we know that G has at least one vertex of odd
degree. On the other hand, since

∑
v∈V (G)

dG(v) = 2|E(G)|, we know that
∑

v∈V (G)

dG(v) is

even, and consequently, G has an even number of vertices of odd degree. So, v∗ has even
degree, strictly greater than zero. We now see that G∗ is connected, and that all vertices
of G∗ have even degree. So, by Theorem 2.1, G∗ is Eulerian.

10Why?

6



An unimprovable k-edge-coloring is one that cannot be improved.
Note that any proper edge-coloring of a graph G is unimprovable. How-

ever, the converse does not hold in general.

Lemma 3.3. Let C = (E1, . . . , Ek) be an unimprovable k-edge-coloring of
a graph G. If there is a vertex u of G and colors i and j such that i is not
represented at u and j is represented at least twice at u, then the component
of G[Ei ∪ Ej ] that contains u is an odd cycle.11

Proof. Let H be the component of G[Ei ∪Ej ] that contains u. Suppose that
H is not an odd cycle. Then by Lemma 3.2, H has a 2-edge-coloring in which
both colors are represented at every vertex of degree at least 2 in H. Recolor
the edges of H with colors i and j in this way to get a new k-edge-coloring
C′ = (E′

1, . . . , E
′
k) of G. To simplify notation, set c = cC and c′ = cC′ . By

construction, we have that c(v) ≤ c′(v) ≤ c(v) + 1 for all v ∈ V (G), and
that c′(u) = c(u) + 1. It follows that

∑
v∈V (G)

c′(v) >
∑

v∈V (G)

c(v), that is,

C′ is an improvement of C. But this contradicts the assumption that C is
unimprovable.

Theorem 3.4. If G is a bipartite graph, then χ′(G) = ∆(G).

Proof. Let G be a bipartite graph, and let ∆ := ∆(G). Clearly, χ′(G) ≥ ∆,
and we need only show that χ′(G) ≤ ∆. Let C = (E1, . . . , E∆) be an
unimprovable ∆-edge-coloring of G. Suppose that C is not a proper edge-
coloring of G. Then there exists a vertex u ∈ V (G) such that some color
j is represented at least twice at u, and (consequently) some color i is not
represented at u. But now by Lemma 3.3, the component of G[Ei ∪Ej ] that
contains u is an odd cycle, contrary to the fact that bipartite graphs contain
no odd cycles. So, C is a proper ∆-edge-coloring of G, and it follows that
χ′(G) ≤ ∆.

Vizing’s theorem. Every graph G satisfies χ′(G) ≤ ∆(G) + 1.12

Proof. Let ∆ = ∆(G). Suppose that χ′(G) > ∆+1. Let C = (E1, . . . , E∆+1)
be an unimprovable (∆+ 1)-edge-coloring, and set c = cC . Since no vertex of
G has degree greater than ∆, and since we have ∆ + 1 colors, we know that
for each vertex of G, at least one of our ∆ + 1 colors is not represented at
that vertex. On the other hand, since χ′(G) > ∆+ 1, we know that C is not
a proper edge-coloring of G, and consequently, at some vertex of G, some
color is represented at least twice.

Let vertex u ∈ V (G) and colors i0, i1 ∈ {1, . . . ,∆+ 1} be such that i0
is not represented at u, and i1 is represented at least twice at u. Let uv1
have color i1, and let i2 be a color that is not represented at v1. (Clearly,

11Here, G[Ei ∪ Ej ] is the graph with vertex set V (G) and edge set Ei ∪ Ej .
12As usual, we consider only simple graphs. Vizing’s theorem fails if G is not simple!

7



i1 ≠ i2.) Color i2 must be represented at u, since otherwise, recoloring uv1
with i2 would yield an improvement of C. So some edge uv2 has color i2; let
i3 be a color that is not represented at v2. (Clearly, i2 ̸= i3.) Color i3 must
be represented at u, since otherwise recoloring uv1 with i2 and uv2 with i3
would yield an improvement of C. So some edge uv3 has color i3. Now, we
have only a finite number of colors at our disposal, and so continuing in this
way, we eventually start to repeat colors. More formally, we can construct a
sequence v1, v2, . . . , vℓ of vertices and a sequence i1, i2, . . . , iℓ, iℓ+1 of colors
such that all the following are satisfied:

(a) color i1 is represented at least twice at u;

(b) for all j ∈ {1, . . . , ℓ}, edge uvj has color ij ;

(c) for all j ∈ {1, . . . , ℓ}, color ij+1 is not represented at vj ;

(d) colors i1, . . . , iℓ are pairwise distinct;

(e) there exists some k ∈ {1, . . . , ℓ} such that ik = iℓ+1.

u v1

v2

v3vk

v`

i1

i2
color i2 not
represented

color i3 not
represented

i3ik

i`

color i`+1 = ik
not represented

color i4 not
represented

color ik+1 not
represented

color i0 not represented, and
color i1 represented at least twice

...

. . .

Note that (b) and (c) imply that ij ̸= ij+1 for all j ∈ {1, . . . , ℓ}; in particular
then, k ≤ ℓ − 1. Further, (b) and (d) imply that vertices v1, . . . , vℓ are
pairwise distinct.

Let C′ = (E′
1, . . . , E

′
∆+1) be the following recoloring of G: for j =

1, . . . , k − 1, recolor uvj with ij+1. Set c
′ = cC′ . Then c′(v) ≥ c(v) for every

v ∈ V (G); thus, since C is an unimprovable (∆ + 1)-edge-coloring of G, so is
C′. Further, by construction, under the coloring C′, color i0 is not represented
at u, and color ik is represented at least twice at u. (Note that if k = 1, then
C′ = C and ik = i1. In this case, ik = i1 is still represented twice at u, by
the choice of i1.) Let H ′ be the component of G[E′

i0
∪E′

ik
] that contains u.

By Lemma 3.3, H ′ is an odd cycle.
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u v1

v2

vk−1vk

v`

i1
C′→ i2

i2
C′→ i3

ik−1
C′→ ik

ik

i`

... . . .

H ′

Let C′′ = (E′′
1 , . . . , E

′′
∆+1) be the following recoloring of G: for j = 1, . . . , ℓ,

recolor uvj with ij+1; since iℓ+1 = ik, we see that uvℓ was recolored with
ik. Set c′′ = cC′′ . Then c′′(v) ≥ c(v) for every v ∈ V (G); thus, since C is
an unimprovable (∆ + 1)-edge-coloring of G, so is C′′. Further, under the
coloring C′, color i0 is not represented at u, and color ik is represented at
least twice at u. Let H ′′ be the component of G[E′′

i0
∪ E′′

ik
] that contains u.

By Lemma 3.3, H ′′ is an odd cycle.

u v1

v2

vk−1vk

v`

i1
C′′→ i2

i2
C′′→ i3

ik−1
C′′→ ikik

C′′→ ik+1

i`
C′′→ i`+1︸ ︷︷ ︸

=ik

... . . .

H ′′

Note that the colorings C′ and C′′ disagree only on edges uvk, . . . , uvℓ−1, uvℓ.
Further, exactly one edge (namely, uvk) from uvk, . . . , uvℓ−1, uvℓ belongs to
the cycle H ′, and exactly one edge (namely, uvℓ) from uvk, . . . , uvℓ−1, uvℓ
belongs to the cycle H ′′. It now follows that H ′ − uvk = H ′′ − uvℓ, which is
impossible, since two cycles cannot differ in exactly one edge.

Corollary 3.5. Every graph G satisfies ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

We note that it is NP-complete to decide whether χ′ = ∆ (even when
∆ = 3). We omit the details.

Finally, we remark that there is a relationship between vertex coloring
and edge-coloring, as follows. Given a graph G, the line graph of G, denoted
by L(G), is the graph with vertex set E(G), in which distinct e, f ∈ E(G)
are adjacent if and only if they share an endpoint in G. An example is shown
below.
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e1

e2 e3

e4

e5

G L(G)

e1

e2 e3

e4

e5

Obviously, χ(L(G)) = χ′(G).
Recall that for a graph G, the clique number of G, denoted by ω(G), is

the maximum size of a clique in G.

Lemma 3.6. Every graph G satisfies χ(L(G)) ≤ ω(L(G)) + 1.

Proof. Let G be a graph. Then clearly, χ(L(G)) = χ′(G). Furthermore, for
any vertex v, the set of all edges incident with v in G is a clique of size dG(v)
in L(G); consequently, ω(L(G)) ≥ ∆(G). But now

χ(L(G)) = χ′(G)

≤ ∆(G) + 1 by Vizing’s theorem

≤ ω(L(G)) + 1.

10


