
NDMI012: Combinatorics and Graph Theory 2

Lecture #5

Graphs on surfaces

Irena Penev

March 15, 2022



Definition
A surface is a connected 2-dimensional compact manifold with no
boundary.

This definition contains several terms we have not defined,
and whose formal definition we omit.
Here is an intuitive explanation:

“2-dimensional manifold with no boundary” means that each
point has a neighborhood homeomorphic to an open disk;
“compact” means that that the surface admits a triangulation
with finitely many triangles;
“connected” means that there is just one piece.

The sphere and the torus are surfaces.
However, the plane is not a surface (because it is not
compact).
A closed disk is not a surface, either, since it has a boundary.
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In what follows, we consider two surfaces to be the “same” if
they are “homeomorphic,” that is, if there is a bijection f
between them such that both f and f −1 are continuous.

So, if we can obtain one surface from the other by
“stretching,” then the two surfaces are the same.
Thus, a tetrahedron is simply a sphere for our purposes, but a
torus is not a sphere.
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A torus can be represented by a rectangle (symbolically
represented by the string ABA−1B−1).

A

A−1

BB−1



If we identify corresponding edges in the octagon
ABA−1B−1CDC−1D−1 below, then we get a double torus
(also called the “connected sum of two tori”).
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double torus



The real projective plane (or simply projective plane) is the
surface obtained by starting from the sphere, and then
identifying each pair of antipodal points.

The projective plane has polygonal representation AA.
A

A

Unlike the torus, the projective plane cannot be embedded in
R3.
Still, there is a geometric interpretation (on the next slide).
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Take a rectangle shown below on the left (think of it as a
piece of paper), twist it, and identify the two vertical edges
(as shown by the arrows). The result (on the bottom right) is
called the Möbius strip.

Note that the boundary of the Möbius strip consists of just
one circle, and the Möbius strip has just one “side.”
Now, take a sphere, cut out a small disk from it, and then
glue the Möbius strip along the boundary obtained by
removing the disk.
The result is the projective plane (the circle of the Möbius
strip corresponds to the edge A from our AA representation of
the projective plane).
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The projective plane is a type of “non-orientable” surface,
which roughly means that we cannot set up a left-right
distinction.

Intuitively, imagine a two-dimensional bug on the surface of
the Möbius strip (which is part of the projective plane).
If the bug keeps going forward, it will eventually come back to
the same place (and facing in the same direction), but with
left and right reversed.
This sort of thing is impossible on “orientable” surfaces such
as the sphere or the torus (or double torus, triple torus, etc.).
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Now, any 2n-gon, with edges labeled A1, . . . , An (in any
order), with each letter appearing exactly twice on the
2n-gon, either in the form A (for clockwise direction) or A−1

(for counterclockwise direction) can be transformed into a
surface via gluing using the rules described above.

Note: AA−1 is simply the sphere.
A

A−1

Some labellings are equivalent (next two slides).
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For example, the two octagons below obviously “encode” the
same surface (i.e. after gluing, we get the same surface, in
this case, the double torus).
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Sometimes, we have “unnecessary” letters/edges in our
polygon, as the picture below shows. Both polygons represent
a torus.
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Theorem 1.1
Every surface has a polygonal representation of one of the
following forms:

AA−1;
(A1B1A−1

1 B−1
1 )(A2B2A−1

2 B−1
2 ) . . . (AkBkA−1

k B−1
k );

(A1A1)(A2A2) . . . (AkAk).

Proof. Omitted.

Theorem 1.1 does not state that each polygonal
representation of a surface has one of the forms from the
theorem.
As a matter of fact, each surface has infinitely many
polygonal representations (because we can always add AA−1,
thus creating a bigger polygon, without changing the surface).
Theorem 1.1 merely states that for each surface S, one of its
representations has a “canonical” from (i.e. one of the forms
from the theorem).
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“handles” to a sphere.
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(A1A1)(A2A2) . . . (AkAk) represents the “connected sum of k
real projective planes.”

We can obtain this surface by starting with a sphere,
removing k disks, and then gluing a Möbius strip along the
boundary of each removed disk in the sphere.
Adding one Möbius strip in this way is called “adding a
crosscap.”
So, (A1A1)(A2A2) . . . (AkAk) is the surface obtained from the
sphere by adding k crosscaps.



Theorem 1.1
Every surface has a polygonal representation of one of the
following forms:

AA−1;
(A1B1A−1

1 B−1
1 )(A2B2A−1

2 B−1
2 ) . . . (AkBkA−1

k B−1
k );

(A1A1)(A2A2) . . . (AkAk).

(A1A1)(A2A2) . . . (AkAk) represents the “connected sum of k
real projective planes.”
We can obtain this surface by starting with a sphere,
removing k disks, and then gluing a Möbius strip along the
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Spheres and connected sums of tori are “orientable surfaces.”

The genus of the sphere is zero, and the genus of a connected
sum of k tori is k.

Connected sums of projective planes are “non-orientable
surfaces.”

The genus of a connected sum of k real projective planes is k.
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A “multigraph” is a graph thay may possibly have loops and
parallel edges.

parallel edges

loop

Just as we can draw graphs (and multigraphs) on a sphere, we
can draw them on any other surface.
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Generally speaking, it is more convenient to use polygonal
representation for drawing, than to draw directly on the
surface in question.

For instance, below is a drawing of K5 on the torus (left) and
on the projective plane (right). (Note how the green edge and
the purple edge “wrap around” the rectangle.)
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Euler polyhedral formula
Let G be any connected planar multigraph. Then for any drawing
of G on the sphere (without edge crossings), we have that

V − E + F = 2,

where V is the number of vertices, E the number of edges, and F
the number of faces of the drawing.

Proof. Discrete Math.



A net on a surface is a multigraph drawing on that surface
(with no edge crossings) in which every face is homeomorphic
to an open disk.

not a net net

Note that the net (or rather, the multigraph whose drawing it
is) must be connected.
Our next goal is to generalize the Euler polyhedral formula for
surfaces of arbitrary genus.
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Remarks:
If G is a net on a surface S, then subdividing an edge ℓ times
does not change the value of V − E + F .

This is because both V and E increase by ℓ, and F remains
unchanged.

Further, adding an edge between two existing vertices and
passing through a face does not change V − E + F .

This is because both E and F increase by one, and V remains
unchanged.
Here, we are using the fact that each face is homeomorphic to
a disk, and so adding an edge between two existing vertices
necessarily “splits” an existing face into two).
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Theorem 2.1
Let G be a net on an (orientable or non-orientable) surface S of
genus k. Let V be the number of vertices, E the number of edges,
and F the number of faces of this net. Then:
(a) if S is orientable, then V − E + F = 2 − 2k;
(b) if S is non-orientable, then V − E + F = 2 − k.

Proof.

(a) Assume that S is orientable. If k = 0, then S is the
sphere, and we are done by the Euler polyhedral formula. So, we
may assume that k ≥ 1. Then S is the connected sum of k tori,
and it has a polygonal representation
(A1B1A−1

1 B−1
1 ) . . . (AkBkA−1

k B−1
k ).
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Proof (continued). Reminder: S is the connected sum of k tori,
represented by (A1B1A−1

1 B−1
1 ) . . . (AkBkA−1
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Note that the 4k vertices of this polygon all correspond to the
same point of the surface S; we may assume that this point is a
vertex of G (if not, just “move” the net a bit until it is). Next, we
will assume (informal!!) that G intersects the boundary of the
polygon in only finitely many points; we turn each point of
intersection of the net and the polygon boundary into a vertex
(this is just edge subdivision, and so V − E + F does not change).
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Finally, we turn the boundary of the polygon into edges
(subdivided according to the vertices that appear on the
boundary); this produces 2k (potentially subdivided) loops in our
net, and it does not alter V − E + F .

Now, our net G on the surface S can be “translated” into a plane
drawing in the natural way: we simply place our polygon in the
plane.
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Let Vp be the number of vertices of G on S that lie in the interior
of the edges of the polygon

(so, in our plane drawing, this turns
into 2Vp vertices, because each such vertex “doubles”), and let Ep
be the number of edges of G on S that lie on the polygon (so, in
our plane drawing, this turns into 2Ep edges, because each such
edge “doubles”). Further, one vertex of G got turned into 4k
vertices (the vertices of the polygon) in our plane drawing.
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So, the plane drawing has
4k + 2Vp + (V − 1 − Vp) = V + Vp + 4k − 1 vertices,
2Ep + (E − Ep) = E + Ep edges, and F + 1 faces (because of the
exterior face).
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Now, the Euler polyhedral formula gives us

(V + Vp + 4k − 1) − (E + Ep) + (F + 1) = 2,

and therefore, (V − E + F ) + (Vp − Ep) = 2 − 4k. But note that
Ep = Vp + 2k. So, V − E + F − 2k = 2 − 4k, and therefore
V − E + F = 2 − 2k, which is what we needed.
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Theorem 2.1
Let G be a net on an (orientable or non-orientable) surface S of
genus k. Let V be the number of vertices, E the number of edges,
and F the number of faces of this net. Then:
(a) if S is orientable, then V − E + F = 2 − 2k;
(b) if S is non-orientable, then V − E + F = 2 − k.

Proof (continued). We have now proven (a).

(b) Assume that S is non-orientable; then S is the connected sum
of k projective planes. Let (A1A1) . . . (AkAk) be the polygonal
representation of the surface S. The proof is now almost identical
to that of part (a), except that we have a 2k-gon, rather than a
4k-gon, and so the computation yields V − E + F = 2 − k.
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Theorem 2.1
Let G be a net on an (orientable or non-orientable) surface S of
genus k. Let V be the number of vertices, E the number of edges,
and F the number of faces of this net. Then:
(a) if S is orientable, then V − E + F = 2 − 2k;
(b) if S is non-orientable, then V − E + F = 2 − k.

Corollary 2.2
Let G be a multigraph drawing (with no edge crossings) on a
surface S of genus k.a Let V be the number of vertices, E the
number of edges, and F the number of faces of this net. Then:
(a) if S is orientable, then V − E + F ≥ 2 − 2k;
(b) if S is non-orientable, then V − E + F ≥ 2 − k.

aNote: G need not be a net, that is, it is possible that not all faces are
homeomorphic to disks.



Theorem 2.1
Let G be a net on an (orientable or non-orientable) surface S of
genus k. Let V be the number of vertices, E the number of edges,
and F the number of faces of this net. Then:
(a) if S is orientable, then V − E + F = 2 − 2k;
(b) if S is non-orientable, then V − E + F = 2 − k.

Corollary 2.2
Let G be a multigraph drawing (with no edge crossings) on a
surface S of genus k.a Let V be the number of vertices, E the
number of edges, and F the number of faces of this net. Then:
(a) if S is orientable, then V − E + F ≥ 2 − 2k;
(b) if S is non-orientable, then V − E + F ≥ 2 − k.

aNote: G need not be a net, that is, it is possible that not all faces are
homeomorphic to disks.



Corollary 2.2
Let G be a multigraph drawing (with no edge crossings) on a
surface S of genus k. Let V be the number of vertices, E the
number of edges, and F the number of faces of this net. Then:
(a) if S is orientable, then V − E + F ≥ 2 − 2k;
(b) if S is non-orientable, then V − E + F ≥ 2 − k.

Proof. We keep adding edges to G (without creating edge
crossings) until we obtain a net. (Note that this may possibly
decrease the value of V − E + F , but it cannot increase it.) The
result is a net, and so the result follows from Theorem 2.1.



Definition
The Euler characteristic of a surface S, denoted by ec(S), is the
number V − E + F , where V , E , and F are, respectively, the
number of vertices, edges, and faces of some net on S.

By Theorem 2.1, the Euler characteristic is is well defined, i.e.
the number ec(S) depends only on the surface S, and not on
the particular choice of a net.
Theorem 2.1 states that if S is an orientable surface of genus
k, then ec(S) = 2 − 2k; on the other hand, if S is a
non-orientable surface of genus S, then ec(S) = 2 − k.

So, the Euler characteristic of the sphere is 2, and the Euler
characteristic of the torus is 0. The Euler characteristic of the
projective plane is 1.

Corollary 2.2 implies that if G is a multigraph drawing on a
surface S, then V − E + F ≥ ec(S), where V , E , and F are
the number of vertices, edges, and faces of the drawing.
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Corollary 2.3
Let G be a (simple) graph on at least two edges, drawn on an
(orientable or non-orientable) surface S (without edge crossings).
Then |E (G)| ≤ 3|V (G)| − 3ec(S). Consequently, the average
degree of G is at most 6 − 6ec(S)

|V (G)| .

Proof.

For each face f , we define ℓ(f ) to be the number of edges
incident with f , with each edge incident with f on both sides
counting twice. Since G is simple and |E (G)| ≥ 2, we see that
ℓ(f ) ≥ 3 for all faces f . If F (G) is the set of all faces, we get

2|E (G)| =
∑

f ∈F (G) ℓ(f ) ≥ 3|F (G)|,

and therefore, |F (G)| ≤ 2
3 |E (G)|. Now we compute

|E (G)| ≤ |V (G)| + |F (G)| − ec(S) by Corollary 2.2
≤ |V (G)| + 2

3 |E (G)| − ec(S),

and so |E (G)| ≤ 3|V (G)| − 3ec(S).
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Definition
For an integer c ≤ 2, we define the Heawood number as follows:

H(c) :=
⌊

7+
√

49−24c
2

⌋
.

Theorem 3.1
If a (simple) graph G can be drawn without edge crossings on an
(orientable or non-orientable) surface S, then χ(G) ≤ H(ec(S)).

Proof. Fix a surface S and a graph G that can be drawn on S
without edge crossings. To simplify notation, set c := ec(S). We
must show that χ(G) ≤ H(c).
Suppose first that S is the sphere, so that G is a planar graph and
c = 2. By the Four Color Theorem, G is 4-colorable. On the
other hand, H(c) = H(2) = 4. So, χ(G) ≤ 4 = H(c).
From now on, WMA S is not a sphere, so that c ≤ 1.
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Reminder: H(c) =
⌊

7+
√

49−24c
2

⌋
.

Theorem 3.1
If a (simple) graph G can be drawn without edge crossings on an
(orientable or non-orientable) surface S, then χ(G) ≤ H(ec(S)).

Proof (continued). Reminder: c ≤ 1.

Suppose that there exists a graph G that can be drawn on S
without edge crossings, but satisfies χ(G) > H(c); WMA G was
chosen with as few vertices as possible. Set n := |V (G)|; clearly,
n ≥ χ(G) ≥ H(c) + 1. Moreover, δ(G) ≥ H(c), for otherwise, we
fix a vertex v ∈ V (G) such that dG(v) ≤ H(c) − 1, we color G \ v
with H(c) colors (this is possible by the minimality of n), and then
we extend this coloring to a proper coloring of G using at most
H(c) colors by assigning to v a color not used on any of its
neighbors. On the other hand, by Corollary 2.3, the average degree
in G is at most 6 − 6c

n . So, H(c) ≤ 6 − 6c
n .
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Proof (continued). Reminder: c ≤ 1 and H(c) ≤ 6 − 6c
n .

Since H(1) = 6, the inequality above does not hold if c = 1. So,
c ≤ 0. Since n ≥ H(c) + 1 > 0, it follows that −6c

n ≤ − 6c
H(c)+1 ,

and consequently,

H(c) ≤ 6 − 6c
H(c)+1 .

Since H(c) > 0, the above is equivalent to

H(c)2 − 5H(c) + 6(c − 1) ≤ 0.
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By solving the corresponding quadratic equation, we now get that
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The Klein bottle is the surface with polygonal representation
AABB or ABAB−1.

A

A

BB−1

The Klein bottle is non-orientable, has genus 2, and Euler
characteristic 0.

Theorem 3.2 [Ringel and Youngs]
If S is a surface other than the Klein bottle, then the complete
graph KH(ec(S)) can be drawn on S (without edge crossings).

Proof. Omitted.
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Theorem 3.1
If a (simple) graph G can be drawn without edge crossings on an
(orientable or non-orientable) surface S, then χ(G) ≤ H(ec(S)).

Theorem 3.2 [Ringel and Youngs]
If S is a surface other than the Klein bottle, then the complete
graph KH(ec(S)) can be drawn on S (without edge crossings).

Theorem 3.2 proves that the bound from Theorem 3.1 is best
possible, except when S is the Klein bottle.
For the Klein bottle, we can get a better bound.
Recall that the Euler characteristic of the Klein bottle is 0,
and note that H(0) = 7.
However, as we shall see, the maximum chromatic number of
the Klein bottle is 6 (see Theorem 3.4).



Reminder: H(c) =
⌊

7+
√

49−24c
2

⌋
.

Theorem 3.1
If a (simple) graph G can be drawn without edge crossings on an
(orientable or non-orientable) surface S, then χ(G) ≤ H(ec(S)).

Theorem 3.2 [Ringel and Youngs]
If S is a surface other than the Klein bottle, then the complete
graph KH(ec(S)) can be drawn on S (without edge crossings).

Theorem 3.2 proves that the bound from Theorem 3.1 is best
possible, except when S is the Klein bottle.

For the Klein bottle, we can get a better bound.
Recall that the Euler characteristic of the Klein bottle is 0,
and note that H(0) = 7.
However, as we shall see, the maximum chromatic number of
the Klein bottle is 6 (see Theorem 3.4).



Reminder: H(c) =
⌊

7+
√

49−24c
2

⌋
.

Theorem 3.1
If a (simple) graph G can be drawn without edge crossings on an
(orientable or non-orientable) surface S, then χ(G) ≤ H(ec(S)).

Theorem 3.2 [Ringel and Youngs]
If S is a surface other than the Klein bottle, then the complete
graph KH(ec(S)) can be drawn on S (without edge crossings).

Theorem 3.2 proves that the bound from Theorem 3.1 is best
possible, except when S is the Klein bottle.
For the Klein bottle, we can get a better bound.

Recall that the Euler characteristic of the Klein bottle is 0,
and note that H(0) = 7.
However, as we shall see, the maximum chromatic number of
the Klein bottle is 6 (see Theorem 3.4).



Reminder: H(c) =
⌊

7+
√

49−24c
2

⌋
.

Theorem 3.1
If a (simple) graph G can be drawn without edge crossings on an
(orientable or non-orientable) surface S, then χ(G) ≤ H(ec(S)).

Theorem 3.2 [Ringel and Youngs]
If S is a surface other than the Klein bottle, then the complete
graph KH(ec(S)) can be drawn on S (without edge crossings).

Theorem 3.2 proves that the bound from Theorem 3.1 is best
possible, except when S is the Klein bottle.
For the Klein bottle, we can get a better bound.
Recall that the Euler characteristic of the Klein bottle is 0,
and note that H(0) = 7.

However, as we shall see, the maximum chromatic number of
the Klein bottle is 6 (see Theorem 3.4).



Reminder: H(c) =
⌊

7+
√

49−24c
2

⌋
.

Theorem 3.1
If a (simple) graph G can be drawn without edge crossings on an
(orientable or non-orientable) surface S, then χ(G) ≤ H(ec(S)).

Theorem 3.2 [Ringel and Youngs]
If S is a surface other than the Klein bottle, then the complete
graph KH(ec(S)) can be drawn on S (without edge crossings).

Theorem 3.2 proves that the bound from Theorem 3.1 is best
possible, except when S is the Klein bottle.
For the Klein bottle, we can get a better bound.
Recall that the Euler characteristic of the Klein bottle is 0,
and note that H(0) = 7.
However, as we shall see, the maximum chromatic number of
the Klein bottle is 6 (see Theorem 3.4).



Lemma 3.3
K6 can be drawn on the Klein bottle (without edge crossings), but
K7 cannot.

Proof. Omitted.

Brooks’ theorem
Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then χ(G) ≤ ∆(G).

Proof. Next time.
Theorem 3.4
Let G be a graph that can be drawn on the Klein bottle (without
edge crossings). Then χ(G) ≤ 6.
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Theorem 3.4
Let G be a graph that can be drawn on the Klein bottle (without
edge crossings). Then χ(G) ≤ 6.

Proof.

Suppose otherwise, i.e. suppose χ(G) ≥ 7. We may assume
that, among all graphs that can be drawn on the Klein bottle but
are not 6-colorable, G has the smallest possible number of vertices.
Note that this means that δ(G) ≥ 6. On the other hand, since the
Klein bottle has Euler characteristic 0, Corollary 2.3 guarantees
that G has average degree at most 6. But this is possible only if G
is 6-regular. Now, by the minimality of |V (G)|, we know that G is
connected. Since χ(G) ≥ 7, Brooks’ theorem guarantees that
G ∼= K7. But this contradicts Lemma 3.3.
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