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Lecture #5

Graphs on surfaces

Irena Penev

1 Surfaces

A surface is a connected 2-dimensional compact manifold with no boundary.
This definition contains several terms we have not defined, and whose formal
definition we omit. Here is an intuitive explanation:

� “2-dimensional manifold with no boundary” means that each point has
a neighborhood homeomorphic to an open disk;

� “compact” means that that the surface admits a triangulation with
finitely many triangles;

� “connected” means that there is just one piece.

The sphere and the torus are surfaces. However, the plane is not a surface
(because it is not compact). A closed disk is not a surface, either, since it
has a boundary.

In what follows, we consider two surfaces to be the “same” if they are
“homeomorphic,” that is, if there is a bijection f between them such that both
f and f−1 are continuous. So, if we can obtain one surface from the other
by “stretching,” then the two surfaces are the same. Thus, a tetrahedron is
simply a sphere for our purposes, but a torus is not a sphere.

Here is one way of forming a torus: we start with a rectangle (see the
picture below), and then we identify the two (directed) blue edges and two
(directed) red edges. Importantly, the corresponding edges must be identified
in the direction represented by the arrows. (In the picture below, we first
identify the blue edges to get a “tube,” and then we identify the two red
edges/circles to get a torus. In our picture, the four vertices of the rectangle
all get identified to the same point on the torus.) Note that the blue edges are
labeled A (for clockwise direction) and A−1 (for counterclockwise direction);
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a similar labeling applies to B and B−1. Symbolically, the rectangle is
represented by the string ABA−1B−1.

A

A−1

BB−1

If we identify corresponding edges in the octagon ABA−1B−1CDC−1D−1

below, then we get a double torus (also called the “connected sum of two
tori”), as you can check.1

A

B

A−1

B−1

C

D

C−1

D−1

ABA−1B−1CDC−1D−1

1Alternatively, you can watch watch this video:
https://www.youtube.com/watch?v=G1yyfPShgqw
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double torus

The real projective plane (or simply projective plane) is the surface obtained
by starting from the sphere, and then identifying each pair of antipodal
points. The projective plane has polygonal representation AA (see below).
Here, we have two A’s (red and blue); they are to be identified in the direction
indicated.

A

A

Unlike the torus, the projective plane cannot be embedded in R3. Still, there
is a geometric interpretation. Take a rectangle shown below on the left (think
of it as a piece of paper), twist it, and identify the two vertical edges (as
shown by the arrows). The result (on the bottom right) is called the Möbius
strip. Note that the boundary of the Möbius strip consists of just one circle,
and the Möbius strip has just one “side.”

Now, take a sphere, cut out a small disk from it, and then glue the Möbius
strip along the boundary obtained by removing the disk. The result is the
projective plane (the circle of the Möbius strip corresponds to the edge
A from our AA representation of the projective plane). Equivalently, if
we cut out a disk from the projective plane, we obtain the Möbius strip.2

2It is not necessarily obvious that these three descriptions (sphere with antipodal points
identified; polygonal AA representation; and Möbius strip with a disk) of the projective
plane are equivalent, i.e. that they yield the same surface. For an animation that explains
this, see this video: https://www.youtube.com/watch?v=u0VkikpElMo
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The projective plane is a type of “non-orientable” surface, which roughly
means that we cannot set up a left-right distinction. Intuitively, imagine a
two-dimensional bug on the surface of the Möbius strip (which is part of the
projective plane). If the bug keeps going forward, it will eventually come
back to the same place (and facing in the same direction), but with left and
right reversed. This sort of thing is impossible on “orientable” surfaces such
as the sphere or the torus (or double torus, triple torus, etc.).

Now, any 2n-gon, with edges labeled A1, . . . , An (in any order), with
each letter appearing exactly twice on the 2n-gon, either in the form A
(for clockwise direction) or A−1 (for counterclockwise direction) can be
transformed into a surface via gluing using the rules described above.3 Some
labellings are equivalent. For example, the two octagons below obviously
“encode” the same surface (i.e. after gluing, we get the same surface, in this
case, the double torus). We first “cut” and then “glue” the polygon on the
left in order to obtain the polygon on the right.4

A

B

A−1

B−1

C

D

C−1

D−1
B

A−1

B−1

C

E

E−1

D

C−1

D−1

E

ABA−1B−1CDC−1D−1 BE−1DC−1D−1B−1CE

Sometimes, we have “unnecessary” letters/edges in our polygon, as the
picture below shows. Both polygons represent a torus.

3Note: AA−1 is simply the sphere.

A

A−1

4Note that the red pentagons have different shapes. This is due to the drawing software,
but this is not important: we are allowed to “strech” and “shrink” any way we like.
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A

A−1

BB−1

ABCC−1A−1B−1 ABA−1B−1

An argument resembling the one indicated by the pictures above yields the
following “classification theorem” (whose proof we omit).

Theorem 1.1. Every surface has a polygonal representation of one of the
following forms:

� AA−1;

� (A1B1A
−1
1 B−1

1 )(A2B2A
−1
2 B−1

2 ) . . . (AkBkA
−1
k B−1

k );

� (A1A1)(A2A2) . . . (AkAk).

Importantly, Theorem 1.1 does not state that each polygonal represen-
tation of a surface has one of the forms from the theorem. As a matter
of fact, each surface has infinitely many polygonal representations.5 Theo-
rem 1.1 merely states that for each surface S, one of its representations has
a “canonical” from (i.e. one of the forms from the theorem).

We remark that the surface with polygonal representation AA−1 is sim-
ply the sphere. Further, the surface having a polygonal representation
(A1B1A

−1
1 B−1

1 )(A2B2A
−1
2 B−1

2 ) . . . (AkBkA
−1
k B−1

k ) is the “connected sum of
k tori,” i.e. a torus with k holes. This type of torus can be obtained from
a sphere by adding k “handles” to a sphere. Adding a handle to a surface
we have already constructed consists of removing two small disks from the
surface, and then connecting them via a “handle” (a tube). Spheres and
connected sums of tori are “orientable surfaces.” The genus of the sphere is
zero, and the genus of a connected sum of k tori is k.

5Indeed, for any polygonal representation of a surface, we can obtain another polygonal
representation by adding AA−1 (where is a “new” letter) to the end. We can repeat the
procedure arbitrarily many times, thus creating infinitely many polygonal representaitons
of the same surface.
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handle

Finally, (A1A1)(A2A2) . . . (AkAk) represents the “connected sum of k real
projective planes.” We can obtain this surface by starting with a sphere,
removing k disks, and then gluing a Möbius strip along the boundary of each
removed disk in the sphere. Adding one Möbius strip in this way is called
“adding a crosscap.” So, (A1A1)(A2A2) . . . (AkAk) is the surface obtained
from the sphere by adding k crosscaps. Connected sums of projective planes
are “non-orientable surfaces.” The genus of a connected sum of k real
projective planes is k.

2 Graph drawing on surfaces

A “multigraph” is a graph thay may possibly have loops and parallel edges.

parallel edges

loop

Just as we can draw graphs (and multigraphs) on a sphere, we can draw
them on any other surface. Generally speaking, it is more convenient to use
polygonal representation for drawing, than to draw directly on the surface
in question. For instance, below is a drawing of K5 on the torus. (Note how
the green edge and the purple edge “wrap around” the rectangle.)

A

A−1

BB−1
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Further, below is a drawing of K5 on the projective plane (once again, note
how the green edge and the purple edge wrap around).

A

A

The following was proven in Discrete Math.6

Euler polyhedral formula. Let G be any connected planar multigraph.
Then for any drawing of G on the sphere (without edge crossings), we have
that

V − E + F = 2,

where V is the number of vertices, E the number of edges, and F the number
of faces of the drawing.

A net on a surface is a multigraph drawing on that surface (with no edge
crossings) in which every face is homeomorphic to an open disk. (Note that
the net (or rather, the multigraph whose drawing it is) must be connected.)
Our next theorem is a generalization of the Euler polyhedral formula for
surfaces of arbitrary genus. Before stating and proving the theorem, we make
an observation. If G is a net on a surface S, then subdividing an edge ℓ times
does not change the value of V −E + F (because both V and E increase by
ℓ, and F remains unchanged). Further, adding an edge between two existing
vertices and passing through a face does not change V − E + F (because
both E and F increase by one, and V remains unchanged; here, we are using
the fact that each face is homeomorphic to a disk, and so adding an edge
between two existing vertices necessarily “splits” an existing face into two).

Theorem 2.1. Let G be a net on an (orientable or non-orientable) surface
S of genus k. Let V be the number of vertices, E the number of edges, and
F the number of faces of this net. Then:

(a) if S is orientable, then V − E + F = 2− 2k;

(b) if S is non-orientable, then V − E + F = 2− k.

6Perhaps you saw the proof of the Euler polyhedral formula only for graphs (not
multigraphs). But note that any multigraph can be turned into a graph by edge subdivision,
which does not alter the expression V −E+F (because subdividing an edge once increases
both the number of vertices and the number of edges by one, while leaving the number of
faces unchanged). So, we can easily derive the multigraph version of the Euler polyhedral
formula from the graph version.
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Proof. (a) Assume that S is orientable. If k = 0, then S is the sphere, and
we are done by the Euler polyhedral formula. So, we may assume that k ≥ 1.
Then S is the connected sum of k tori, and it has a polygonal representation
(A1B1A

−1
1 B−1

1 ) . . . (AkBkA
−1
k B−1

k ).

A1

B1

A−1
1

B−1
1

B−1
k

A−1
k

Bk

Ak

Note that the 4k vertices of this polygon all correspond to the same point of
the surface S; we may assume that this point is a vertex of G (if not, just
“move” the net a bit until it is). Next, we will assume that G intersects the
boundary of the polygon in only finitely many points;7 we turn each point of
intersection of the net and the polygon boundary into a vertex (this is just
edge subdivision, and so V − E + F does not change). Finally, we turn the
boundary of the polygon into edges (subdivided according to the vertices
that appear on the boundary); this produces 2k (potentially subdivided)
loops in our net,8 and it does not alter V −E +F . We still call the resulting
net G, and we let V be the number of vertices, E the number of edges, and
F the number of faces of the net.9

Now, our net G on the surface S can be “translated” into a plane drawing
in the natural way: we simply place our polygon in the plane. Let Vp be
the number of vertices of G on S that lie in the interior of the edges of
the polygon (so, in our plane drawing, this turns into 2Vp vertices, because
each such vertex “doubles”), and let Ep be the number of edges of G on S
that lie on the polygon (so, in our plane drawing, this turns into 2Ep edges,
because each such edge “doubles”). Further, one vertex of G got turned
into 4k vertices (the vertices of the polygon) in our plane drawing. So, the
plane drawing has 4k + 2Vp + (V − 1 − Vp) = V + Vp + 4k − 1 vertices,

7This part is a bit informal: a full justification of our assumption requires somewhat
sophisticated topology.

8We have 4k edges on the boundary of the polygon, but after identification, they turn
into 2k loops.

9Technically, we have produced a new net G′, with corresponding (new) V ′, E′, and
F ′, and we have that V ′ − E′ + F ′ = V − E + F . However, for the sake of notational
simplicity, we just write G,V,E, F instead. Importantly, V − E + F has not changed.
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2Ep + (E − Ep) = E + Ep edges, and F + 1 faces (because of the exterior
face). Now, the Euler polyhedral formula gives us

(V + Vp + 4k − 1)− (E + Ep) + (F + 1) = 2,

and therefore,

(V − E + F ) + (Vp − Ep) = 2− 4k.

But note that Ep = Vp + 2k.10 So, V − E + F − 2k = 2− 4k, and therefore
V − E + F = 2− 2k, which is what we needed.

(b) Assume that S is non-orientable; then S is the connected sum of k
projective planes. Let (A1A1) . . . (AkAk) be the polygonal representation of
the surface S. The proof is now almost identical to that of part (a), except
that we have a 2k-gon, rather than a 4k-gon, and so the computation yields
V − E + F = 2− k.11

Corollary 2.2. Let G be a multigraph drawing (with no edge crossings) on
a surface S of genus k.12 Let V be the number of vertices, E the number of
edges, and F the number of faces of this net. Then:

(a) if S is orientable, then V − E + F ≥ 2− 2k;

(b) if S is non-orientable, then V − E + F ≥ 2− k.

Proof. We keep adding edges (possibly loops) to G without creating edge
crossings, until we obtain a net.13 The result is a net, and so the result
follows from Theorem 2.1.

The Euler characteristic of a surface S, denoted by ec(S), is the number
V −E+F , where V , E, and F are, respectively, the number of vertices, edges,
and faces of some net on S.14 By Theorem 2.1, this is well defined, i.e. the
number ec(S) depends only on the surface S, and not on the particular choice
of a net. Moreover, Theorem 2.1 states that if S is an orientable surface of
genus k, then ec(S) = 2 − 2k; on the other hand, if S is a non-orientable
surface of genus k, then ec(S) = 2−k.15 Moreover, Corollary 2.2 implies that

10Indeed, the polygon has 4k edges, which correspond to 2k loops on the surface S. Each
time we subdivide an edge, we increase both the number of vertices and the number of
edges by one.

11Check the details!
12Note: G need not be a net, that is, it is possible that not all faces are homeomorphic

to disks.
13Note that this may possibly decrease the value of V −E +F , but it cannot increase it.
14The Euler characteristic of a surface S is usually denoted by χ(S). However, some

texts use ec(S), to avoid confusion with the chromatic number. Here, we will use the
notation ec(S).

15So, the Euler characteristic of the sphere is 2, and the Euler characteristic of the torus
is 0. The Euler characteristic of the projective plane is 1.

9



if G is a multigraph drawing on a surface S, then V −E +F ≥ ec(S), where
V , E, and F are the number of vertices, edges, and faces of the drawing.

Note that the following corollary only holds for graphs (and not for
multigraphs). For emphasis, graphs without loops and parallel edges are
referred to as simple graphs.16

Corollary 2.3. Let G be a (simple) graph on at least two edges, drawn on
an (orientable or non-orientable) surface S (without edge crossings). Then

|E(G)| ≤ 3|V (G)| − 3ec(S).

Consequently, the average degree of G is at most 6− 6ec(S)
|V (G)| .

Proof. For each face f , we define ℓ(f) to be the number of edges incident
with f , with each edge incident with f on both sides counting twice. Since
G is simple and |E(G)| ≥ 2, we see that ℓ(f) ≥ 3 for all faces f . If F (G) is
the set of all faces, we get

2|E(G)| =
∑

f∈F (G)

ℓ(f) ≥ 3|F (G)|,

and therefore,
|F (G)| ≤ 2

3 |E(G)|

Now we compute

|E(G)| ≤ |V (G)|+ |F (G)| − ec(S) by Corollary 2.2

≤ |V (G)|+ 2
3 |E(G)| − ec(S),

and so
|E(G)| ≤ 3|V (G)| − 3ec(S).

Finally, since the average degree of G is 2|E(G)|
|V (G)| , the inequality above imme-

diately implies that the average degree of G is at most 6− 6ec(S)
|V (G)| .

3 The Heawood number

For an integer c ≤ 2, we define the Heawood number as follows:

H(c) :=
⌊
7+

√
49−24c
2

⌋
.

We remark that for the case when S is a sphere, the proof of our next
theorem uses the (highly non-trivial) Four Color Theorem, which states that
every planar graph is 4-colorable, i.e. has chromatic number at most four. If
S is any other surface, then the proof is relatively elementary.

16In some texts, graphs are always assumed to be simple (i.e. loopless and without
parallel edges), and in others, they are allowed to have loops and/or parallel edges.
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Theorem 3.1. If a (simple) graph G can be drawn without edge crossings
on an (orientable or non-orientable) surface S, then χ(G) ≤ H(ec(S)).

Proof. Fix a surface S and a graph G that can be drawn on S without
edge crossings. To simplify notation, set c := ec(S). We must show that
χ(G) ≤ H(c).

Suppose first that S is the sphere, so that G is a planar graph and
c = 2. By the Four Color Theorem, G is 4-colorable. On the other hand,
H(c) = H(2) = 4. So, χ(G) ≤ 4 = H(c).

From now on, we may assume that S is not a sphere, so that c ≤ 1.
Suppose that there exists a graph G that can be drawn on S without edge
crossings, but satisfies χ(G) > H(c); we may assume that G was chosen with
as few vertices as possible. Set n := |V (G)|; clearly, n ≥ χ(G) ≥ H(c) + 1.
Moreover, δ(G) ≥ H(c),17 for otherwise, we fix a vertex v ∈ V (G) such that
dG(v) ≤ H(c)− 1, we color G \ v with H(c) colors (this is possible by the
minimality of n), and then we extend this coloring to a proper coloring of G
using at most H(c) colors by assigning to v a color not used on any of its
neighbors.18 On the other hand, by Corollary 2.3, the average degree in G is
at most 6− 6c

n . So,
H(c) ≤ 6− 6c

n .

Since H(1) = 6, the inequality above does not hold if c = 1. So, c ≤ 0. Since
n ≥ H(c) + 1 > 0, it follows that −6c

n ≤ − 6c
H(c)+1 , and consequently,

H(c) ≤ 6− 6c
H(c)+1 .

Since H(c) > 0, the above is equivalent to

H(c)2 − 5H(c) + 6(c− 1) ≤ 0.

By solving the corresponding quadratic equation, we now get that

5−
√
49−24c
2 ≤ H(c) ≤ 5+

√
49−24c
2 .

But from the definition of H(c), we have that

H(c) =
⌊
7+

√
49−24c
2

⌋
> 7+

√
49−24c
2 − 1 = 5+

√
49−24c
2 ,

a contradiction.

The Klein bottle is the surface with polygonal representation AABB or
ABAB−1.19 Note that the Klein bottle is non-orientable (and therefore
cannot be embedded in R3);20 it has genus 2 and Euler characteristic 0.

17As usual, δ(G) is the minimum degree of G, i.e. δ(G) := min{dG(v) | v ∈ V (G)}.
18This contradicts our assumption that χ(G) > H(c).
19Check that these are equivalent!
20However, a geometric representation of the Klein bottle is possible in R3, provided we

allow the surface to intersect itself. The key is to remember that the intersection is not
“really” there, but is simply a feature of our attempt to represent the surface in R3. For a
video, see here: https://www.youtube.com/watch?v=yaeyNjUPVqs
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Theorem 3.2 (Ringel and Youngs). If S is a surface other than the Klein
bottle, then the complete graph KH(ec(S)) can be drawn on S (without edge
crossings).

We omit the proof of Theorem 3.2. Note, however, that Theorem 3.2
proves that the bound established in Theorem 3.1 is best possible, except
when S is the Klein bottle. For the Klein bottle, we can get a better bound.
Recall that the Euler characteristic of the Klein bottle is 0, and note that
H(0) = 7. However, as we shall see, the maximum chromatic number of a
graph that can be drawn on the Klein bottle without edge crossings is 6 (see
Theorem 3.4). We begin with the following Lemma, whose proof we omit.21

Lemma 3.3. K6 can be drawn on the Klein bottle (without edge crossings),
but K7 cannot.

We will also need Brooks’ theorem (stated below), whose proof will be
given in Lecture 6. As usual, ∆(G) is the maximum degree of a graph G, i.e.
∆(G) := max{dG(v) | v ∈ V (G)}.

Brooks’ theorem. Let G be a connected graph that is neither a complete
graph nor an odd cycle. Then χ(G) ≤ ∆(G).

Theorem 3.4. Let G be a graph that can be drawn on the Klein bottle
(without edge crossings). Then χ(G) ≤ 6.

Proof. Suppose otherwise, i.e. suppose χ(G) ≥ 7. We may assume that,
among all graphs that can be drawn on the Klein bottle but are not 6-
colorable, G has the smallest possible number of vertices. Note that this
means that δ(G) ≥ 6.22 On the other hand, since the Klein bottle has Euler
characteristic 0, Corollary 2.3 guarantees that G has average degree at most
6. But this is possible only if G is 6-regular. Now, by the minimality of
|V (G)|, we know that G is connected.23 Since χ(G) ≥ 7, Brooks’ theorem
guarantees that G ∼= K7. But this contradicts Lemma 3.3.

21You can try to prove the lemma as an exercise. Showing that K6 can be drawn on
the Klein bottle is easy, but showing that K7 cannot be drawn in such a way is more
complicated.

22Indeed, suppose G has a vertex v of degree at most 5. Then G \ v is 6-colorable (by
the minimality of |V (G)|). We then fix a proper coloring of G with at most six colors, and
we extend it to a proper coloring of G with at most six colors by assigning to v a color not
used on any of its neighbors. This contradicts our assumption that χ(G) ≥ 7.

23Otherwise, we take H to be a component of G such that χ(H) = χ(G), and we observe
that H contradicts the minimality of |V (G)|.
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