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Given a graph G and an edge xy ∈ E (G), we denote by G/xy
the graph obtained from G by contracting xy to a vertex vxy .

G

x y vxy

G/xy

For a non-negative integer k, a graph G is k-connected if it
satisfies the following two conditions:

|V (G)| ≥ k + 1;
for all S ⊆ V (G) such that |S| ≤ k − 1, the graph G \ S is
connected.
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Proposition 1.1
Let k be a positive integer, let G be a k-connected graph, and let
S ⊆ V (G) be such that |S| = k. Then every vertex of S has a
neighbor in each component of G \ S.

Proof.
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Lemma 1.2
Let G be a 3-connected graph on more than four vertices. Then G
has an edge e such that G/e is 3-connected.

Proof.

Claim. For all xy ∈ E (G), either G/xy is 3-connected,
or there exists a vertex z ∈ V (G) \ {x , y} such that G \
{x , y , z} is disconnected.

Proof of the Claim (outline). Fix xy ∈ E (G), and suppose that
G/xy is not 3-connected. Clearly, G/xy has at least four vertices,
and if S is a cutset of G/xy of size at most two, then it must
contain vxy , and then (S \ {vxy }) ∪ {x , y} is the cutset that we
need. This proves the Claim.
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Lemma 1.2
Let G be a 3-connected graph on more than four vertices. Then G
has an edge e such that G/e is 3-connected.

Proof (continued).

Since G is 3-connected, it is clear that G has at
least one edge. Now, suppose that for all e ∈ E (G), the graph G/e
is not 3-connected. Then using the Claim, we fix an edge
xy ∈ E (G) and a vertex z ∈ V (G) \ {x , y} such that G \ {x , y , z}
is disconnected, and we fix a component C of G \ {x , y , z}; we
may assume that xy , z , C were chosen so that |V (C)| is minimum.
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Using Proposition 1.1, we let v ∈ V (C) be a neighbor of z .
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Lemma 1.2
Let G be a 3-connected graph on more than four vertices. Then G
has an edge e such that G/e is 3-connected.

Proof (continued).
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By our supposition, G/zv is not 3-connected, and so by the Claim,
there exists some w ∈ V (G) \ {z , v} such that G \ {z , v , w} is
disconnected. Since xy ∈ E (G), there exists a component D of
G \ {z , v , w} such that x , y /∈ V (D); so, D is in fact a component
of G \ {x , y , z , v , w}, and in particular, it is a connected induced
subgraph of G \ {x , y , z}.
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Now, let us show that V (D) ⫋ V (C). By Proposition 1.1 we know
that v has a neighbor v ′ in V (D). But note that all neighbors of v
in G belong to V (C) ∪ {x , y , z}, and so since x , y , z /∈ V (D), we
have that v ′ ∈ V (D) ∩ V (C). Since C is a component and D a
connected induced subgraph of G \ {x , y , z}, we now deduce that
V (D) ⊆ V (C). Since v ∈ V (C) \ V (D), it follows that
V (D) ⫋ V (C). But this contradicts the minimality of C .



Lemma 1.2
Let G be a 3-connected graph on more than four vertices. Then G
has an edge e such that G/e is 3-connected.

Proof (continued).

z

v

w

D

x, y /∈ V (D)

v′

Now, let us show that V (D) ⫋ V (C).

By Proposition 1.1 we know
that v has a neighbor v ′ in V (D). But note that all neighbors of v
in G belong to V (C) ∪ {x , y , z}, and so since x , y , z /∈ V (D), we
have that v ′ ∈ V (D) ∩ V (C). Since C is a component and D a
connected induced subgraph of G \ {x , y , z}, we now deduce that
V (D) ⊆ V (C). Since v ∈ V (C) \ V (D), it follows that
V (D) ⫋ V (C). But this contradicts the minimality of C .



Lemma 1.2
Let G be a 3-connected graph on more than four vertices. Then G
has an edge e such that G/e is 3-connected.

Proof (continued).

z

v

w

D

x, y /∈ V (D)

v′

Now, let us show that V (D) ⫋ V (C). By Proposition 1.1 we know
that v has a neighbor v ′ in V (D).

But note that all neighbors of v
in G belong to V (C) ∪ {x , y , z}, and so since x , y , z /∈ V (D), we
have that v ′ ∈ V (D) ∩ V (C). Since C is a component and D a
connected induced subgraph of G \ {x , y , z}, we now deduce that
V (D) ⊆ V (C). Since v ∈ V (C) \ V (D), it follows that
V (D) ⫋ V (C). But this contradicts the minimality of C .



Lemma 1.2
Let G be a 3-connected graph on more than four vertices. Then G
has an edge e such that G/e is 3-connected.

Proof (continued).

z

v

w

D

x, y /∈ V (D)

v′

Now, let us show that V (D) ⫋ V (C). By Proposition 1.1 we know
that v has a neighbor v ′ in V (D). But note that all neighbors of v
in G belong to V (C) ∪ {x , y , z}, and so since x , y , z /∈ V (D), we
have that v ′ ∈ V (D) ∩ V (C).

Since C is a component and D a
connected induced subgraph of G \ {x , y , z}, we now deduce that
V (D) ⊆ V (C). Since v ∈ V (C) \ V (D), it follows that
V (D) ⫋ V (C). But this contradicts the minimality of C .



Lemma 1.2
Let G be a 3-connected graph on more than four vertices. Then G
has an edge e such that G/e is 3-connected.

Proof (continued).

z

v

w

D

x, y /∈ V (D)

v′

Now, let us show that V (D) ⫋ V (C). By Proposition 1.1 we know
that v has a neighbor v ′ in V (D). But note that all neighbors of v
in G belong to V (C) ∪ {x , y , z}, and so since x , y , z /∈ V (D), we
have that v ′ ∈ V (D) ∩ V (C). Since C is a component and D a
connected induced subgraph of G \ {x , y , z}, we now deduce that
V (D) ⊆ V (C).

Since v ∈ V (C) \ V (D), it follows that
V (D) ⫋ V (C). But this contradicts the minimality of C .



Lemma 1.2
Let G be a 3-connected graph on more than four vertices. Then G
has an edge e such that G/e is 3-connected.

Proof (continued).

z

v

w

D

x, y /∈ V (D)

v′

Now, let us show that V (D) ⫋ V (C). By Proposition 1.1 we know
that v has a neighbor v ′ in V (D). But note that all neighbors of v
in G belong to V (C) ∪ {x , y , z}, and so since x , y , z /∈ V (D), we
have that v ′ ∈ V (D) ∩ V (C). Since C is a component and D a
connected induced subgraph of G \ {x , y , z}, we now deduce that
V (D) ⊆ V (C). Since v ∈ V (C) \ V (D), it follows that
V (D) ⫋ V (C). But this contradicts the minimality of C .



Proposition 1.3
Let G be a graph, and let xy ∈ E (G) be such that
dG(x), dG(y) ≥ 3. If G/xy is 3-connected, then so is G .
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The dG(x), dG(y) ≥ 3 condition is necessary because every
3-connected graph G satisfies δ(G) ≥ 3.
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G G/xy
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Proposition 1.3
Let G be a graph, and let xy ∈ E (G) be such that
dG(x), dG(y) ≥ 3. If G/xy is 3-connected, then so is G .

Proof (outline).

Set G ′ := G/xy , and assume that G ′ is
3-connected. Then by definition, G ′ has at least four vertices, and
consequently, G has at least five vertices.
Now, fix S ⊆ V (G) such that |S| ≤ 2; we must show that G \ S is
connected. If S contains neither or both of x , y , then it’s easy
(details: Lecture Notes). So suppose (by symmetry) that x ∈ S
and y /∈ S.

x y

CD S
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Proposition 1.3
Let G be a graph, and let xy ∈ E (G) be such that
dG(x), dG(y) ≥ 3. If G/xy is 3-connected, then so is G .

Proof (outline, continued). Reminder: G ′ := G/xy.
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Since dG(y) ≥ 3, we have that V (C) \ {y} ≠ ∅. Set
S ′ := (S \ {x}) ∪ {vxy }, and note that G \ (S ∪ {y}) = G ′ \ S ′.
But now S ′ separates V (C) \ {y} ≠ ∅ from V (D) in G ′, contrary
to the fact that G ′ is 3-connected and |S ′| ≤ 2.
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S ′ := (S \ {x}) ∪ {vxy }, and note that G \ (S ∪ {y}) = G ′ \ S ′.

But now S ′ separates V (C) \ {y} ≠ ∅ from V (D) in G ′, contrary
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Lemma 1.2
Let G be a 3-connected graph on more than four vertices. Then G
has an edge e such that G/e is 3-connected.

Proposition 1.3
Let G be a graph, and let xy ∈ E (G) be such that
dG(x), dG(y) ≥ 3. If G/xy is 3-connected, then so is G .

Theorem 1.4 [Tutte, 1961]
A graph G is 3-connected if and only if there exists a sequence
G0, . . . , Gn of graphs with the following properties:
(1) G0 ∼= K4 and G = Gn;
(2) for all i ∈ {0, . . . , n − 1}, Gi+1 has an edge xy with

dGi+1(x), dGi+1(y) ≥ 3 and Gi = Gi+1/xy .

Proof. This follows from Lemma 1.2 and Proposition 1.3 (details:
Lecture Notes).
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(2) for all i ∈ {0, . . . , n − 1}, Gi+1 has an edge xy with

dGi+1(x), dGi+1(y) ≥ 3 and Gi = Gi+1/xy .

Theorem 1.4 guarantees that every 3-connected graph can be
obtained from K4 by repeatedly “decontracting” vertices into
edges, making sure that, at each step, both new vertices have
degree at least three.

G0
∼= K4 G1 G2 G3



Theorem 1.4 [Tutte, 1961]
A graph G is 3-connected if and only if there exists a sequence
G0, . . . , Gn of graphs with the following properties:
(1) G0 ∼= K4 and G = Gn;
(2) for all i ∈ {0, . . . , n − 1}, Gi+1 has an edge xy with

dGi+1(x), dGi+1(y) ≥ 3 and Gi = Gi+1/xy .

Theorem 1.4 guarantees that every 3-connected graph can be
obtained from K4 by repeatedly “decontracting” vertices into
edges, making sure that, at each step, both new vertices have
degree at least three.

G0
∼= K4 G1 G2 G3



Definition
A graph H is a topological minor of a graph G , and we write
H ⪯t G , if G contains some subdivision of H as a subgraph. The
vertices of this subdivision that correspond to the vertices of H are
called branch vertices.

The graph below contains K2,4 as a topological minor.

The topological minor relation is transitive, that is, for all
graphs G1, G2, G3, if G1 ⪯t G2 and G2 ⪯t G3, then G1 ⪯t G3.
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Definition
A graph H is a minor of a graph G , and we write H ⪯m G , if there
exists a family {Xv }v∈V (H) of pairwise disjoint, non-empty subsets
of V (G), called branch sets, such that

G [Xv ] is connected for all v ∈ V (H), and
for all uv ∈ E (H), there is an edge between Xu and Xv in G .

For example, the graph below (on the right) contains K2,4 as
a minor.

a b c d
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w

Xu

Xa
Xb

Xc Xd

Xw

K2,4



Our goal is to prove the following theorem, called
“Kuratowski’s theorem,” or sometimes the
“Kuratowski-Wagner theorem.”

Theorem 3.3 [Kuratowski, 1930; Wagner, 1937]
Let G be a graph. Then the following are equivalent:
(a) G is planar;
(b) G contains neither K5 nor K3,3 as a minor;
(c) G contains neither K5 nor K3,3 as a topological minor.

We will prove some preliminary results that we need for this
theorem today. We will complete the proof next time.
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Lemma 2.1
For all graphs G and H, the following are equivalent:
(1) H ⪯m G ;
(2) G can be transformed into (an isomorphic copy of) H by a

sequence of vertex deletions, edge deletions, and edge
contractions;

(3) there exists a subgraph G ′ of G such that G ′ can be
transformed into (an isomorphic copy) of H by a sequence of
edge contractions.

Proof. Lecture Notes.
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Lemma 2.2
The minor relation is transitive, that is, for all graphs G1, G2, G3, if
G1 ⪯m G2 and G2 ⪯m G3, then G1 ⪯m G3.

Proof.

Fix graphs G1, G2, G3 such that G1 ⪯m G2 and G2 ⪯m G3.
G1 can be obtained from G2 by a sequence of vertex deletions,
edge deletions, and edge contractions, and G2 can similarly be
obtained from G3. So, G1 can be obtained from G3 by a sequence
of vertex deletions, edge deletions, and edge contractions. So, by
Lemma 2.1, we have that G1 ⪯m G3.

Lemma 2.2 can also be proven directly, using the definition of
a minor.

Proof?
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Lemma 2.3
For all graphs G and H, if H ⪯t G , then H ⪯m G .

Proof.

Fix graphs G and H, and assume that H ⪯t G . Then G
contains a subgraph G ′ that is isomorphic to a subdivision of H,
and clearly, H can be obtained from the subgraph G ′ by a sequence
of edge contractions. Now Lemma 2.1 guarantees that H ⪯m G .

Note that the converse of Lemma 2.3 is false, i.e. it is possible
that H ⪯m G , but H ̸⪯t G .
For example, the graph below contains K1,4 as a minor, but
not as a topological minor.
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Lemma 2.4
Let G and H be graphs such that H ⪯m G and ∆(H) ≤ 3. Then
H ⪯t G .

Proof.

Let G ′ be a minimal subgraph of G such that H ⪯m G ′,
and let {Xv }v∈V (H) be the corresponding branch sets in V (G ′).
Our goal is to show that G ′ is itself a subdivision of H. By the
minimality of G ′, we know that for all distinct u, v ∈ V (H), we
have that

if uv ∈ E (H), then there is exactly one edge between Xu and
Xv in G ′,
if uv /∈ E (H), then there are no edges between Xu and Xv .

By the minimality of G ′, G ′[Xv ] is a tree.
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Proof (continued).

Now, for each v ∈ V (H), we let Tv be the
graph obtained from G ′[Xv ] by adding to it the edges between Xv
and V (G ′) \ Xv (and the endpoints of those edges).
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Proof (continued).

Xv

Tv

Clearly, for each v ∈ V (H), the graph Tv is a tree. Since
∆(H) ≤ 3, the minimality of G ′ guarantees that Tv has at most
three leaves, and so ∆(Tv ) ≤ 3. Moreover, Tv has at most one
vertex of degree three, and if this vertex exists, then it belongs to
Xv .
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Now, for all v ∈ V (H), we let v ′ be the unique vertex of Tv of
degree three if such a vertex exists, and otherwise, we let v ′ be any
vertex in Xv .

It is now clear that G ′ is a subdivision of H (vertices
v ′ are the branch vertices), and so H ⪯t G .
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Lemma 2.5
Let G be a graph. Then the following are equivalent:
(1) G contains at least one K5, K3,3 as a topological minor;
(2) G contains at least one K5, K3,3 as a minor.

Proof (outline).

In view of Lemma 2.4, it suffices to show that if
K5 ⪯m G , then either K5 ⪯t G or K3,3 ⪯m G . So, assume that
K5 ⪯m G . Let G ′ be a minimal subgraph of G such that K5 ⪯m G ′.
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Definition
A graph is planar if it can be drawn in the plane without any edge
crossings.

Obviously, a graph can be drawn in the plane without any
edge crossings if and only if it can be drawn on a sphere
without any edge crossings.
So, planar graphs are precisely those that can be drawn on a
sphere without any edge crossings.
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A graph is planar if it can be drawn in the plane without any edge
crossings.

When we draw a graph on a plane without edge crossings, we
divide the plane into regions, called faces; one of the faces,
called the outer face is unbounded, and the remaining faces
(called inner faces) are bounded.

inner
face

inner
face

outer
face

We can define faces on a sphere analogously, but in this case,
all faces are bounded, and we get no asymmetry between the
inner faces and the outer face.
For this reason, for proving theorems, it is often more
practical to draw on a sphere than on a plane.
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Lemma 3.1
If a graph is planar, then so are all its minors.

Proof.

Clearly, any graph obtained from a planar graph by deleting
one vertex, deleting one edge, or contracting one edge is planar.
So, by Lemma 2.1, all minors of a planar graph are planar.
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Definition
A homeomorphism of the sphere is a bijection f from the sphere to
itself such that both f and f −1 are continuous.

Informally, a homeomorphism of the sphere is the result of
“stretching” the sphere (and possibly also rotating and taking
mirror images).
Two graph drawings on the sphere are equivalent if some
sphere homeomorphism transforms one drawing into the other.
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Lemma 3.2
Graphs K5 and K3,3 are not planar. Consequently, no planar graph
contains K5 or K3,3 as a minor.

Proof.

Suppose that K5 is planar, so that we can draw it on a
sphere without any edge crossings. Let {a, b, c, d , e} be the vertex
set of the K5. We first draw the 5-cycle a, b, c, d , e, a on the
sphere.

a b

c

d

e

Since edges ac and bd do not cross, we must draw them through
distinct faces created by our 5-cycle a, b, c, d , e, a, and we obtain
the following (next slide).
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There is now only one way to add the edge ce to our drawing
without creating edge crossings (next slide).
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But now it is not possible to add the edge be to our drawing
without creating edge crossings.
So, K5 is not planar. A similar argument shows that K3,3 is not
planar.
Since K5 and K3,3 are not planar, Lemma 3.1 guarantees that no
planar graph contains K5 or K3,3 as a minor.
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Theorem 3.3 [Kuratowski, 1930; Wagner, 1937]
Let G be a graph. Then the following are equivalent:
(a) G is planar;
(b) G contains neither K5 nor K3,3 as a minor;
(c) G contains neither K5 nor K3,3 as a topological minor.

We have already proven the “easy” part of Kuratowski’s
theorem:

(a) implies (b) by Lemma 3.2;
(b) is equivalent to (c) by Lemma 2.5.

It remains to prove the “hard” part: (b) implies (a).
We will do this in the next lecture.
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Let G be a graph. Then the following are equivalent:
(a) G is planar;
(b) G contains neither K5 nor K3,3 as a minor;
(c) G contains neither K5 nor K3,3 as a topological minor.

We have already proven the “easy” part of Kuratowski’s
theorem:

(a) implies (b) by Lemma 3.2;
(b) is equivalent to (c) by Lemma 2.5.

It remains to prove the “hard” part: (b) implies (a).
We will do this in the next lecture.


