
NDMI012: Combinatorics and Graph Theory 2

Lecture #3

Minors and planar graphs (part I)

Irena Penev

1 3-connected graphs

Given a graph G and an edge xy ∈ E(G), we denote by G/xy the graph
obtained from G by contracting xy to a vertex vxy.

G

x y vxy

G/xy

More formally, G/xy is the graph with vertex set V (G/xy) = (V (G) \
{x, y}) ∪ {vxy} (where vxy /∈ V (G)) and edge set E(G) = {e ∈

(
V (G)\{x,y}

2

)
|

e ∈ E(G)}∪{vvxy | v ∈ V (G) \ {x, y}, and either vx ∈ E(G) or vy ∈ E(G)}.
If e = xy, then we sometimes write G/e instead of G/xy, and ve instead of
vxy.

Recall that for a non-negative integer k, a graph G is k-connected if it
satisfies the following two conditions:

� |V (G)| ≥ k + 1;

� for all S ⊆ V (G) such that |S| ≤ k − 1, the graph G \ S is connected.

Proposition 1.1. Let k be a positive integer, let G be a k-connected graph,
and let S ⊆ V (G) be such that |S| = k. Then every vertex of S has a neighbor
in each component of G \ S.

Proof. Suppose otherwise, and fix a vertex v ∈ S and a component C of
G \ S such that v has no neighbors in V (C). Then S \ {v} separates v from
V (C) in G, and in particular, G \ (S \ {v}) is disconnected. But this is
impossible since |S \ {v}| = k − 1 and G is k-connected.
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Lemma 1.2. Let G be a 3-connected graph on more than four vertices. Then
G has an edge e such that G/e is 3-connected.

Proof.

Claim. For all xy ∈ E(G), either G/xy is 3-connected, or
there exists a vertex z ∈ V (G) \ {x, y} such that G \ {x, y, z} is
disconnected.

Proof of the Claim. Fix xy ∈ E(G), and suppose that G/xy is not 3-
connected. Clearly, G/xy has at least four vertices,1 and so there exists
some S ⊆ V (G/xy) such that |S| ≤ 2 and (G/xy) \ S is disconnected. If
vxy /∈ S, then it is clear that G \ S is disconnected, contrary to the fact that
G is 3-connected. So, vxy ∈ S. Now set S′ = (S \ {vxy}) ∪ {x, y}. Then
|S′| = |S|+ 1 and G \ S′ = (G/xy) \ S; so, G \ S′ is disconnected. Since G is
3-connected, it follows that |S′| ≥ 3; since |S| ≤ 2, we deduce that |S′| = 3,
and the result follows.2 This proves the Claim. ♦

Since G is 3-connected, it is clear that G has at least one edge. Now,
suppose that for all e ∈ E(G), the graph G/e is not 3-connected. Then using
the Claim, we fix an edge xy ∈ E(G) and a vertex z ∈ V (G) \ {x, y} such
that G \ {x, y, z} is disconnected, and we fix a component C of G \ {x, y, z};
we may assume that xy, z, C were chosen so that |V (C)| is minimum.3

x

y

z v C

Using Proposition 1.1, we let v ∈ V (C) be a neighbor of z. By our supposition,
G/zv is not 3-connected, and so by the Claim, there exists some w ∈

1This is because |V (G)| > 4, and clearly, |V (G/xy)| = |V (G)| − 1.
2Indeed, we take z to be the (unique) vertex of S′ \ {x, y}.
3So, we are assuming that for all edges x′y′ ∈ E(G), all vertices z′ ∈ V (G) \ {x′, y′}

such that {x′, y′, z′} is disconnected, and all components C′ of G \ {x′, y′, z′}, we have
that |V (C)| ≤ |V (C′)|.
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V (G) \ {z, v} such that G \ {z, v, w} is disconnected.4 Since xy ∈ E(G),
there exists a component D of G \ {z, v, w} such that x, y /∈ V (D); so, D is
in fact a component of G \ {x, y, z, v, w}, and in particular, it is a connected
induced subgraph of G \ {x, y, z}.

z

v

w

D

x, y /∈ V (D)

v′

Now, let us show that V (D) ⫋ V (C). By Proposition 1.1,5 we know that v
has a neighbor v′ in V (D). But note that all neighbors of v in G belong to
V (C)∪{x, y, z}, and so since x, y, z /∈ V (D),6 we have that v′ ∈ V (D)∩V (C).
Since C is a component and D a connected induced subgraph of G \ {x, y, z},
we now deduce that V (D) ⊆ V (C). Since v ∈ V (C) \ V (D), it follows that
V (D) ⫋ V (C). But this contradicts the minimality of C.

Proposition 1.3. Let G be a graph, and let xy ∈ E(G) be such that
dG(x), dG(y) ≥ 3. If G/xy is 3-connected, then so is G.

Proof. To simplify notation, set G′ := G/xy. Assume that G′ is 3-connected.
Then by definition, G′ has at least four vertices, and consequently, G has at
least five vertices.

Now, fix S ⊆ V (G) such that |S| ≤ 2; we must show that G \ S is
connected. If S ∩ {x, y} = ∅, then (G \ S)/xy = G′ \ S; since G′ is 3-
connected, we see that G′ \ S is connected, and we deduce that (G \ S)/xy
is connected. But then clearly, G \ S is also connected. Next, if S = {x, y},
then G \ S = G′ \ vxy; since G′ is 3-connected, we know that G′ \ vxy is
connected, and so G \ S is connected.

It remains to consider the case when S contains exactly one of x, y. By
symmetry, we may assume that x ∈ S and y /∈ S. Now, suppose that G \ S
is disconnected. Let C be the component of G \S that contains y, and let D
be some other component of G \S. Clearly, NG(y) ⊆ S ∪ (V (C) \ {y}); since
dG(y) ≥ 3 and |S| ≤ 2, we see that V (C)\{y} ≠ ∅. Set S′ := (S\{x})∪{vxy},
and note that G \ (S ∪ {y}) = G′ \ S′. But now S′ separates V (C) \ {y} ≠ ∅
from V (D) in G′, contrary to the fact that G′ is 3-connected and |S′| ≤ 2.

4It is possible that w ∈ {x, y}.
5We are applying Proposition 1.1 to G, k = 3, and S = {z, v, x}.
6We already saw that x, y /∈ V (D). Since D is a component of G \ {z, v, w}, we also

have that z /∈ V (D). So, x, y, z /∈ V (D).

3



x y

CD S

Note that in the statement of Proposition 1.3, the requirement that
dG(x), dG(y) ≥ 3 is necessary, since every 3-connected graph G satisfies
δ(G) ≥ 3.7 For a concrete example, see the picture below (G/xy is 3-
connected, but G is not).

x y vxy

G G/xy

Theorem 1.4 (Tutte, 1961). A graph G is 3-connected if and only if there
exists a sequence G0, . . . , Gn of graphs with the following properties:

(1) G0
∼= K4 and G = Gn;

(2) for all i ∈ {0, . . . , n−1}, Gi+1 has an edge xy with dGi+1(x), dGi+1(y) ≥
3 and Gi = Gi+1/xy.

Proof. Fix a graph G.
By definition, all 3-connected graphs have at least four vertices, and it is

easy to see that K4 is (up to isomorphism) the only 3-connected graph on
four vertices. So, if G is 3-connected, then Lemma 1.2 and an easy induction
guarantee that there exists a sequence G0, . . . , Gn, as in the statement of the
theorem.

On the other hand, if there exists a sequence G0, . . . , Gn as in the state-
ment of the theorem, then Proposition 1.3 and an easy induction guarantee
that G is 3-connected.

Note that Theorem 1.4 guarantees that every 3-connected graph can be
obtained from K4 by repeatedly “decontracting” vertices into edges, making
sure that, at each step, both new vertices have degree at least three. An
example is shown below (at each step, the vertex to be “decontracted” is in
red, and in the subsequent step, the edge obtained by this “decontraction”
is in a dotted bag); each graph in the sequence is 3-connected.

7Otherwise, we take a vertex v ∈ V (G) with dG(v) ≤ 2, and we observe that NG(v)
separates v from V (G) \NG[v] (this is non-empty because |NG[v]| ≤ 3, and 3-connected
graphs have at least four vertices), contrary to the fact that |NG(v)| = dG(v) ≤ 2 and G is
3-connected.
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G0
∼= K4 G1 G2 G3

2 Minors and topological minors

A graph H is a topological minor of a graph G, and we write H ⪯t G, if
G contains some subdivision of H as a subgraph.8 The vertices of this
subdivision that correspond to the vertices of H are called branch vertices.9

For example, the graph below contains K2,4 as a topological minor (the
branch vertices are in dotted circles).

Obviously, the topological minor relation is transitive, that is, for all graphs
G1, G2, G3, if G1 ⪯t G2 and G2 ⪯t G3, then G1 ⪯t G3.

A graph H is a minor of a graph G, and we write H ⪯m G, if there exists
a family {Xv}v∈V (H) of pairwise disjoint, non-empty subsets of V (G), called
branch sets, such that

� G[Xv] is connected for all v ∈ V (H), and

� for all uv ∈ E(H), there is an edge between Xu and Xv in G.

For example, the graph below (on the right) contains K2,4 as a minor.

8Every graph is considered to be a subdivision of itself.
9If δ(H) ≥ 3, then branch vertices are uniquely defined. Otherwise, they need not be

uniquely defined.
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K2,4

Lemma 2.1. For all graphs G and H, the following are equivalent:

(1) H ⪯m G;

(2) G can be transformed into (an isomorphic copy of) H by a sequence
of vertex deletions, edge deletions, and edge contractions;10

(3) there exists a subgraph G′ of G such that G′ can be transformed into
(an isomorphic copy) of H by a sequence of edge contractions.11

Proof. Fix graphs G and H.
Suppose first that (1) holds, and let {Xv}v∈V (H) be the family of branch

sets of the H minor in G. Let G′ be the subgraph of G obtained by first

deleting V (G) \
(⋃

v∈V (H)Xv

)
, and then for all distinct u, v ∈ V (H) such

that uv /∈ E(H), deleting all the edges between Xu and Xv. Let G
′′ be the

graph obtained from G′ by contracting each Xv into a vertex (we contract
the Xv’s one edge at a time, in any order). Clearly, G′′ ∼= H. So, (3) holds.

Suppose now that (3) holds, and let G′ be a subgraph of G such that G′

can be transformed into (an isomorphic copy) of H by a sequence of edge
contractions. Let G0, . . . , Gℓ be a sequence of graphs such that G0 = G′,
Gℓ

∼= H, and for all i ∈ {0, . . . , ℓ − 1}, Gi+1 can be obtained from Gi by
contracting one edge. We may assume that Gℓ = H (we rename vertices if
necessary). For all v ∈ V (H), we setXℓ

v = {v}. Next, for all i ∈ {0, . . . , ℓ−1},
having defined the sets Xi+1

v , we define the sets Xi
v as follows. Let u1u2 ∈

E(Gi) be the edge of Gi that was contracted to obtain Gi+1, and let u be
the vertex formed by contracting that edge.12 For all v ∈ V (H), if u ∈ Xi+1

v ,
then we set Xi

v := (Xi+1
v \{u})∪{u1, u2}, and otherwise, we set Xi

v := Xi+1
v .

It then follows by an easy induction that for all i ∈ {0, . . . , ℓ}, {Xi
v}v∈V (H)

is a family of branch sets for the H minor in Gi. In particular, {X0
v}v∈V (H)

is a family of branch sets for the H minor in G0 = G′, and therefore (since
G′ is a subgraph of G) in G as well. So, (1) holds.

It is clear that (3) implies (2). Further, it is clear that if a graph G2 is
obtained from a graph G1 by first contracting an edge and then deleting a

10Possibly, G ∼= H.
11Possibly, G′ = G or G′ ∼= H.
12So, u = vu1u2 .
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vertex or an edge, then we can also obtain G2 from G1 by first deleting one
or more vertices or edges, and then possibly contracting an edge.13 Thus, if
H can be obtained from G by a sequence of vertex deletions, edge deletions,
and edge contractions, then H can be obtained from G by first (possibly)
deleting some vertices or edges (thus obtaining a subgraph G′ of G), and
then (possibly) contracting edges of G′. So, (2) implies (3).

We have now proven that (1), (2), and (3) are equivalent.

Lemma 2.2. The minor relation is transitive, that is, for all graphs G1, G2, G3,
if G1 ⪯m G2 and G2 ⪯m G3, then G1 ⪯m G3.

Proof. Fix graphs G1, G2, G3 such that G1 ⪯m G2 and G2 ⪯m G3. By
Lemma 2.1, G1 can be obtained from G2 by a sequence of vertex deletions,
edge deletions, and edge contractions, and G2 can similarly be obtained
from G3. So, G1 can be obtained from G3 by a sequence of vertex deletions,
edge deletions, and edge contractions. So, by Lemma 2.1, we have that
G1 ⪯m G3.

We remark that Lemma 2.2 can also be proven directly, using the defini-
tion of a minor.14

Lemma 2.3. For all graphs G and H, if H ⪯t G, then H ⪯m G.

Proof. Fix graphs G and H, and assume that H ⪯t G. Then G contains a
subgraph G′ that is isomorphic to a subdivision of H, and clearly, H can
be obtained from the subgraph G′ by a sequence of edge contractions. Now
Lemma 2.1 guarantees that H ⪯m G.

Note that the converse of Lemma 2.3 is false, i.e. it is possible that
H ⪯m G, but H ̸⪯t G. For example, the graph below contains K1,4 as a
minor (the branch sets are in dotted rectangles), but not as a topological
minor (this is because K1,4 contains a vertex of degree four, whereas the
maximum degree in the graph below is three).

13Let us prove this fully formally. Suppose that G2 is obtained from G1 by first
contracting an edge xy to a vertex vxy, and then deleting a vertex z. If z = vxy, then
G2 = G1 \ {x, y}; otherwise, G2 can be obtained from G1 by first deleting z, and then
contracting xy. Suppose now that G2 is obtained from G1 by first contracting an edge xy
to a vertex vxy, and then deleting an edge e. If vxy is an endpoint of e, say e = uvxy, then
we can obtain G2 from G1 by first deleting all edges between u and {x, y} (there is at least
one and at most two such edges) and then contracting xy; otherwise, we can obtain G2

from G1 by first deleting e and then contracting xy.
14Proof?
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We do, however, have the following lemma.

Lemma 2.4. Let G and H be graphs such that H ⪯m G and ∆(H) ≤ 3.
Then H ⪯t G.

Proof. Let G′ be a minimal subgraph of G such that H ⪯m G′,15 and let
{Xv}v∈V (H) be the corresponding branch sets in V (G′). Our goal is to show
that G′ is itself a subdivision of H. By the minimality of G′, we know that
for all distinct u, v ∈ V (H), we have that

� if uv ∈ E(H), then there is exactly one edge between Xu and Xv in
G′,16

� if uv /∈ E(H), then there are no edges between Xu and Xv.
17

By the minimality of G′, G′[Xv] is a tree.18 Now, for each v ∈ V (H), we let
Tv be the graph obtained from G′[Xv] by adding to it the edges between Xv

and V (G′) \Xv (and the endpoints of those edges); see the picture below.

Xv

Tv

Clearly, for each v ∈ V (H), the graph Tv is a tree. Since ∆(H) ≤ 3,
the minimality of G′ guarantees that Tv has at most three leaves, and so
∆(Tv) ≤ 3. Moreover, Tv has at most one vertex of degree three, and if this
vertex exists, then it belongs to Xv. Now, for all v ∈ V (H), we let v′ be the
unique vertex of Tv of degree three if such a vertex exists, and otherwise,
we let v′ be any vertex in Xv. It is now clear that G′ is a subdivision of H
(vertices v′ are the branch vertices), and so H ⪯t G.

Lemma 2.5. Let G be a graph. Then the following are equivalent:

(1) G contains at least one K5,K3,3 as a topological minor;

(2) G contains at least one K5,K3,3 as a minor.
15So, H ⪯m G′, but for all proper subgraphs G′′ of G′, we have that H ̸⪯m G′′.
16By the definition of a minor, there is at least one edge between Xu and Xv. If there is

more than one such edge, then we can contradict the minimality of G′ by deleting some
edge between Xu and Xv.

17Otherwise, we can contradict the minimality of G′ by deleting an edge between Xu

and Xv.
18Indeed, G′[Xv] is connected, and therefore has a spanning tree, call it T . If G′[Xv] ̸= T ,

then we can contradict the minimality of G′ by deleting all edges in E(G′[Xv]) \ E(T ).
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Proof. By Lemma 2.3, (1) implies (2). Suppose now that (2) holds. If
K3,3 ⪯t G, then Lemma 2.4 implies that K3,3 ⪯t K3,3, and we are done.
Suppose now that K5 ⪯m G. Our goal is to show that either K5 ⪯t G or
K3,3 ⪯m G.19

Let G′ be a minimal subgraph of G such that K5 ⪯m G′. Let X1, . . . , X5

be the branch sets of the K5 minor in G′.20 By the minimality of G′, we
have that G′[X1], . . . , G

′[X5] are all trees, and for all distinct i, j ∈ {1, . . . , 5},
there is exactly one edge between Xi and Xj in G′. For each i ∈ {1, . . . , 5},
let Ti be the graph obtained from G′[Xi] by adding the edges between Xi and
V (G′) \Xi (and the endpoints of those edges). Then for each i ∈ {1, . . . , 5},
Ti is a tree with exactly four leaves (each one of X1, . . . , X5, other than
Xi, contains exactly one of those four leaves), and we deduce that Ti is a
subdivision of one of the following two trees.

K1,4 T

If T1, . . . , T5 are all subdivisions of K1,4 (see the picture below, on the
left), then it is clear that G′ is a subdivision of K5, and it follows that
K5 ⪯t G. Suppose now that at least one of T1, . . . , T5 is a subdivision of T
(see the picture below, on the right); by symmetry, we may assume that T5

is a subdivision of T , and we let a, b be the two vertices of T5 of degree three
(note that a, b ∈ X5). Now let Xa

5 be the set of all vertices v ∈ X5 such that
the (unique) path between v and a in the tree T5 does not contain the vertex
b, and let Xb

5 := X5 \Xa
5 . Then a ∈ Xa

5 and b ∈ Xb
5, and it is easy to see

that G contains a K3,3 minor with branch sets X1, . . . , X4, X
a
5 , X

b
5. But now

Lemma 2.4 implies that K3,3 ⪯ G, and we are done.

a b

or

X5

X1

X2 X3

X4

X5

X1

X2 X3

X4

Xa
5 Xb

5

19Note that this is enough. Indeed, if K5 ⪯t G, then we are done. And if K3,3 ⪯m G,
then Lemma 2.4 guarantees that K3,3 ⪯t G, and again we are done.

20So, G′[X1], . . . , G
′[X5] are connected, and for all distinct i, j ∈ {1, . . . , 5}, there is an

edge between Xi and Xj in G′.
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3 Planar graphs

A graph is planar if it can be drawn in the plane without any edge crossings.
Obviously, a graph can be drawn in the plane without any edge crossings

if and only if it can be drawn on a sphere without any edge crossings. So,
planar graphs are precisely those that can be drawn on a sphere without any
edge crossings.

When we draw a graph on a plane without edge crossings, we divide
the plane into regions, called faces; one of the faces, called the outer face is
unbounded, and the remaining faces (called inner faces) are bounded.

inner
face

inner
face

outer
face

We can define faces on a sphere analogously, but in this case, all faces are
bounded, and we get no asymmetry between the inner faces and the outer
face. For this reason, for the purposes of proving theorems, it is often more
practical to draw on a sphere than on a plane.

Lemma 3.1. If a graph is planar, then so are all its minors.

Proof. Clearly, any graph obtained from a planar graph by deleting one vertex,
deleting one edge, or contracting one edge is planar. So, by Lemma 2.1, all
minors of a planar graph are planar.

A homeomorphism of the sphere is a bijection f from the sphere to itself
such that both f and f−1 are continuous. Informally, a homeomorphism of
the sphere is the result of “stretching” the sphere (and possibly also rotating
and taking mirror images).

Two graph drawings on the sphere are equivalent if some sphere homeo-
morphism transforms one drawing into the other.

Lemma 3.2. Graphs K5 and K3,3 are not planar. Consequently, no planar
graph contains K5 or K3,3 as a minor.

Proof. Suppose that K5 is planar, so that we can draw it on a sphere without
any edge crossings. Let {a, b, c, d, e} be the vertex set of the K5. We first
draw the 5-cycle a, b, c, d, e, a on the sphere.
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a b

c

d

e

Since edges ac and bd do not cross, we must draw them through distinct
faces created by our 5-cycle a, b, c, d, e, a, and we obtain the following.21

a b

c

d

e

There is now only one way to add the edge ce to our drawing without creating
edge crossings, as shown below.

a b

c

d

e

Further, there is only one way to add the edge ad to our drawing without
creating edge crossings, as shown below.

a b

c

d

e

But now it is not possible to add the edge be to our drawing without creating
edge crossings. So, K5 is not planar.

A similar argument shows that K3,3 is not planar.22

21Remember, we are on a sphere! So, we have full symmetry between the two faces
produced by the 5-cycle a, b, c, d, e, a.

22Check this!
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Since K5 and K3,3 are not planar, Lemma 3.1 guarantees that no planar
graph contains K5 or K3,3 as a minor.

The following theorem is usually referred to as “Kuratowski’s theorem,”
or sometimes as the “Kuratowski-Wagner theorem.”

Theorem 3.3 (Kuratowski, 1930; Wagner, 1937). Let G be a graph. Then
the following are equivalent:

(a) G is planar;

(b) G contains neither K5 nor K3,3 as a minor;

(c) G contains neither K5 nor K3,3 as a topological minor.

We have already proven the “easy” part of Kuratowski’s theorem: (a)
implies (b) by Lemma 3.2, and (b) is equivalent to (c) by Lemma 2.5. It
remains to prove the “hard” part: (b) implies (a). We will do this in the
next lecture.
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