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Definition

A matching in a graph G is a collection of edges of G, no two of
which share an endpoint.

Definition

A maximum matching of G is a matching M of G s.t. for all
matchings M’ of G, we have that |[M'| < |M|.

@ Our goal is to describe a polynomial-time algorithm that finds
a maximum matching in a graph.



Definition

Let M be a matching and v a vertex of G. If v is incident with
some edge of M, then v is saturated by M. Otherwise, v is
unsaturated by M.




Definition

Let M be a matching in a graph G. An M-alternating path is a
path ug, u1,...,u; in G s.t. every other edge of the path belongs
to M (and the remaining edges do not). An M-augmenting path is
an M-alternating path wug, u1, ..., ur (t # 0) s.t. ug, us are both
unsaturated by M.

@ For instance, in the picture below, ug, u1, us, Uz, ug, Us is an
M-augmenting path (edges of the matching M are in red).
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Let M be a matching in a graph G, and let ug, u1,..., us be an
M-augmenting path. Then t is odd and

M = (I\/I \ {u1u2, uzlg, .. ., Ut—ZUt—l})

U{uout, upus, ..., ur_1us}

is a matching of G satisfying |M'| = [M| + 1.

Proof. This follows from the relevant definitions.



Theorem 1.2 [Berge, 1957]

Let M be a matching in a graph G. Then M is a maximum
matching of G iff G has no M-augmenting path.
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Theorem 1.2 [Berge, 1957]

Let M be a matching in a graph G. Then M is a maximum
matching of G iff G has no M-augmenting path.

Proof. We will prove the contrapositive: the matching M is not
maximum iff G has an M-augmenting path.

If G has an M-augmenting path, then Lemma 1.1 guarantees that
M is not a maximum matching of G.

Suppose now that M is not a maximum matching, and let M’ be
matching of G s.t. [M'| > |M|. Let F := MAM'’, and let H be the
graph with vertex set V(H) = V(G) and edge set E(H) = F.
Clearly, A(H) < 2. So, H is the disjoint union of paths and cycles.
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Let M be a matching in a graph G. Then M is a maximum
matching of G iff G has no M-augmenting path.

Proof (continued). Now, since |M’'| > |M|, some component P of
H has more edges of M’ than of M. If P is a cycle, then we see
that some vertex of P is incident two edges of M, contrary to the
fact that M’ is a matching.




Theorem 1.2 [Berge, 1957]

Let M be a matching in a graph G. Then M is a maximum
matching of G iff G has no M-augmenting path.

Proof (continued). Now, since |M’'| > |M|, some component P of
H has more edges of M’ than of M. If P is a cycle, then we see
that some vertex of P is incident two edges of M, contrary to the
fact that M’ is a matching. So, P is a path, and it is easy to see
that it is in fact an M-augmenting path in G.
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Definition

Suppose that M is a matching in a graph G. A blossom is a cycle
o, C1,- - - , Cok, Co Of length 2k + 1 (with kK > 1) in G in which
edges c1¢p, C3Ca, . .., Cok_1Cok belong to M, and the remaining

k 4+ 1 edges do not belong to M. A stem for this blossom is an
M-alternating path sp, ..., s; of even length s.t. sy = ¢p is the
unique common vertex of the cycle ¢y, c1, ..., Cok, ¢ and the path
S0, ---,S¢, and sp is unsaturated by M. A flower is the union of a
blossom and a corresponding stem.
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Definition
Let G be a graph, and let C C V(G) and ¢ € C. We say that G’ is
the graph obtained form G by contracting C to c if

o V(G") = V(G)\(C\{c}) = (V(6)\ C)U{c}, and
o E(G') = ((V(Gz)\c) n E(G)) U {xc |x € V(G)\ C, 3c' e
C st xc' € E(G)}.
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Let M be a matching in a graph G, and let C = ¢, ..., ck, co be
a blossom and S = sp, ..., s; a corresponding stem (in particular,
co = Sp). Let G’ be the graph obtained from G by contracting C
to ¢y, and let M' = M\ E(C). Then M’ is a matching of G'.
Furthermore, M is a maximum matching of G if and only if M’ is a
maximum matching of G'.
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Suppose now that ¢ is saturated by M”.



Proof (outline). The fact that M’ is a matching of G’ follows from
the appropriate definitions.

Suppose that M’ is not a maximum matching of G’; we must show
that M is not a maximum matching of G. Let M” be a matching
of G’ of size greater than |M’|. If ¢ is unsaturated by M”, then

M’ U (I\/I N E(C)) is a matching of G of size greater than |[M|.

Suppose now that ¢ is saturated by M”. Then there exists some
vertex x € V(G)\ V(C) and an index j € {0,...,2k} s.t.

xcj € E(G). But now the matching

(M"\ {xco}) U {xc;} U{cjt1¢j42, G+3Cjt4, - - -, Girak—1Gj12} is a
matching of G of size greater than |M]|.
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M = (I\/I’ \ E(S)) U {s12,5354,...,S1—15¢}.
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Proof (outline). Suppose that M is not a maximum matching of
G; we must show that M’ is not a maximum matching of G’.

First, let M := (M \ (E(C) UE(S)) U
{C0C17 €2C3, .-, C2kf2c2kfl} U {5152, 5354, - - - ,547152} and
M = (I\/I’ \ E(S)) U {s12,5354,...,S1—15¢}.

Clearly, M is a matching of G of the same size as M, and M’ is a

matching of G’ of the same size as M’. Since the matching M of

G is not maximum, neither is M; so, by Theorem 2.1, there exists

an M—augmenting path in G, say P = py, ..., pt. By Theorem 2.1,
it now suffices to exhibit an M’-augmenting path in G'.



Proof (outline).
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Proof (outline).
Cof—1 C2 Cof—1 C2
Cok 1 Cok 1
Co = So Co = So
S1 —_— S1
M M
Sy S¢

If V(P)N V(C) =0, then P is an M'-augmenting path in G’, and
we are done.



Proof (outline).
Cof—1 C2 Cof—1 C2
Cok 1 Cok 1
Co = So Co = So
S1 —_— S1
M M
Sy S¢

If V(P)N V(C) =0, then P is an M'-augmenting path in G’, and
we are done. So, we may assume that V(P) N V(C) # 0.



Proof (outline).

Cof—1 C2 Cof—1 C2

Co (6] Co C1

o = S0 o = S0
S1 —_— S1

If V(P)N V(C) =0, then P is an M'-augmenting path in G’, and
we are done. So, we may assume that V(P) N V(C) # . First of
all, o is the only vertex in V/(C) that is unsaturated by M; since
both pg, p: are unsaturated by M, we see that at most one of pg, p;

belongs to V(C).



Proof (outline).

Cof—1 C2 Cof—1

Co

o = S0 o = S0
S1 —_— S1

If V(P)N V(C) =0, then P is an M'-augmenting path in G’, and
we are done. So, we may assume that V(P) N V(C) # . First of
all, o is the only vertex in V/(C) that is unsaturated by M; since
both pg, p: are unsaturated by M, we see that at most one of pg, p;
belongs to V(C). By symmetry, we may assume that py ¢ V(C).



Proof (outline).

Cof—1 C2 Cof—1

Co

o = S0 o = S0
S1 —_— S1

If V(P)N V(C) =0, then P is an M'-augmenting path in G’, and
we are done. So, we may assume that V(P) N V(C) # . First of
all, o is the only vertex in V/(C) that is unsaturated by M; since
both pg, p: are unsaturated by M, we see that at most one of pg, p;
belongs to V(C). By symmetry, we may assume that py ¢ V(C).
Now, set t; := min{i € {1,...,t} | pj € V(C)}. But then

PO, ---,Pt—1,Co iS an M’—augmenting path in G’, and we are done.
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either produce a larger matching, or determine that no larger
matching exists.



Edmonds’ Blossom algorithm

@ Let G be an input graph. Initially, we start with the empty
matching, and we iteratively increase the size of the matching
until this is no longer possible, at which point, our matching is
maximum.

o All we need to do is show how, given a matching M in G, we
either produce a larger matching, or determine that no larger
matching exists.

o We proceed as follows.



Edmonds’ Blossom algorithm

e Step 1. First, using breadth-first search, we form an auxiliary
forest F (which is a subgraph of G) as follows. V/(F) is
partitioned into levels, Lg, L1, Ly, ..., where:

o level Ly consists of all vertices of G that are unsaturated by M,

o for all integers k > 0, Ly is the set of vertices at distance k (in
F) from Lo;

e for an even integers k > 0, edges between Ly and Ly, in F do
not belong to M, and edges between Lyy; and Li,» in F do
belong to M.
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Edmonds’ Blossom algorithm

@ Step 2. If there exists an edge e € E(G) between even levels
of two distinct trees, we obtain an M-augmenting path, and
then we obtain a matching of size |[M| + 1, as in Lemma 1.1.
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Edmonds’ Blossom algorithm

e Step 2 (continued). If there exists an edge e € E(G)
between two vertices, say x and y, belonging to even levels of
the same tree T,, then we can find a flower (i.e. a blossom
with a corresponding stem).
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Edmonds’ Blossom algorithm

e Step 2 (continued). If there exists an edge e € E(G)
between two vertices, say x and y, belonging to even levels of
the same tree T,, then we can find a flower (i.e. a blossom

with a corresponding stem).
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o Let G’ be the graph obtained from G by contracting C to a
vertex cg, and let M’ = M\ E(C) (as in Lemma 2.1).



Edmonds’ Blossom algorithm

e Step 2 (continued). If there exists an edge e € E(G)
between two vertices, say x and y, belonging to even levels of
the same tree T,, then we can find a flower (i.e. a blossom

with a corresponding stem).
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o Let G’ be the graph obtained from G by contracting C to a
vertex cg, and let M’ = M\ E(C) (as in Lemma 2.1).
o We now call the algorithm with input G’ and M.
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e Step 2 (continued). Then there are two cases.



Edmonds’ Blossom algorithm
e Step 2 (continued). Then there are two cases.

o If we obtain the answer that M’ is a maximum matching in G/,
then (by Lemma 2.1) M is a maximum matching in G, and we
are done.
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o If we obtain the answer that M’ is a maximum matching in G/,
then (by Lemma 2.1) M is a maximum matching in G, and we

are done.
o Suppose we obtained a matching M” in G’ that is size greater
than |[M'].



Edmonds’ Blossom algorithm
e Step 2 (continued). Then there are two cases.
o If we obtain the answer that M’ is a maximum matching in G/,
then (by Lemma 2.1) M is a maximum matching in G, and we

are done.
o Suppose we obtained a matching M” in G’ that is size greater
than |[M'].
o If ¢ is unsaturated by M”, then (E(C)NM)UM" is a
matching in G of size greater than |M|, and we are done.



Edmonds’ Blossom algorithm
e Step 2 (continued). Then there are two cases.

o If we obtain the answer that M’ is a maximum matching in G/,
then (by Lemma 2.1) M is a maximum matching in G, and we
are done.

o Suppose we obtained a matching M” in G’ that is size greater
than |[M'].

o If ¢ is unsaturated by M”, then (E(C)NM)UM" is a
matching in G of size greater than |M|, and we are done.

o If ¢ is saturated by M”, then we can obtain a matching of G
of size greater than |M| as in the proof of Lemma 2.1.

cj x Co T



Edmonds’ Blossom algorithm
e Step 2 (continued).

o If there is an edge e € M\ E(F) has at least one endpoint in
V(F), then we get either a flower or an M-augmenting path
(this is similar to the above; details: Lecture Notes).



Edmonds’ Blossom algorithm
e Step 2 (continued).

o If there is an edge e € M\ E(F) has at least one endpoint in
V(F), then we get either a flower or an M-augmenting path
(this is similar to the above; details: Lecture Notes).

o Suppose now that there are no edges (of G) between vertices
in even levels, and moreover, that every edge of M that has an
endpoint in V(F) is in fact an edge of F. In this case, G
contains no M-augmenting path (details: Lecture Notes) and
so by Theorem 1.2, M is a maximum matching of G.
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@ Remark: The running time of Edmonds’ Blossom algorithm is
O(n*), if the algorithm is implemented in the obvious way.



