
NDMI012: Combinatorics and Graph Theory 2

Lecture #2

Edmonds’ Blossom algorithm

Irena Penev

Convention: In all our figures, edges of the matching in question are in
red.1

1 M-augmenting paths

Let M be a matching in a graph G. An M-alternating path is a path
u0, u1, . . . , ut in G such that every other edge of the path belongs to M (and
the remaining edges do not). An M-augmenting path is an M -alternating
path u0, u1, . . . , ut (t ̸= 0) such that u0, ut are both unsaturated by M .
For instance, in the picture below, u0, u1, u2, u3, u4, u5 is an M -augmenting
path (as usual, the edges of the matching M are in red; the edges of the
M -augmenting path that do not belong to M are in blue).

u0

u1

u2

u3u4

u5

Lemma 1.1. Let M be a matching in a graph G, and let u0, u1, . . . , ut be
an M -augmenting path. Then t is odd and

M ′ :=
(
M \ {u1u2, u3u4, . . . , ut−2ut−1}

)
∪ {u0u1, u2u3, . . . , ut−1ut}

is a matching of G satisfying |M ′| = |M |+ 1.

1This is not a standard convention. We simply use it in these lecture notes.

1

Proof. This follows from the relevant definitions.

Theorem 1.2. [Berge, 1957] Let M be a matching in a graph G. Then M
is a maximum matching of G if and only if G has no M -augmenting path.

Proof. We will prove the contrapositive: the matching M is not maximum
if and only if G has an M -augmenting path.

If G has an M -augmenting path, then Lemma 1.1 guarantees that M is
not a maximum matching of G.

Suppose now thatM is not a maximum matching, and let M ′ be matching
of G such that |M ′| > |M |. Let F := M∆M ′,2 and let H be the graph with
vertex set V (H) = V (G) and edge set E(H) = F . Clearly, ∆(H) ≤ 2.3 So,
H is the disjoint union of paths and cycles.

Now, since |M ′| > |M |, some component P of H has more edges of M ′

than of M . If P is a cycle, then we see that some vertex of P is incident two
edges of M ′, contrary to the fact that M ′ is a matching. So, P is a path,
and it is easy to see that it is in fact an M -augmenting path in G.4

2 Blossoms and stems

Our goal is to give a polynomial-time algorithm that finds a maximum
matching in a graph. The basic idea is to start with an empty matching, and
then repeatedly find augmenting paths and use them to find larger matchings
(as in Lemma 1.1). We do this until no augmenting path remains, at which
point Theorem 1.2 guarantees that our matching is maximum. We now need
to show how we can find a maximum matching. In this section, we describe
the basic tools that we need, and in the subsequent section, we describe the
algorithm.

We begin with a definition. Suppose that M is a matching in a graph
G. A blossom is a cycle c0, c1, . . . , c2k, c0 of length 2k + 1 (with k ≥ 1) in G

2By definition, M∆M ′ = (M \M ′) ∪ (M ′ \M).
3Recall that ∆(H) is the maximum degree in H, i.e. ∆(H) = max{dH(v) | v ∈ V (H)}.

Let us check that ∆(H) ≤ 2. Since M and M ′ are matchings, we see that every vertex v of
G is incident with at most one edge of M and at most one edge of M ′. Since V (H) = V (G)
and E(H) ⊆ M ∪M ′, it follows that every vertex of H is incident with at most two edges;
thus, ∆(H) ≤ 2.

4Indeed, let P be of the form u0, u1, . . . , ut. All edges of P are in M∆M ′, and so since
M and M ′ are both matchings, the edges of M \M ′ and M ′ \M alternate on P . Since P
has more edges of M ′ than of M , we have that P has an odd number of edges (so, t is
odd), and that u0u1, u2u3, . . . , ut−1ut ∈ M ′ \M and u1u2, u3u4, . . . , ut−2, ut−1 ∈ M \M ′

(see the picture below; edges of M \M ′ are in red, and edges of M ′ \M are in blue).

u0

ut

The fact that u0, ut are unsaturated by M follows from the construction of H, and from
the fact that P is a component of H.

2

in which edges c1c2, c3c4, . . . , c2k−1c2k belong to M , and the remaining k + 1
edges do not belong to M . A stem for this blossom is an M -alternating path
s0, . . . , sℓ of even length5 such that s0 = c0 is the unique common vertex of
the cycle c0, c1, . . . , c2k, c0 and the path s0, . . . , sℓ, and sℓ is unsaturated by
M .6 The union of a blossom and a corresponding stem is called a flower.7

An example is shown below.

c0 = s0

c1

c2

c2k

s1

s`

c2k−1

Next, let G be a graph, and let C ⊆ V (G) and c ∈ C. We say that G′ is
the graph obtained form G by contracting C to c if

� V (G′) = V (G) \ (C \ {c}) = (V (G) \ C) ∪ {c}, and

� E(G′) =
((

V (G)\C
2

)
∩ E(G)

)
∪
{
xc | x ∈ V (G) \ C, ∃c′ ∈ C s.t. xc′ ∈

E(G)
}
.

C

c

x y

zw

x y

c
zw

G G′

contracting
C to c

Lemma 2.1. Let M be a matching in a graph G, and let C = c0, . . . , c2k, c0
be a blossom and S = s0, . . . , sℓ a corresponding stem (in particular, c0 = s0).
Let G′ be the graph obtained from G by contracting C to c0,

8 and let M ′ =
M \ E(C). Then M ′ is a matching of G′. Furthermore, M is a maximum
matching of G if and only if M ′ is a maximum matching of G′.

5So, the path has an even number of edges, and therefore, ℓ is even.
6Note that this implies that either ℓ = 0 and c0 = s0 is unsaturated by M , or ℓ ≥ 2

and s0s1 ∈ M .
7Note that there may be more than one stem for a fixed blossom. Nonetheless, all stems

attach to the same vertex of the blossom.
8Technically, we mean that G is obtained by contracting V (C) to c.

3

Proof. The fact that M ′ is a matching of G′ follows from the appropriate
definitions.

Suppose first that M ′ is not a maximum matching of G′; we must show
that M is not a maximum matching of G. Let M ′′ be a matching of G′

of size greater than |M ′|. If c0 is unsaturated by M ′′, then M ′′ ∪
(
M ∩

E(C)
)
is a matching of G of size greater than |M |. Suppose now that c0

is saturated by M ′′. Then there exists some vertex x ∈ V (G) \ V (C) and
an index j ∈ {0, . . . , 2k} such that xcj ∈ E(G). But now the matching
(M ′′ \ {xc0}) ∪ {xcj} ∪ {cj+1cj+2, cj+3cj+4, . . . , cj+2k−1cj+2k} is a matching
of G of size greater than |M | (see the picture below).

c0 xcj x

Suppose now that M is not a maximum matching of G; we must

show that M ′ is not a maximum matching of G′. First, let M̃ :=
(
M \

(E(C) ∪ E(S)
)
∪ {c0c1, c2c3, . . . , c2k−2c2k−1} ∪ {s1s2, s3s4, . . . , sℓ−1sℓ} and

M̃ ′ =
(
M ′ \ E(S)

)
∪ {s1s2, s3s4, . . . , sℓ−1sℓ}.

c0 = s0

c1

c2

c2k

s1

s`

c2k−1

c0 = s0

c1

c2

c2k

s1

s`

c2k−1

M M̃

Clearly, M̃ is a matching of G of the same size as M , and M̃ ′ is a matching
of G′ of the same size as M ′. Since the matching M of G is not maximum,
neither is M̃ ; so, by Theorem 1.2, there exists an M̃ -augmenting path in G,
say P = p0, . . . , pt. It now suffices to exhibit an M̃ ′-augmenting path in G′,
for Theorem 1.2 will then imply that the matching M̃ ′ is not maximum in
G′, and consequently, M ′ is not maximum in G′, either.

If V (P)∩ V (C) = ∅, then P is an M̃ ′-augmenting path in G′, and we are
done. So, we may assume that V (P)∩ V (C) ̸= ∅. First of all, c2k is the only

vertex in V (C) that is unsaturated by M̃ ; since both p0, pt are unsaturated by

M̃ , we see that at most one of p0, pt belongs to V (C). By symmetry, we may
assume that p0 /∈ V (C). Now, set t1 := min{i ∈ {1, . . . , t} | pi ∈ V (C)}. But

4

then p0, . . . , pt1−1, c0 is an M̃ ′-augmenting path in G′,9 and we are done.

3 Edmonds’ Blossom algorithm

In what follows, we will use the following notation: for a tree T and vertices
x, y ∈ V (T), we denote by x− T − y the unique path between x and y in T .

Let G be an input graph. Initially, we start with the empty matching,
and we iteratively increase the size of the matching until this is no longer
possible, at which point, our matching is maximum. All we need to do is
show how, given a matching M in G, we either produce a larger matching,
or determine that no larger matching exists. We proceed as follows.

Step 1. First, we form an auxiliary forest F (which is a subgraph of G)
as follows. V (F) is partitioned into levels, L0, L1, L2, Level L0 consists
of all vertices of G that are unsaturated by M . If L0 = ∅, then M is a perfect
(and therefore maximum) matching of G, and we are done. So, we may
assume that L0 ̸= ∅. Then, using breadth-first-search, we form a (maximal)
forest F in such a way that, for each integer k ≥ 0, Lk is the set of all
vertices of F that are at distance k from L0 in F ,10 and moreover, for all
even k ≥ 0, edges between Lk and Lk+1 in F do not belong to M , and edges
between Lk+1 and Lk+2 in F do belong to M . For each v ∈ L0, the unique
component of F that contains v is the tree Tv rooted at v.

L0

L1

L2

L3

L4

v1 v2 vt

Tv1 Tv2 Tvt

Step 2. If there exists an edge e ∈ E(G) between even levels of two
distinct trees, we immediately obtain an M -augmenting path,11 and then we
obtain a matching of size |M |+ 1, as in Lemma 1.1.

9We are using the fact that, by construction, c0 is unsaturated by M̃ ′ in G′.
10So: distance is counted in the forest F , and not in the whole graph G.
11Indeed, suppose that for distinct u, v ∈ L0, and some even p, q, we have an edge e

between a vertex u′ ∈ V (Tu)∩Lp and a vertex v′ ∈ V (Tv)∩Lq. Then u−Tu−u′−v′−Tv−v
is an M -augmenting path in G.

5

L0

L1

L2

L3

L4

e

If there exists an edge e ∈ E(G) between two vertices, say x and y,
belonging to even levels of the same tree Tu, then we can find a flower (i.e. a
blossom with a corresponding stem), as follows.

L0

L1

L2

L3

L4
e

x y

u

We consider the (unique) path in Tu between x and u in Tu, and the (unique)
path in Tu between y and u. The union of these two paths, together with
the edge e, is a flower in G, say, with blossom C = c0, . . . , c2k, c0 and stem
S = s0, . . . , sℓ, where c0 = s0 and sℓ ∈ L0. Let G′ be the graph obtained
from G by contracting C to a vertex c0, and let M ′ = M \ E(C) (as in
Lemma 2.1). We now call the algorithm with input G′ and M ′. Then there
are two cases.

� If we obtain the answer that M ′ is a maximum matching in G′, then
(by Lemma 2.1) M is a maximum matching in G, and we are done.

� Suppose we obtained a matching M ′′ in G′ that is of size greater than
|M ′|. If c0 is unsaturated by M ′′, then (E(C)∩M)∪M ′′ is a matching
in G of size greater than |M |, and we are done. Suppose now that c0 is
saturated by M ′′, and let x ∈ V (G)\V (C) be such that xc0 ∈ M ′′. Let
v be some vertex of C such that xv ∈ E(G), and let MC be the (unique)

matching of size |V (C)|−1
2 in C, chosen so that v is MC-unsaturated.

Then (M ′′ \ {xc0})∪{xv}∪MC is a matching in G of size greater than
|M |.

Next, suppose that some edge e ∈ M \ E(F) has at least one endpoint
in V (F). Set e = xy. Then e in fact has both its endpoints in V (F),
for otherwise, it would have been added to F via our breadth-first-search
construction. Moreover, both endpoints of e must belong to odd levels. If
both endpoints of e belong to the same tree Tu (for some u ∈ L0), then
similarly to the previous case, we obtain a flower containing e, and we then

6

proceed as in the previous case. So, we may assume that e does not have
both its endpoints in the same tree. Then there exist distinct u, v ∈ L0

such that x ∈ V (Tu) and y ∈ V (Tv), and so u − Tu − x − y − Tv − v is an
M -augmenting path in G. We can now obtain a matching of size |M |+1, as
in Lemma 1.1.

From now on, we assume that there are no edges (of G) between vertices
in even levels, and moreover, that every edge of M that has an endpoint
in V (F) is in fact an edge of F . We now claim that G contains no M -
augmenting path, and that M is therefore (by Theorem 1.2) a maximum
matching in G. Since L0 is the set of all vertices that are unsaturated by M ,
it suffices to show that no non-trivial M -alternating path has more than one
endpoint in L0.

12 So, fix an M -alternating path P = p0, . . . , pt, with t ≥ 1.
We must show that at most one of p0, pt belongs to L0. If neither p0 nor
pt belongs to L0, then we are done. So, by symmetry, we may assume that
p0 ∈ L0, and we must show that pt /∈ L0.

Claim. For all i ∈ {0, . . . , t− 1}, one of the following holds:

(1) pipi+1 ∈ E(F), and there exists an integer k such that
pi ∈ Lk and pi+1 ∈ Lk+1;

(2) pipi+1 /∈ E(F), pi belongs to an even level, and pi+1 belongs
to an odd level.13

Proof of the Claim. We proceed by induction on i. First of all, p0 ∈ L0.
So, if p0p1 ∈ E(F), then p1 ∈ L1, and (1) holds for i = 0. So, we may
assume that p0p1 /∈ E(F). Since vetices of L0 are unsaturated by M , we
know that p0p1 /∈ M . Now p1 ∈ V (F), for otherwise, our breadth-first-search
construction of F would have added p0p1 to F . Since there are no edges
between even levels, we see that p1 belongs to an odd level, and so (2) holds
for i = 0.

Now, fix i ∈ {0, . . . , t − 2}, and assume that the claim holds for i. We
must show it holds for i+ 1.

Suppose first that (1) holds for i, i.e. that pipi+1 ∈ E(F), and there exists
an integer k such that pi ∈ Lk and pi+1 ∈ Lk+1. If pi+1pi+2 ∈ E(F), then
pi+2 ∈ Lk+2, and (1) holds for i+1. So, assume that pi+1pi+2 /∈ E(F). Then
pi+1pi+2 /∈ M ,14 and so since P is M -alternating, we see that pipi+1 ∈ M .
But then k is odd and k + 1 is even. Note that pi+2 ∈ V (F), for otherwise,
our breadth-first-search construction of F would have added pi+1pi+2 to F .
Since there are no edges between even levels of F , and since pi+1 belongs to
an even level, it follows that pi+2 belongs to an odd level. So, i+ 1 satisfies
(2).

12A path is non-trivial if it has at least one edge.
13Note that both (1) and (2) imply that pi, pi+1 ∈ V (F).
14This is because pi+1 ∈ V (F), but pi+1pi+2 /∈ E(F).

7

Suppose now that (2) holds for i, i.e. that pipi+1 /∈ E(F), pi belongs to
an even level, and pi+1 belongs to an odd level. Since pipi+1 has an endpoint
in V (F), but does not belong to E(F), we see that pipi+1 /∈ M . Therefore,
pi+1pi+2 ∈ M , since P is M -alternating. So, pi+1pi+2 ∈ E(F).15 Since pi+1

belongs to an odd level, say Lk, we see that pi+2 belongs to the even level
Lk+1. So, (1) holds for i+ 1. This proves the Claim. ■

In view of the Claim, p0 is the only vertex of P that belongs to L0.
16 So,

pt /∈ L0, and we are done.

Remark: The running time of Edmonds’ Blossom algorithm is O(n4), if
the algorithm is implemented in the obvious way. We omit the details.

15This is because pi+1pi+2 ∈ M and pi+1 ∈ V (F).
16Indeed, fix i ∈ {1, . . . , t}. In view of the Claim, pi either belongs to an odd level, or it

belongs to a level that is one higher than the level that pi−1 belongs to. In either case,
pi /∈ L0.

8

