NDMI012: Combinatorics and Graph Theory 2

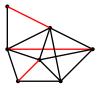
Lecture #1

Matchings in general graphs

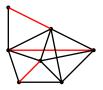
Irena Penev

February 15, 2022

A matching in a graph G is a collection of edges of G, no two of which share an endpoint.



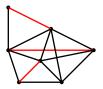
A matching in a graph G is a collection of edges of G, no two of which share an endpoint.



Definition

A maximum matching of G is a matching M of G s.t. for all matchings M' of G, we have that $|M'| \leq |M|$. The matching number of G, denoted by $\nu(G)$, is the size of a maximum matching (i.e. the number of edges in a maximum matching).

A matching in a graph G is a collection of edges of G, no two of which share an endpoint.



Definition

A maximum matching of G is a matching M of G s.t. for all matchings M' of G, we have that $|M'| \le |M|$. The matching number of G, denoted by $\nu(G)$, is the size of a maximum matching (i.e. the number of edges in a maximum matching).

• Remark:
$$\nu(G) \leq \left\lfloor \frac{|V(G)|}{2} \right\rfloor$$
.

If *M* is a matching and *v* is a vertex of a graph *G*, then we say that *v* is *saturated* by *M* if *v* is incident with some edge of *M*. A set $X \subseteq V(G)$ is *saturated* by *M* if every vertex in *X* is saturated by *M*.

If *M* is a matching and *v* is a vertex of a graph *G*, then we say that *v* is *saturated* by *M* if *v* is incident with some edge of *M*. A set $X \subseteq V(G)$ is *saturated* by *M* if every vertex in *X* is saturated by *M*.

Definition

A matching M of a graph graph G is *perfect* if all vertices of G are saturated by M.

If *M* is a matching and *v* is a vertex of a graph *G*, then we say that *v* is *saturated* by *M* if *v* is incident with some edge of *M*. A set $X \subseteq V(G)$ is *saturated* by *M* if every vertex in *X* is saturated by *M*.

Definition

A matching M of a graph graph G is *perfect* if all vertices of G are saturated by M.

• A graph G has a perfect matching iff
$$\nu(G) = \frac{|V(G)|}{2}$$
.

If *M* is a matching and *v* is a vertex of a graph *G*, then we say that *v* is *saturated* by *M* if *v* is incident with some edge of *M*. A set $X \subseteq V(G)$ is *saturated* by *M* if every vertex in *X* is saturated by *M*.

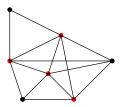
Definition

A matching M of a graph graph G is *perfect* if all vertices of G are saturated by M.

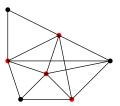
- A graph G has a perfect matching iff $\nu(G) = \frac{|V(G)|}{2}$.
- In particular, every graph that has a perfect matching, has an even number of vertices.

- In Combinatorics & Graphs 1, we proved a couple of theorems about matchings in bipartite graphs:
 - the Kőnig-Egerváry theorem;
 - Hall's theorem.
- Here, we state both these theorems without proof.
- We will use Hall's theorem later in the lecture.

A vertex cover of a graph G is any set C of vertices of G such that every edge of G has at least one endpoint in C.

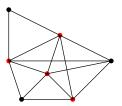


A vertex cover of a graph G is any set C of vertices of G such that every edge of G has at least one endpoint in C.



• For any graph G, any vertex cover of G is of size $\geq \nu(G)$.

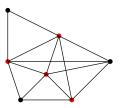
A vertex cover of a graph G is any set C of vertices of G such that every edge of G has at least one endpoint in C.



• For any graph G, any vertex cover of G is of size $\geq \nu(G)$.

 Indeed, if C is a vertex cover of G, and M is a matching of G, then C contains at least one endpoint of each edge of M; since no two edges of M share an endpoint, it follows that |C| ≥ |M|.

A vertex cover of a graph G is any set C of vertices of G such that every edge of G has at least one endpoint in C.



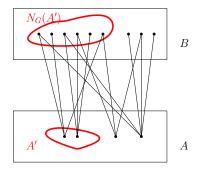
The Kőnig-Egerváry theorem

The maximum size of a matching in a bipartite graph is equal to the minimum size of a vertex cover in that graph.

Hall's theorem

Let G be a bipartite graph with bipartition (A, B). Then the following are equivalent:

- (a) all sets $A' \subseteq A$ satisfy $|A'| \leq |N_G(A')|$;
- (b) G has an A-saturating matching.



An *odd component* of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

An *odd component* of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right)$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \mathsf{odd}(G \setminus S)$.

An *odd component* of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right)$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

• We first prove Tutte's theorem using the Tutte-Berge formula.

An *odd component* of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right)$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \text{odd}(G \setminus S)$.

- We first prove Tutte's theorem using the Tutte-Berge formula.
- Then, we give an application of Tutte's theorem (called Petersen's theorem).

An *odd component* of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right)$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \text{odd}(G \setminus S)$.

- We first prove Tutte's theorem using the Tutte-Berge formula.
- Then, we give an application of Tutte's theorem (called Petersen's theorem).
- Finally, we prove the Tutte-Berge formula.

• Tutte-Berge:
$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \mathsf{odd}(G \setminus U) \right)$$

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \mathsf{odd}(G \setminus S)$.

Proof.

• Tutte-Berge:
$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \mathsf{odd}(G \setminus U) \right)$$

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \text{odd}(G \setminus S)$.

Proof. Fix a graph G. Clearly, the following are equivalent: (a) every set $S \subseteq V(G)$ satisfies $|S| \ge \text{odd}(G \setminus S)$; (b) $\min_{U \subseteq V(G)} (|V(G)| + |U| - \text{odd}(G \setminus U)) \ge |V(G)|$.

• Tutte-Berge:
$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \mathsf{odd}(G \setminus U) \right)$$

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Proof. Fix a graph G. Clearly, the following are equivalent: (a) every set $S \subseteq V(G)$ satisfies $|S| \ge \text{odd}(G \setminus S)$; (b) $\min_{U \subseteq V(G)} (|V(G)| + |U| - \text{odd}(G \setminus U)) \ge |V(G)|$. By the Tutte-Berge formula, (b) is equivalent to (c) $\nu(G) \ge \frac{|V(G)|}{2}$.

• Tutte-Berge:
$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \mathsf{odd}(G \setminus U) \right)$$

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Proof. Fix a graph G. Clearly, the following are equivalent: (a) every set $S \subseteq V(G)$ satisfies $|S| \ge \text{odd}(G \setminus S)$; (b) $\min_{U \subseteq V(G)} (|V(G)| + |U| - \text{odd}(G \setminus U)) \ge |V(G)|$. By the Tutte-Berge formula, (b) is equivalent to (c) $\nu(G) \ge \frac{|V(G)|}{2}$. But clearly, (c) holds iff G has a perfect matching.

• Tutte-Berge:
$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \mathsf{odd}(G \setminus U) \right)$$

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Proof. Fix a graph G. Clearly, the following are equivalent: (a) every set $S \subseteq V(G)$ satisfies $|S| \ge \text{odd}(G \setminus S)$; (b) $\min_{U \subseteq V(G)} (|V(G)| + |U| - \text{odd}(G \setminus U)) \ge |V(G)|$. By the Tutte-Berge formula, (b) is equivalent to (c) $\nu(G) \ge \frac{|V(G)|}{2}$.

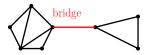
But clearly, (c) holds iff G has a perfect matching. So, (a) holds iff G has a perfect matching, which is what we needed to show.

For a nonnegative integer k, a graph G is k-regular if all vertices of G are of degree k. A graph is *cubic* if it is 3-regular.

For a nonnegative integer k, a graph G is k-regular if all vertices of G are of degree k. A graph is *cubic* if it is 3-regular.

Definition

A bridge in a graph G is an edge $e \in E(G)$ s.t. G - e has more components than G. A graph is bridgeless if it has no bridge.



For a nonnegative integer k, a graph G is k-regular if all vertices of G are of degree k. A graph is *cubic* if it is 3-regular.

Definition

A bridge in a graph G is an edge $e \in E(G)$ s.t. G - e has more components than G. A graph is bridgeless if it has no bridge.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

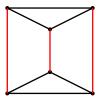
Every cubic, bridgeless graph has a perfect matching.

Proof.

Every cubic, bridgeless graph has a perfect matching.

Proof. Fix a cubic, bridgeless graph *G*.

Every cubic, bridgeless graph has a perfect matching.



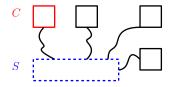
Proof. Fix a cubic, bridgeless graph G. We will apply Tutte's theorem.

Every cubic, bridgeless graph has a perfect matching.

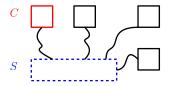
Proof. Fix a cubic, bridgeless graph *G*. We will apply Tutte's theorem. Fix $S \subseteq V(G)$; we must show that $|S| \ge \text{odd}(G \setminus S)$.

Proof of the Claim.

Proof of the Claim. Suppose that *C* is an odd component of $G \setminus S$, and let ℓ be the number of edges between *S* and V(C).

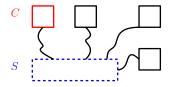


Proof of the Claim. Suppose that *C* is an odd component of $G \setminus S$, and let ℓ be the number of edges between *S* and V(C).



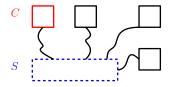
Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$.

Proof of the Claim. Suppose that *C* is an odd component of $G \setminus S$, and let ℓ be the number of edges between *S* and V(C).



Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since C is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd.

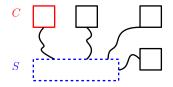
Proof of the Claim. Suppose that *C* is an odd component of $G \setminus S$, and let ℓ be the number of edges between *S* and V(C).



Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since C is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd. On the other hand, $\sum_{v \in V(C)} d_G(v) = 2|E(G[C])| + \ell$,

Claim. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

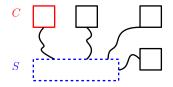
Proof of the Claim. Suppose that *C* is an odd component of $G \setminus S$, and let ℓ be the number of edges between *S* and V(C).



Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since C is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd. On the other hand, $\sum_{v \in V(C)} d_G(v) = 2|E(G[C])| + \ell$, and so ℓ is odd.

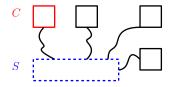
Claim. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Proof of the Claim. Suppose that *C* is an odd component of $G \setminus S$, and let ℓ be the number of edges between *S* and V(C).



Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since C is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd. On the other hand, $\sum_{v \in V(C)} d_G(v) = 2|E(G[C])| + \ell$, and so ℓ is odd. If $\ell = 1$, then the unique edge between S and V(C) is a bridge in G, contrary to the fact that G is bridgeless. **Claim.** For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Proof of the Claim. Suppose that *C* is an odd component of $G \setminus S$, and let ℓ be the number of edges between *S* and V(C).



Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since C is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd. On the other hand, $\sum_{v \in V(C)} d_G(v) = 2|E(G[C])| + \ell$, and so ℓ is odd. If $\ell = 1$, then the unique edge between S and V(C) is a bridge in G, contrary to the fact that G is bridgeless. So, $\ell \ge 3$. This proves the Claim.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \mathsf{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: *G* is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \text{odd}(G \setminus S)$.

Claim. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \mathsf{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: *G* is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \text{odd}(G \setminus S)$.

Claim. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \operatorname{odd}(G \setminus S)$.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \mathsf{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: *G* is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \text{odd}(G \setminus S)$.

Claim. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \text{odd}(G \setminus S)$. By the Claim, the number of edges between S and $V(G) \setminus S$ is at least 3t.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \mathsf{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: *G* is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \text{odd}(G \setminus S)$.

Claim. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \text{odd}(G \setminus S)$. By the Claim, the number of edges between S and $V(G) \setminus S$ is at least 3t. On the other hand, since G is cubic, the total number of edges incident with at least one vertex of S as at most 3|S|.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \mathsf{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: *G* is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \text{odd}(G \setminus S)$.

Claim. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \text{odd}(G \setminus S)$. By the Claim, the number of edges between S and $V(G) \setminus S$ is at least 3t. On the other hand, since G is cubic, the total number of edges incident with at least one vertex of S as at most 3|S|. Thus, $3t \le 3|S|$, i.e. $|S| \ge t = \text{odd}(G \setminus S)$.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \mathsf{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: *G* is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \text{odd}(G \setminus S)$.

Claim. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \operatorname{odd}(G \setminus S)$. By the Claim, the number of edges between S and $V(G) \setminus S$ is at least 3t. On the other hand, since G is cubic, the total number of edges incident with at least one vertex of S as at most 3|S|. Thus, $3t \le 3|S|$, i.e. $|S| \ge t = \operatorname{odd}(G \setminus S)$. So, by Tutte's theorem, G has a perfect matching.

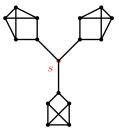
Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

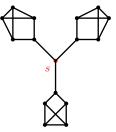
• The bridgelessness requirement from Petersen's theorem is necessary, as the example below shows.



Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

• The bridgelessness requirement from Petersen's theorem is necessary, as the example below shows.



- The graph above (call it G) is cubic, but not bridgeless. For $S := \{s\}$, we have $odd(G \setminus S) = 3$, and so $|S| < odd(G \setminus S)$.
- Thus, by Tutte's theorem, G does not have a perfect matching.

• It remains to prove the Tutte-Berge formula!

The Tutte-Berge formula

Every graph G satisfies $\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} (|V(G)| + |U| - \operatorname{odd}(G \setminus U)).$ • It remains to prove the Tutte-Berge formula!

The Tutte-Berge formula

Every graph G satisfies $\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} (|V(G)| + |U| - \operatorname{odd}(G \setminus U)).$

Remark 3.1

Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\operatorname{odd}(G \setminus S)}{2}$.

• It remains to prove the Tutte-Berge formula!

The Tutte-Berge formula

Every graph G satisfies $\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} (|V(G)| + |U| - \operatorname{odd}(G \setminus U)).$

Remark 3.1

Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G \setminus S)}{2}$.

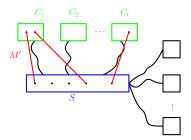
• Remark 3.1 guarantees that for every graph G, we have $\nu(G) \leq \frac{1}{2} \min_{U \subseteq V(G)} (|V(G)| + |U| - \text{odd}(G \setminus U)).$

Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G \setminus S)}{2}$.

Proof.

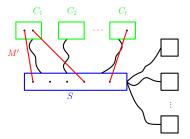
Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G \setminus S)}{2}$.

Proof. Fix $S \subseteq V(G)$, set $t := \text{odd}(G \setminus S)$, and let C_1, \ldots, C_t be the odd components of $G \setminus S$. Fix any matching M in G. Let M' be the set of all edges of M that have one endpoint in S and the other one in $V(C_1) \cup \ldots V(C_t)$; obviously, $|M'| \leq |S|$.



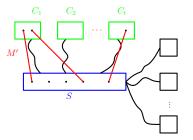
Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G \setminus S)}{2}$.

Proof (continued).



Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G \setminus S)}{2}$.

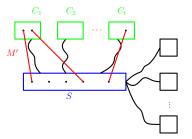
Proof (continued).



Since the components C_1, \ldots, C_t are all odd, at least $t - |M'| \ge t - |S|$ of them have a vertex that is unsaturated by M.

Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G \setminus S)}{2}$.

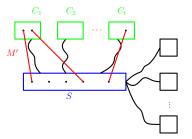
Proof (continued).



Since the components C_1, \ldots, C_t are all odd, at least $t - |M'| \ge t - |S|$ of them have a vertex that is unsaturated by M. So, the total number of vertices of G that are saturated by M is at most |V(G)| + |S| - t, and so $|M| \le \frac{|V(G)| + |S| - t}{2}$.

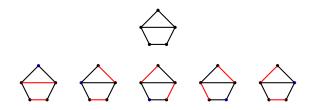
Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G \setminus S)}{2}$.

Proof (continued).

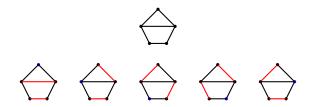


Since the components C_1, \ldots, C_t are all odd, at least $t - |M'| \ge t - |S|$ of them have a vertex that is unsaturated by M. So, the total number of vertices of G that are saturated by M is at most |V(G)| + |S| - t, and so $|M| \le \frac{|V(G)| + |S| - t}{2}$. Thus, $\nu(G) \le \frac{|V(G)| + |S| - t}{2} = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

A graph G is hypomatchable if it does not have a perfect matching, but for all $v \in V(G)$, the graph $G \setminus v$ does have a perfect matching.

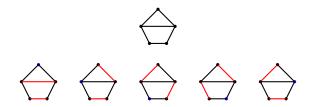


A graph G is *hypomatchable* if it does not have a perfect matching, but for all $v \in V(G)$, the graph $G \setminus v$ does have a perfect matching.



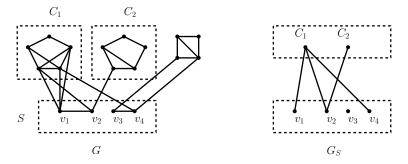
• A hypomatchable component of a graph G is a component of G that is a hypomatchable graph.

A graph G is *hypomatchable* if it does not have a perfect matching, but for all $v \in V(G)$, the graph $G \setminus v$ does have a perfect matching.



- A hypomatchable component of a graph G is a component of G that is a hypomatchable graph.
- Obviously, every hypomatchable component of G is odd.

For a graph G and a set S ⊆ V(G), let us denote by G_S the bipartite graph whose one side of the bipartition is S, and whose other side of the bipartition is the collection of all odd components of G \ S, and in which a vertex v ∈ S and an odd component C of G \ S are adjacent iff v has a neighbor in V(C) in G.



- A Gallai-Edmonds set in a graph G is a set $S \subseteq V(G)$ s.t.
 - every component of $G \setminus S$ is hypomatchable;
 - the bipartite graph G_S has an S-saturating matching.

- A Gallai-Edmonds set in a graph G is a set $S \subseteq V(G)$ s.t.
 - every component of $G \setminus S$ is hypomatchable;
 - the bipartite graph G_S has an S-saturating matching.

Lemma 3.2

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}.$

Lemma 3.3

Every graph has a Gallai-Edmonds set.

- A Gallai-Edmonds set in a graph G is a set $S \subseteq V(G)$ s.t.
 - every component of $G \setminus S$ is hypomatchable;
 - the bipartite graph G_S has an S-saturating matching.

Lemma 3.2

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Lemma 3.3

Every graph has a Gallai-Edmonds set.

• We will prove Lemmas 3.2 and 3.3.

- A Gallai-Edmonds set in a graph G is a set $S \subseteq V(G)$ s.t.
 - every component of $G \setminus S$ is hypomatchable;
 - the bipartite graph G_S has an S-saturating matching.

Lemma 3.2

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Lemma 3.3

Every graph has a Gallai-Edmonds set.

- We will prove Lemmas 3.2 and 3.3.
- But first, let us show that they (together) imply the Tutte-Berge formula.

The Tutte-Berge formula

Every graph G satisfies $\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} (|V(G)| + |U| - \operatorname{odd}(G \setminus U)).$

Proof (assuming Lemmas 3.2 and 3.3).

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} (|V(G)| + |U| - \operatorname{odd}(G \setminus U)).$$

Proof (assuming Lemmas 3.2 and 3.3). Fix a graph G. By Lemma 3.3, G contains a Gallai-Edmonds set, call it S. Then

$$\nu(G) \stackrel{\text{by Lemma 3.2}}{=} \frac{|V(G)|+|S|-\text{odd}(G\setminus S)}{2}$$

$$\geq \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)|+|U|-\text{odd}(G \setminus U) \right).$$

The reverse inequality follows immediately from Remark 3.1.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} (|V(G)| + |U| - \operatorname{odd}(G \setminus U)).$$

Proof (assuming Lemmas 3.2 and 3.3). Fix a graph G. By Lemma 3.3, G contains a Gallai-Edmonds set, call it S. Then

$$\nu(G) \stackrel{\text{by Lemma 3.2}}{=} \frac{|V(G)|+|S|-\text{odd}(G\setminus S)}{2}$$
$$\geq \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)|+|U|-\text{odd}(G \setminus U) \right).$$

The reverse inequality follows immediately from Remark 3.1.

• It remains to prove Lemmas 3.2 and 3.3.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Proof.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Proof. Let S be a Gallai-Edmonds set of a graph G.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G\setminus S)}{2}$. It remains to show that $\nu(G) \geq \frac{|V(G)|+|S|-\text{odd}(G\setminus S)}{2}$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Proof. Let *S* be a Gallai-Edmonds set of a graph *G*. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G\setminus S)}{2}$. It remains to show that $\nu(G) \geq \frac{|V(G)|+|S|-\text{odd}(G\setminus S)}{2}$. To simplify notation, set n := |V(G)|, s := |S|, and $t := \text{odd}(G \setminus S)$. We must show that $\nu(G) \geq \frac{n+s-t}{2}$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

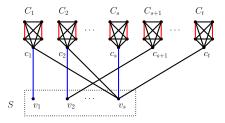
Proof. Let *S* be a Gallai-Edmonds set of a graph *G*. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)|+|S|-\text{odd}(G\setminus S)}{2}$. It remains to show that $\nu(G) \geq \frac{|V(G)|+|S|-\text{odd}(G\setminus S)}{2}$. To simplify notation, set n := |V(G)|, s := |S|, and $t := \text{odd}(G \setminus S)$. We must show that $\nu(G) \geq \frac{n+s-t}{2}$. We will prove this by exhibiting a matching *M* in *G* of size $\frac{n+s-t}{2}$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)| + |S| - odd(G \setminus S)}{2}$. It remains to show that $\nu(G) \geq \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$. To simplify notation, set n := |V(G)|, s := |S|, and $t := \operatorname{odd}(G \setminus S)$. We must show that $\nu(G) \geq \frac{n+s-t}{2}$. We will prove this by exhibiting a matching M in G of size $\frac{n+s-t}{2}$. Let C_1, \ldots, C_t be the odd components of $G \setminus S$ (since all components of $G \setminus S$ are hypomatchable and therefore odd, we see that C_1, \ldots, C_t are in fact all the components of $G \setminus S$, and set $S = \{v_1, \ldots, v_s\}.$

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

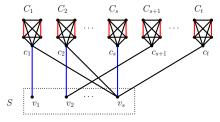
Proof (continued).



Since *S* is a Gallai-Edmonds set, G_S has an *S*-saturating matching, call it M_S . By symmetry, WMA $M_S = \{v_1 C_1, \ldots, v_s C_s\}$. For each $i \in \{1, \ldots, s\}$, choose a vertex $c_i \in V(C_i)$ s.t. $v_i c_i \in E(G)$. For all $i \in \{s + 1, \ldots, t\}$, choose any vertex $c_i \in C_i$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

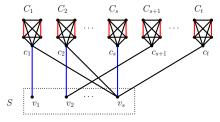
Proof (continued).



Further, since S is a Gallai-Edmonds set, for all $i \in \{1, ..., t\}$, C_i is hypomatchable, and in particular, $C_i \setminus c_i$ has a perfect matching, call it M_i . Now, set $M := \{v_1c_1, ..., v_sc_s\} \cup M_1 \cup \cdots \cup M_t$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Proof (continued).



Further, since *S* is a Gallai-Edmonds set, for all $i \in \{1, ..., t\}$, C_i is hypomatchable, and in particular, $C_i \setminus c_i$ has a perfect matching, call it M_i . Now, set $M := \{v_1c_1, ..., v_sc_s\} \cup M_1 \cup \cdots \cup M_t$. Moreover, *M* saturates all but t - s vertices of *G* (indeed, the only vertices of *G* unsaturated by *M* are $c_{s+1}, ..., c_t$), and so $|M| = \frac{n - (t-s)}{2} = \frac{n+s-t}{2}$.

Every graph has a Gallai-Edmonds set.

Proof.

Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer than |V(G)| vertices has a Gallai-Edmonds set.

Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer than |V(G)| vertices has a Gallai-Edmonds set. Choose a set $S \subseteq V(G)$ so that $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible. Our goal is to show that S is a Gallai-Edmonds set.

Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer than |V(G)| vertices has a Gallai-Edmonds set. Choose a set $S \subseteq V(G)$ so that $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible. Our goal is to show that S is a Gallai-Edmonds set.

Claim 1. All components of $G \setminus S$ are odd.

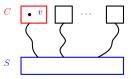
Proof of Claim 1 (outline).

Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer than |V(G)| vertices has a Gallai-Edmonds set. Choose a set $S \subseteq V(G)$ so that $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible. Our goal is to show that S is a Gallai-Edmonds set.

Claim 1. All components of $G \setminus S$ are odd.

Proof of Claim 1 (outline). Suppose otherwise, and fix a component *C* of $G \setminus S$ that has an even number of vertices.



Fix $v \in V(C)$, and set $S' := S \cup \{v\}$. Then S' contradicts the choice of S (details: Lecture Notes). This proves Claim 1.

Every graph has a Gallai-Edmonds set.

Proof. Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible.

Claim 2. All components of $G \setminus S$ are hypomatchable.

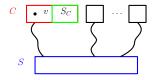
Proof of Claim 2 (outline).

Every graph has a Gallai-Edmonds set.

Proof. Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible.

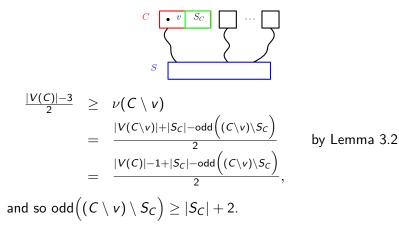
Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline). Suppose otherwise, and fix a component C of $G \setminus S$ and a vertex $v \in V(C)$ s.t. $C \setminus v$ does not have a perfect matching. By Claim 1, $C \setminus v$ has an even number of vertices; since $C \setminus v$ does not have a perfect matching, it follows that $\nu(C \setminus v) \leq \frac{|V(C) \setminus \{v\}|}{2} - 1 = \frac{|V(C)|-3}{2}$. By the induction hypothesis, $C \setminus v$ has a Gallai-Edmonds set, call it S_C .



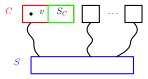
Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued).



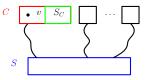
Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued). Reminder: $odd((C \setminus v) \setminus S_C) \ge |S_C| + 2.$



Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued). Reminder: $odd((C \setminus v) \setminus S_C) \ge |S_C| + 2.$



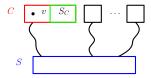
Now, set $S' := S \cup \{v\} \cup S_C$. Then

$$\begin{array}{lll} \operatorname{odd}(G \setminus S') &= & \operatorname{odd}(G \setminus S) - 1 + \operatorname{odd}\left((C \setminus v) \setminus S_C\right) \\ & \geq & \operatorname{odd}(G \setminus S) - 1 + (|S_C| + 2) \\ &= & \operatorname{odd}(G \setminus S) + |S_C| + 1 \\ &= & \operatorname{odd}(G \setminus S) + (|S'| - |S|), \end{array}$$

and so $\operatorname{odd}(G \setminus S') - |S'| \ge \operatorname{odd}(G \setminus S) - |S|.$

Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued). Reminder: $odd(G \setminus S') - |S'| \ge odd(G \setminus S) - |S|.$



Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued). Reminder: $odd(G \setminus S') - |S'| \ge odd(G \setminus S) - |S|.$

Since we also have that |S'| > |S|, this contradicts the choice of S. This proves Claim 2. Every graph has a Gallai-Edmonds set.

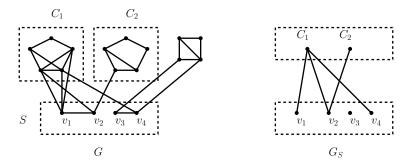
Proof of Lemma 3.3. Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible.

Claim 2. All components of $G \setminus S$ are hypomatchable.

Every graph has a Gallai-Edmonds set.

Proof of Lemma 3.3. Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible. **Claim 2.** All components of $G \setminus S$ are hypomatchable.

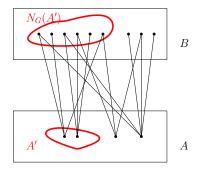
Claim 3. G_S has an S-saturating matching.



Hall's theorem

Let G be a bipartite graph with bipartition (A, B). Then the following are equivalent:

- (a) all sets $A' \subseteq A$ satisfy $|A'| \leq |N_G(A')|$;
- (b) G has an A-saturating matching.

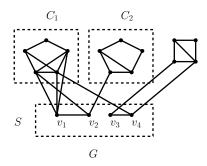


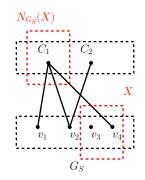
Claim 3. G_S has an S-saturating matching.

Proof of Claim 3.

Claim 3. G_S has an S-saturating matching.

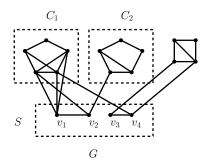
Proof of Claim 3. Suppose otherwise. Then by Hall's theorem, there exists a set $X \subseteq S$ s.t. $|N_{G_S}(X)| < |X|$.

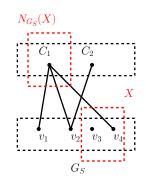




Claim 3. G_S has an S-saturating matching.

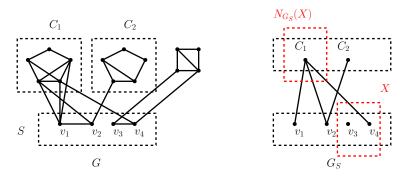
Proof of Claim 3. Suppose otherwise. Then by Hall's theorem, there exists a set $X \subseteq S$ s.t. $|N_{G_S}(X)| < |X|$. Set $S' := S \setminus X$.





Claim 3. G_S has an S-saturating matching.

Proof of Claim 3. Suppose otherwise. Then by Hall's theorem, there exists a set $X \subseteq S$ s.t. $|N_{G_S}(X)| < |X|$. Set $S' := S \setminus X$.



Then all odd components of $G \setminus S$ other than the ones in $N_{G_S}(X)$ are still odd components of $G \setminus S'$, and we compute:

Claim 3. G_S has an S-saturating matching.

Proof of Claim 3. Reminder: $|N_{G_S}(X)| < |X|$, $S' := S \setminus X$.

$$\operatorname{odd}(G \setminus S') \geq \operatorname{odd}(G \setminus S) - |N_{G_S}(X)|$$

> $\operatorname{odd}(G \setminus S) - |X|$
= $\operatorname{odd}(G \setminus S) - (|S| - |S'|)$
= $\operatorname{odd}(G \setminus S) - |S| + |S'|,$

Claim 3. G_S has an S-saturating matching.

Proof of Claim 3. Reminder: $|N_{G_S}(X)| < |X|$, $S' := S \setminus X$.

$$\begin{array}{lll} \operatorname{odd}(G \setminus S') & \geq & \operatorname{odd}(G \setminus S) - |N_{G_S}(X)| \\ & > & \operatorname{odd}(G \setminus S) - |X| \\ & = & \operatorname{odd}(G \setminus S) - (|S| - |S'|) \\ & = & \operatorname{odd}(G \setminus S) - |S| + |S'|, \end{array}$$

and it follows that

$$\mathsf{odd}(G\setminus S') - |S'| > \mathsf{odd}(G\setminus S) - |S|,$$

contrary to the choice of S. This proves Claim 3.

Every graph has a Gallai-Edmonds set.

Proof (continued). Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible. *Claim 2.* All components of $G \setminus S$ are hypomatchable. *Claim 3.* G_S has an S-saturating matching.

Every graph has a Gallai-Edmonds set.

Proof (continued). Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible. **Claim 2.** All components of $G \setminus S$ are hypomatchable. **Claim 3.** G_S has an S-saturating matching. By Claims 2 and 3, we have that S is a Gallai-Edmonds set of G. • We have proven the following three theorems.

The Tutte-Berge formula

Every graph G satisfies $v(C) = \frac{1}{2} \min \left(\frac{|V(C)|}{2} + \frac{|U|}{2} \right)$

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \mathsf{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

• We have proven the following three theorems.

The Tutte-Berge formula

Every graph G satisfies $\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} (|V(G)| + |U| - \operatorname{odd}(G \setminus U)).$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

- A maximum matching can be found in polynomial time (Edmonds, 1961).
 - Details: Next time!