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Definition
A matching in a graph G is a collection of edges of G , no two of
which share an endpoint.

Definition
A maximum matching of G is a matching M of G s.t. for all
matchings M ′ of G , we have that |M ′| ≤ |M|. The matching
number of G , denoted by ν(G), is the size of a maximum
matching (i.e. the number of edges in a maximum matching).

Remark: ν(G) ≤
⌊

|V (G)|
2

⌋
.
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Definition
If M is a matching and v is a vertex of a graph G , then we say
that v is saturated by M if v is incident with some edge of M. A
set X ⊆ V (G) is saturated by M if every vertex in X is saturated
by M.

Definition
A matching M of a graph graph G is perfect if all vertices of G are
saturated by M.

A graph G has a perfect matching iff ν(G) = |V (G)|
2 .

In particular, every graph that has a perfect matching, has an
even number of vertices.
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In Combinatorics & Graphs 1, we proved a couple of theorems
about matchings in bipartite graphs:

the Kőnig-Egerváry theorem;
Hall’s theorem.

Here, we state both these theorems without proof.
We will use Hall’s theorem later in the lecture.



Definition
A vertex cover of a graph G is any set C of vertices of G such that
every edge of G has at least one endpoint in C .

For any graph G , any vertex cover of G is of size ≥ ν(G).

Indeed, if C is a vertex cover of G , and M is a matching of G ,
then C contains at least one endpoint of each edge of M; since
no two edges of M share an endpoint, it follows that
|C | ≥ |M|.
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Definition
A vertex cover of a graph G is any set C of vertices of G such that
every edge of G has at least one endpoint in C .

The Kőnig-Egerváry theorem
The maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover in that graph.



Hall’s theorem
Let G be a bipartite graph with bipartition (A, B). Then the
following are equivalent:
(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A′)|;
(b) G has an A-saturating matching.

A′

NG(A
′)

B

A



Definition
An odd component of a graph G is a (connected) component of G
that has an odd number of vertices. We denote by odd(G) the
number of odd components of G .

The Tutte-Berge formula
Every graph G satisfies
ν(G) = 1

2 min
U⊆V (G)

(
|V (G)| + |U| − odd(G \ U)

)
.

Tutte’s theorem
A graph G has a perfect matching iff every set S ⊆ V (G) satisfies
|S| ≥ odd(G \ S).

We first prove Tutte’s theorem using the Tutte-Berge formula.
Then, we give an application of Tutte’s theorem (called
Petersen’s theorem).
Finally, we prove the Tutte-Berge formula.
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Tutte-Berge: ν(G) = 1
2 min

U⊆V (G)

(
|V (G)| + |U| − odd(G \ U)

)
Tutte’s theorem
A graph G has a perfect matching iff every set S ⊆ V (G) satisfies
|S| ≥ odd(G \ S).

Proof.

Fix a graph G . Clearly, the following are equivalent:
(a) every set S ⊆ V (G) satisfies |S| ≥ odd(G \ S);

(b) min
U⊆V (G)

(
|V (G)| + |U| − odd(G \ U)

)
≥ |V (G)|.

By the Tutte-Berge formula, (b) is equivalent to
(c) ν(G) ≥ |V (G)|

2 .
But clearly, (c) holds iff G has a perfect matching. So, (a) holds iff
G has a perfect matching, which is what we needed to show.
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Definition
For a nonnegative integer k, a graph G is k-regular if all vertices of
G are of degree k. A graph is cubic if it is 3-regular.

Definition
A bridge in a graph G is an edge e ∈ E (G) s.t. G − e has more
components than G . A graph is bridgeless if it has no bridge.

bridge

Petersen’s theorem
Every cubic, bridgeless graph has a perfect matching.
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Proof.

Fix a cubic, bridgeless graph G . We will apply Tutte’s
theorem. Fix S ⊆ V (G); we must show that |S| ≥ odd(G \ S).
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Claim. For all odd components C of G \ S, there are at
least three edges between S and V (C) in G.

Proof of the Claim.

Suppose that C is an odd component of
G \ S, and let ℓ be the number of edges between S and V (C).

S

C

Since G is cubic,
∑

v∈V (C) dG(v) = 3|V (C)|. Since C is an odd,
3|V (C)| is odd, and consequently,

∑
v∈V (C) dG(v) is odd. On the

other hand,
∑

v∈V (C) dG(v) = 2|E (G [C ])| + ℓ, and so ℓ is odd. If
ℓ = 1, then the unique edge between S and V (C) is a bridge in G ,
contrary to the fact that G is bridgeless. So, ℓ ≥ 3. This proves
the Claim.
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Tutte’s theorem
A graph G has a perfect matching iff every set S ⊆ V (G) satisfies
|S| ≥ odd(G \ S).

Petersen’s theorem
Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: G is cubic and bridgeless, and
S ⊆ V (G). WTS |S| ≥ odd(G \ S).

Claim. For all odd components C of G \ S, there are at
least three edges between S and V (C) in G.

Set t := odd(G \ S). By the Claim, the number of edges between
S and V (G) \ S is at least 3t. On the other hand, since G is cubic,
the total number of edges incident with at least one vertex of S as
at most 3|S|. Thus, 3t ≤ 3|S|, i.e. |S| ≥ t = odd(G \ S). So, by
Tutte’s theorem, G has a perfect matching.
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Petersen’s theorem
Every cubic, bridgeless graph has a perfect matching.

The bridgelessness requirement from Petersen’s theorem is
necessary, as the example below shows.

s

The graph above (call it G) is cubic, but not bridgeless. For
S := {s}, we have odd(G \ S) = 3, and so |S| < odd(G \ S).
Thus, by Tutte’s theorem, G does not have a perfect
matching.
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It remains to prove the Tutte-Berge formula!

The Tutte-Berge formula
Every graph G satisfies
ν(G) = 1

2 min
U⊆V (G)

(
|V (G)| + |U| − odd(G \ U)

)
.

Remark 3.1
Let G be a graph. Then for all S ⊆ V (G), we have that
ν(G) ≤ |V (G)|+|S|−odd(G\S)

2 .

Remark 3.1 guarantees that for every graph G , we have
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Let G be a graph. Then for all S ⊆ V (G), we have that
ν(G) ≤ |V (G)|+|S|−odd(G\S)

2 .

Proof.

Fix S ⊆ V (G), set t := odd(G \ S), and let C1, . . . , Ct be
the odd components of G \ S. Fix any matching M in G . Let M ′

be the set of all edges of M that have one endpoint in S and the
other one in V (C1) ∪ . . . V (Ct); obviously, |M ′| ≤ |S|.
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S

. . .

...

M ′
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Proof (continued).
C1 C2 Ct

S

. . .

...

M ′

Since the components C1, . . . , Ct are all odd, at least
t − |M ′| ≥ t − |S| of them have a vertex that is unsaturated by M.
So, the total number of vertices of G that are saturated by M is at
most |V (G)| + |S| − t, and so |M| ≤ |V (G)|+|S|−t

2 . Thus,
ν(G) ≤ |V (G)|+|S|−t

2 = |V (G)|+|S|−odd(G\S)
2 .
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Definition
A graph G is hypomatchable if it does not have a perfect
matching, but for all v ∈ V (G), the graph G \ v does have a
perfect matching.

A hypomatchable component of a graph G is a component of
G that is a hypomatchable graph.
Obviously, every hypomatchable component of G is odd.
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A graph G is hypomatchable if it does not have a perfect
matching, but for all v ∈ V (G), the graph G \ v does have a
perfect matching.
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G that is a hypomatchable graph.
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For a graph G and a set S ⊆ V (G), let us denote by GS the
bipartite graph whose one side of the bipartition is S, and
whose other side of the bipartition is the collection of all odd
components of G \ S, and in which a vertex v ∈ S and an odd
component C of G \ S are adjacent iff v has a neighbor in
V (C) in G .

v1 v2 v3 v4

C1 C2

S

G

v1 v2 v3 v4

C1 C2

GS



Definition
A Gallai-Edmonds set in a graph G is a set S ⊆ V (G) s.t.

every component of G \ S is hypomatchable;
the bipartite graph GS has an S-saturating matching.

Lemma 3.2
If S is a Gallai-Edmonds set of a graph G , then
ν(G) = |V (G)|+|S|−odd(G\S)

2 .

Lemma 3.3
Every graph has a Gallai-Edmonds set.

We will prove Lemmas 3.2 and 3.3.
But first, let us show that they (together) imply the
Tutte-Berge formula.
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The Tutte-Berge formula
Every graph G satisfies
ν(G) = 1

2 min
U⊆V (G)

(
|V (G)| + |U| − odd(G \ U)

)
.

Proof (assuming Lemmas 3.2 and 3.3).

Fix a graph G . By
Lemma 3.3, G contains a Gallai-Edmonds set, call it S. Then

ν(G) by Lemma 3.2= |V (G)|+|S|−odd(G\S)
2

≥ 1
2 min

U⊆V (G)

(
|V (G)| + |U| − odd(G \ U)

)
.

The reverse inequality follows immediately from Remark 3.1.
It remains to prove Lemmas 3.2 and 3.3.
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Lemma 3.2
If S is a Gallai-Edmonds set of a graph G , then
ν(G) = |V (G)|+|S|−odd(G\S)

2 .

Proof.

Let S be a Gallai-Edmonds set of a graph G . By
Remark 3.1, we have that ν(G) ≤ |V (G)|+|S|−odd(G\S)

2 . It remains
to show that ν(G) ≥ |V (G)|+|S|−odd(G\S)

2 .
To simplify notation, set n := |V (G)|, s := |S|, and
t := odd(G \ S). We must show that ν(G) ≥ n+s−t

2 . We will
prove this by exhibiting a matching M in G of size n+s−t

2 .
Let C1, . . . , Ct be the odd components of G \ S (since all
components of G \ S are hypomatchable and therefore odd, we see
that C1, . . . , Ct are in fact all the components of G \ S), and set
S = {v1, . . . , vs}.
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Lemma 3.2
If S is a Gallai-Edmonds set of a graph G , then
ν(G) = |V (G)|+|S|−odd(G\S)
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Proof (continued).

. . . . . .

v1 v2 vs
. . .

C1 C2 Cs Cs+1 Ct

c1 c2 cs

S

cs+1 ct

Since S is a Gallai-Edmonds set, GS has an S-saturating matching,
call it MS . By symmetry, WMA MS = {v1C1, . . . , vsCs}. For each
i ∈ {1, . . . , s}, choose a vertex ci ∈ V (Ci) s.t. vici ∈ E (G). For all
i ∈ {s + 1, . . . , t}, choose any vertex ci ∈ Ci .



Lemma 3.2
If S is a Gallai-Edmonds set of a graph G , then
ν(G) = |V (G)|+|S|−odd(G\S)

2 .

Proof (continued).
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Further, since S is a Gallai-Edmonds set, for all i ∈ {1, . . . , t}, Ci
is hypomatchable, and in particular, Ci \ ci has a perfect matching,
call it Mi . Now, set M := {v1c1, . . . , vscs} ∪ M1 ∪ · · · ∪ Mt .

Moreover, M saturates all but t − s vertices of G (indeed, the only
vertices of G unsaturated by M are cs+1, . . . , ct), and so
|M| = n−(t−s)

2 = n+s−t
2 .
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Lemma 3.3
Every graph has a Gallai-Edmonds set.

Proof.

Let G be a graph, and assume inductively that every graph
on fewer than |V (G)| vertices has a Gallai-Edmonds set.
Choose a set S ⊆ V (G) so that odd(G \ S) − |S| is as large as
possible, and subject to that, |S| is as large as possible. Our goal is
to show that S is a Gallai-Edmonds set.

Claim 1. All components of G \ S are odd.

Proof of Claim 1 (outline). Suppose otherwise, and fix a
component C of G \ S that has an even number of vertices.

C

S

. . .v

Fix v ∈ V (C), and set S ′ := S ∪ {v}. Then S ′ contradicts the
choice of S (details: Lecture Notes). This proves Claim 1.
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Lemma 3.3
Every graph has a Gallai-Edmonds set.

Proof. Reminder: odd(G \ S) − |S| is as large as possible, and
subject to that, |S| is as large as possible.

Claim 2. All components of G \ S are hypomatchable.

Proof of Claim 2 (outline).

Suppose otherwise, and fix a
component C of G \ S and a vertex v ∈ V (C) s.t. C \ v does not
have a perfect matching. By Claim 1, C \ v has an even number of
vertices; since C \ v does not have a perfect matching, it follows
that ν(C \ v) ≤ |V (C)\{v}|

2 − 1 = |V (C)|−3
2 . By the induction

hypothesis, C \ v has a Gallai-Edmonds set, call it SC .

C

S

. . .v SC
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Proof of Lemma 3.3. Reminder: odd(G \ S) − |S| is as large as
possible, and subject to that, |S| is as large as possible.

Claim 2. All components of G \ S are hypomatchable.

Proof of Claim 2 (outline, continued).

C

S

. . .v SC

|V (C)|−3
2 ≥ ν(C \ v)

=
|V (C\v)|+|SC |−odd

(
(C\v)\SC

)
2 by Lemma 3.2

=
|V (C)|−1+|SC |−odd

(
(C\v)\SC

)
2 ,

and so odd
(
(C \ v) \ SC

)
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and so odd(G \ S ′) − |S ′| ≥ odd(G \ S) − |S|.
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Since we also have that |S ′| > |S|, this contradicts the choice of S.
This proves Claim 2.
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Lemma 3.3
Every graph has a Gallai-Edmonds set.

Proof of Lemma 3.3. Reminder: odd(G \ S) − |S| is as large as
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Claim 2. All components of G \ S are hypomatchable.
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Hall’s theorem
Let G be a bipartite graph with bipartition (A, B). Then the
following are equivalent:
(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A′)|;
(b) G has an A-saturating matching.

A′

NG(A
′)

B

A



Proof of Lemma 3.3. Reminder: odd(G \ S) − |S| is as large as
possible, and subject to that, |S| is as large as possible.

Claim 3. GS has an S-saturating matching.
Proof of Claim 3.

Suppose otherwise. Then by Hall’s theorem,
there exists a set X ⊆ S s.t. |NGS (X )| < |X |. Set S ′ := S \ X .

v1 v2 v3 v4
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v1 v2 v3 v4
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GS

X

NGS
(X)

Then all odd components of G \ S other than the ones in NGS (X )
are still odd components of G \ S ′, and we compute:
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Proof of Lemma 3.3. Reminder: odd(G \ S) − |S| is as large as
possible, and subject to that, |S| is as large as possible.

Claim 3. GS has an S-saturating matching.
Proof of Claim 3. Reminder: |NGS (X )| < |X |, S ′ := S \ X .

odd(G \ S ′) ≥ odd(G \ S) − |NGS (X )|
> odd(G \ S) − |X |
= odd(G \ S) − (|S| − |S ′|)
= odd(G \ S) − |S| + |S ′|,

and it follows that

odd(G \ S ′) − |S ′| > odd(G \ S) − |S|,

contrary to the choice of S. This proves Claim 3.
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Lemma 3.3
Every graph has a Gallai-Edmonds set.

Proof (continued). Reminder: odd(G \ S) − |S| is as large as
possible, and subject to that, |S| is as large as possible.

Claim 2. All components of G \ S are hypomatchable.
Claim 3. GS has an S-saturating matching.

By Claims 2 and 3, we have that S is a Gallai-Edmonds set of G .
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We have proven the following three theorems.

The Tutte-Berge formula
Every graph G satisfies
ν(G) = 1

2 min
U⊆V (G)

(
|V (G)| + |U| − odd(G \ U)

)
.

Tutte’s theorem
A graph G has a perfect matching iff every set S ⊆ V (G) satisfies
|S| ≥ odd(G \ S).

Petersen’s theorem
Every cubic, bridgeless graph has a perfect matching.

A maximum matching can be found in polynomial time
(Edmonds, 1961).

Details: Next time!
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