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Lecture #1

Matchings in general graphs

Irena Penev

1 Basic notions

In this lecture, all graphs are finite and simple (i.e. have no loops and no
parallel edges). For convenience, we will allow our graphs to possibly be null
(i.e. have no vertices and no edges).

A matching in a graph G is a collection of edges of G, no two of which
share an endpoint. An example of a matching is shown below (the edges of
the matching are in red).

A maximum matching of G is a matching M of G such that for all matchings
M ′ of G, we have that |M ′| ≤ |M |. The matching number of G, denoted
by ν(G), is the size of a maximum matching (i.e. the number of edges in a

maximum matching).1 Trivially, ν(G) ≤
⌊
|V (G)|

2

⌋
.

If M is a matching and v is a vertex of a graph G, then we say that v
is saturated by M (or that M saturates v) provided that v is incident with
some edge of M . If M does not saturate v, then v is unsaturated by M . A
set X ⊆ V (G) is saturated by M if every vertex in X is saturated by M .

A matching M of a graph graph G is perfect if all vertices of G are
saturated by M . Obviously, a graph G has a perfect matching if and only if
ν(G) = |V (G)|

2 . In particular, every graph that has a perfect matching, has

1So, ν(G) = max{|M | | M is a matching of G}.
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an even number of vertices.2 An example of a perfect matching is shown
below (the edges of the matching are in red).

2 Matchings in bipartite graphs

In Combinatorics & Graphs 1, we proved a couple of theorems about match-
ings in bipartite graphs: the Kőnig-Egerváry theorem and Hall’s theorem.
Here, we state these two theorems without proof. We will use Hall’s theorem
in section 3.

A vertex cover of a graph G is any set C of vertices of G such that every
edge of G has at least one endpoint in C. An example of a vertex cover in a
graph is given below (vertices of the vertex cover are in red).

Note that for any graph G, any vertex cover of G is of size at least ν(G).
Indeed, if C is a vertex cover of G, and M is a matching of G, then C contains
at least one endpoint of each edge of M ; since no two edges of M share an
endpoint, it follows that |C| ≥ |M |. This inequality holds for any vertex
cover C and any matching (and in particular, any maximum matching) M
of G; so, any vertex cover of G is of size at least ν(G). For bipartite graphs,
we have the following theorem.

The Kőnig-Egerváry theorem. The maximum size of a matching in a
bipartite graph is equal to the minimum size of a vertex cover in that graph.

For a graph G and a set X ⊆ V (G), we denote by NG(X) the set of all
vertices in V (G) \X that have at least one neighbor in X, i.e. NG(X) :=
{y ∈ V (G) \X | ∃x ∈ X s.t. xy ∈ E(G)}.

2However, there are a great many graphs on an even number of vertices that have no
perfect matching. Edgeless graphs are an obvious example, but there are many others.

2



A′

NG(A
′)

B

A

Hall’s theorem. Let G be a bipartite graph with bipartition (A,B). Then
the following are equivalent:

(a) all sets A′ ⊆ A satisfy |A′| ≤ |NG(A
′)|;

(b) G has an A-saturating matching.

3 The Gallai-Edmonds decomposition

An odd component of a graph G is a (connected) component of G that has an
odd number of vertices. We denote by odd(G) the number of odd components
of G. In section 4, we will give a formula linking the matching number ν(G)
with the number of odd components of induced subgraphs of G (see the
Tutte-Berge formula in section 4). In this section, we develop the technical
tools needed to prove the formula.

Remark 3.1. Let G be a graph. Then for all S ⊆ V (G), we have that

ν(G) ≤ |V (G)|+|S|−odd(G\S)
2 .

Proof. Fix S ⊆ V (G), set t := odd(G \ S), and let C1, . . . , Ct be the odd
components of G \ S.

C1 C2 Ct

S

. . .

...

M ′

Fix any matching M in G. Let M ′ be the set of all edges of M that
have one endpoint in S and the other one in V (C1) ∪ . . . V (Ct); obviously,
|M ′| ≤ |S|. Next, since the components C1, . . . , Ct are all odd, it follows that
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at least t− |M ′| ≥ t− |S| of the components C1, . . . , Ct have a vertex that is
unsaturated by M .3 So, the total number of vertices of G that are saturated
by M is at most |V (G)| − (t − |S|) = |V (G)|+ |S| − t, and it follows that

|M | ≤ |V (G)|+|S|−t
2 . Since the matching M was chosen arbitrarily, we deduce

that ν(G) ≤ |V (G)|+|S|−t
2 = |V (G)|+|S|−odd(G\S)

2 .

A graph G is hypomatchable if it does not have a perfect matching, but
for all v ∈ V (G), the graph G \ v does have a perfect matching. Obviously,
every hypomatchable graph has an odd number of vertices.4 For example,
the graph below is hypomatchable.

Indeed, deleting any one vertex from the graph above yields a graph that
has a perfect matching (as shown below; the vertex that we delete is in blue,
and the matching is in red).

A hypomatchable component of a graph G is a component of G that is a
hypomatchable graph. Obviously, every hypomatchable component of G is
odd.

For a graph G and a set S ⊆ V (G), let us denote by GS the bipartite
graph whose one side of the bipartition is S, and whose other side of the
bipartition is the collection of all odd components of G \ S, and in which a
vertex v ∈ S and an odd component C of G \ S are adjacent if and only if v
has a neighbor in V (C) in G. An example is shown below.

3This is because for all odd components Ci, the number of edges of M that have both

endpoints in Ci is at most
⌊

V (Ci)
2

⌋
= |V (Ci)|−1

2
; if all vertices of Ci are saturated by M ,

then there must be an edge of M between S and V (Ci). The number of indices i for which
such an edge exists is at most |M ′| ≤ |S|. So, at least t− |S| components Ci have a vertex
that is unsaturated by M .

4But not all graphs with an odd number of vertices are hypomatchable!
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A Gallai-Edmonds set in a graph G is a set S ⊆ V (G) that satisfies the
following two properties:

� every component of G \ S is hypomatchable (and therefore odd);

� the bipartite graph GS has an S-saturating matching.

Lemma 3.2. If S is a Gallai-Edmonds set of a graph G, then

ν(G) = |V (G)|+|S|−odd(G\S)
2

Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 3.1, we
have that ν(G) ≤ |V (G)|+|S|−odd(G\S)

2 . It remains to show that ν(G) ≥
|V (G)|+|S|−odd(G\S)

2 . To simplify notation, set n := |V (G)|, s := |S|, and
t := odd(G \ S). We must show that ν(G) ≥ n+s−t

2 . We will prove this by
exhibiting a matching M in G of size n+s−t

2 .
Let C1, . . . , Ct be the odd components of G \ S (since all components of

G \ S are hypomatchable and therefore odd, we see that C1, . . . , Ct are in
fact all the components of G \ S), and set S = {v1, . . . , vs}.

. . . . . .

v1 v2 vs
. . .

C1 C2 Cs Cs+1 Ct

c1 c2 cs

S

cs+1 ct

Since S is a Gallai-Edmonds set, we know that GS has an S-saturating match-
ing, call it MS . By symmetry, we may assume that MS = {v1C1, . . . , vsCs}.
For each i ∈ {1, . . . , s}, choose a vertex ci ∈ V (Ci) such that vici ∈ E(G).5

For all i ∈ {s + 1, . . . , t}, choose any vertex ci ∈ Ci. Further, since S is a

5Such a vertex ci must exist because vi and Ci are adjacent in GS .
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Gallai-Edmonds set, we know that for all i ∈ {1, . . . , t}, Ci is hypomatch-
able, and in particular, Ci \ ci has a perfect matching, call it Mi; clearly,

|Mi| = |V (Ci)|−1
2 . Now, set M := {v1c1, . . . , vscs} ∪ M1 ∪ · · · ∪ Mt. Then

M is a matching in G. Moreover, M saturates all but t − s vertices of G
(indeed, the only vertices of G unsaturated by M are cs+1, . . . , ct), and so

|M | = n−(t−s)
2 = n+s−t

2 .

Lemma 3.3. Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer
than |V (G)| vertices has a Gallai-Edmonds set.

Choose a set S ⊆ V (G) so that odd(G \ S)− |S| is as large as possible,
and subject to that, |S| is as large as possible. Our goal is to show that S is
a Gallai-Edmonds set.

Claim 1. All components of G \ S are odd.

Proof of Claim 1. Suppose otherwise, and fix a component C of G \ S
that has an even number of vertices. Fix v ∈ V (C), and set S′ := S ∪ {v}.
Since |V (C)| is even, we see that the odd components are precisely the odd
components of G \ S, plus the odd components of C \ v. Furthermore, since
|V (C)| is even, we see that |V (C) \ {v}| is odd, and so C \ v has at least one
odd component. Thus,

odd(G \ S′) = odd(G \ S) + odd(C \ v) ≥ odd(G \ S) + 1,

and consequently (since |S′| = |S|+ 1), we have that

odd(G \ S′)− |S′| ≥
(
odd(G \ S) + 1

)
− (|S|+ 1)

= odd(G \ S)− |S|.

Since |S′| > |S|, this contradicts the choice of S. This proves Claim 1. ■

Claim 2. All components of G \ S are hypomatchable.

Proof of Claim 2. Suppose otherwise, and fix a component C of G \ S and
a vertex v ∈ V (C) such that C \ v does not have a perfect matching. By
Claim 1, C \ v has an even number of vertices; since C \ v does not have a

perfect matching, it follows that ν(C \ v) ≤ |V (C)\{v}|
2 − 1 = |V (C)|−3

2 . By the
induction hypothesis, C \ v has a Gallai-Edmonds set, call it SC . Thus,

|V (C)|−3
2 ≥ ν(C \ v)

=
|V (C\v)|+|SC |−odd

(
(C\v)\SC

)
2 by Lemma 3.2

=
|V (C)|−1+|SC |−odd

(
(C\v)\SC

)
2 ,
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and consequently,

odd
(
(C \ v) \ SC

)
≥ |SC |+ 2.

Now, set S′ := S ∪ {v} ∪ SC . Clearly, the odd components of G \ S′ are
precisely the odd components of G\S other than C, plus the odd components
of (C \ v) \ SC , and so

odd(G \ S′) = odd(G \ S)− 1 + odd
(
(C \ v) \ SC

)
≥ odd(G \ S)− 1 + (|SC |+ 2)

= odd(G \ S) + |SC |+ 1

= odd(G \ S) + (|S′| − |S|),

and we deduce that

odd(G \ S′)− |S′| ≥ odd(G \ S)− |S|.

Since we also have that |S′| > |S|, this contradicts the choice of S. This
proves Claim 2. ■

Claim 3. GS has an S-saturating matching.

Proof of Claim 3. Suppose otherwise. Then by Hall’s theorem, there exists
a set X ⊆ S such that |X| > |NGS

(X)|. Set S′ := S \ X. Then all odd
components of G\S other than the ones in NGS

(X) are still odd components
of G \ S′, and we compute:

odd(G \ S′) ≥ odd(G \ S)− |NGS
(X)|

> odd(G \ S)− |X|

= odd(G \ S)− (|S| − |S′|)

= odd(G \ S)− |S|+ |S′|,

and it follows that

odd(G \ S′)− |S′| > odd(G \ S)− |S|,

contrary to the choice of S. This proves Claim 3. ■

By Claims 2 and 3, we have that S is a Gallai-Edmonds set of G.
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4 The Tutte-Berge formula and Tutte’s theorem

The Tutte-Berge formula. Every graph G satisfies

ν(G) = 1
2 min
U⊆V (G)

(
|V (G)|+ |U | − odd(G \ U)

)
.

Proof. Fix a graph G. By Lemma 3.3, G contains a Gallai-Edmonds set, call
it S. Then

ν(G) = |V (G)|+|S|−odd(G\S)
2 by Lemma 3.2

≥ 1
2 min
U⊆V (G)

(
|V (G)|+ |U | − odd(G \ U)

)
.

The reverse inequality follows immediately from Remark 3.1.

Tutte’s theorem. A graph G has a perfect matching if and only if every
set S ⊆ V (G) satisfies |S| ≥ odd(G \ S).

Proof. Fix a graph G. Clearly, the following are equivalent:

(a) every set S ⊆ V (G) satisfies |S| ≥ odd(G \ S);

(b) min
U⊆V (G)

(
|V (G)|+ |U | − odd(G \ U)

)
≥ |V (G)|.

By the Tutte-Berge formula, (b) is equivalent to

(c) ν(G) ≥ |V (G)|
2 .

But clearly, (c) holds if and only if G has a perfect matching.6 So, (a) holds if
and only if G has a perfect matching, which is what we needed to show.

5 Petersen’s theorem

For a nonnegative integer k, a graph G is k-regular if all vertices of G are of
degree k. A graph is cubic if it is 3-regular.

A bridge in a graph G is an edge e ∈ E(G) such that G − e has more
components than G. A graph is bridgeless if it has no bridge.

bridge

6Indeed, every graph G satisfies ν(G) ≤ |V (G)|
2

. So, (c) is in fact equivalent to ν(G) =
|V (G)|

2
. But ν(G) = |V (G)|

2
if and only if G has a perfect matching.
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Petersen’s theorem. Every cubic, bridgeless graph has a perfect matching.7

Proof. Fix a cubic, bridgeless graph G. We will apply Tutte’s theorem. Fix
S ⊆ V (G); we must show that |S| ≥ odd(G \ S).

Claim. For all odd components C of G \ S, there are at least
three edges between S and V (C) in G.

Proof of the Claim. Suppose that C is an odd component of G \ S, and
let ℓ be the number of edges between S and V (C). Since G is cubic, we
have that

∑
v∈V (C) dG(v) = 3|V (C)|;8 since C is an odd component, we

see that 3|V (C)| is odd, and consequently,
∑

v∈V (C) dG(v) is odd. On the
other hand, every edge incident with a vertex in V (C) either has both its
endpoints in V (C), or has one endpoint in V (C) and the other one in S; so,∑

v∈V (C) dG(v) = 2|E(G[C])|+ ℓ. Since
∑

v∈V (C) dG(v) is odd, we see that
ℓ is odd. If ℓ = 1, then the unique edge between S and V (C) is a bridge
in G, contrary to the fact that G is bridgeless. So, ℓ ≥ 3. This proves the
Claim. ■

Set t := odd(G \ S). By the Claim, the number of edges between S
and V (G) \ S is at least 3t. On the other hand, since G is cubic, the total
number of edges incident with at least one vertex of S as at most 3|S|.9
Thus, 3t ≤ 3|S|, i.e. |S| ≥ t = odd(G \ S). Since S ⊆ V (G) was chosen
arbitrarily, Tutte’s theorem guarantees that G has a perfect matching.

The bridgelessness requirement from Petersen’s theorem is necessary, as
the example below shows.

7Here is an example of a cubic, bridgeless graph, with a perfect matching shown in red.

8As usual, dG(v) is the degree of v in G.
9Note that we are double counting edges whose both endpoints are in S. Hence, the

number of edges incident with at least one vertex of S is at most 3|S|, and not necessarily
exactly 3|S|.
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s

The graph above (call it G) is cubic, but not bridgeless. If we set S := {s},
then G \ S has three odd components, and so |S| < odd(G \ S). Thus, by
Tutte’s theorem, G does not have a perfect matching.
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