NDMI012: Combinatorics and Graph Theory 2 HW#9

Irena Penev Summer 2022

due Thursday, May 5, 2022, 15:40 (at the beginning of the tutorial)

Remark: Bring your HW to the beginning of the tutorial. If you must miss the tutorial, please e-mail your HW to me (ipenev@iuuk.mff.cuni.cz) as a **PDF attachment** (no other format will be accepted).

Problem 1 (20 points). Let G be a graph such that $\delta(G) \ge 2$.¹ Prove that G contains a cycle of length at least $\delta(G) + 1$.

Hint: Consider a path P in G of maximum length, at show that a subpath of P, plus an additional edge of G, form the needed cycle.

Remark: This problem should be useful in one of the subsequent two problems (figure out where!).

Definition. For an integer $k \ge 0$, a graph G is k-vertex-connected (or simply k-connected) if the following two conditions are satisfied:

- $|V(G)| \ge k+1;$
- for all $S \subseteq V(G)$ such that $|S| \leq k-1$, the graph $G \setminus S$ is connected.

The vertex-connectivity (or simply connectivity) of G, denoted by $\kappa(G)$, is the largest integer $k \geq 0$ such that G is k-connected.

Problem 2 (50 points). Let G be a graph such that $G \ncong K_2$ (i.e. G is not a complete graph on two vertices) and $\kappa(G) \ge \alpha(G)$.²

(a) [10 points] Prove that G has a cycle of length at least $\kappa(G) + 1$.

 $^{{}^{1}\}delta(G) := \min\{d_G(v) \mid v \in V(G)\}$

 $^{{}^{2}\}alpha(G) := \max\{|S| \mid S \text{ is a stable set of } G\}$

- (b) [10 points] Let C be a cycle of G of maximum length (by part (a), C exists). Prove that, if $V(C) \subsetneq V(G)$, then for every component H of $G \setminus V(C)$, at least $\kappa(G)$ many vertices of C have a neighbor in H.
- (c) [30 points] Prove that G is Hamiltonian.

Hint: Let C be a cycle of G of maximum length; if V(C) = V(G), then C is a Hamiltonian cycle of G. Otherwise, use part (b) to obtain either a cycle that is "too long" or a stable set that is "too big."

Problem 3 (30 points). Prove that any non-Hamiltonian graph on n vertices has at most $\binom{n-1}{2} + 1$ edges.