NDMI012: Combinatorics and Graph Theory 2 HW#6

Irena Penev Summer 2022

due Thursday, April 7, 2022, 15:40 (at the beginning of the tutorial)

Remark: Bring your HW to the beginning of the tutorial. If you must miss the tutorial, please e-mail your HW to me (ipenev@iuuk.mff.cuni.cz) as a **PDF attachment** (no other format will be accepted).

Problem 1 (30 points). Let k be a positive integer, and let G be a graph on k+1 vertices and of chromatic number k. Prove that $\omega(G) = k$.

Hint: It may be useful to think of a coloring as a partition into stable sets (color classes).

Problem 2 (30 points). Prove that every graph G satisfies

 $\chi(G) + \chi(\overline{G}) \leq |V(G)| + 1,$

where \overline{G} denotes the complement of G.

Hint: Use induction on |V(G)|.

Problem 3 (40 points). A graph-stable pair is an ordered pair (G, \mathscr{S}) , where G is a graph, and \mathscr{S} is some set of stable sets of G.¹ We recursively construct a sequence $\{(G_k, \mathscr{S}_k)\}_{k=1}^{\infty}$ of graph-stable pairs as follows.

Let $G_1 = K_1$ and $\mathscr{S}_1 = \{V(G_1)\}$. Next, let k be a positive integer, and assume that the graph-stable pair (G_k, \mathscr{S}_k) has been constructed. We construct $(G_{k+1}, \mathscr{S}_{k+1})$ as follows. For each stable set $S \in \mathscr{S}_k$, let $(H_S, \mathscr{S}(H_S))$ be a copy of (G_k, \mathscr{S}_k) . We form G_{k+1} by first taking the disjoint union of G_k and the graphs

¹This means that every member of \mathscr{S} is a stable set of G. Note that \mathscr{S} need not contain **all** stable sets of G (but only some).

$$\begin{split} H_S & (S \in \mathscr{S}_k)^2 \text{ and then for each } S \in \mathscr{S}_k \text{ and } T \in \mathscr{S}(H_S), \\ adding a new vertex v_{S,T} \text{ whose neighborhood in } G_{k+1} \text{ is precisely} \\ the set T. Finally, set <math>\mathscr{S}_{k+1} = \{S \cup T \mid S \in \mathscr{S}_k, T \in \mathscr{S}(H_S)\} \cup \\ \{S \cup \{v_{S,T}\} \mid S \in \mathscr{S}_k, T \in \mathscr{S}(H_S)\}. \end{split}$$

- (a) [10 points] Prove that for all positive integers k, G_k is triangle-free.
- (b) [20 points] Prove that for all positive integers k, and all proper (not necessarily optimal) colorings ϕ of G_k , there exists some $S \in \mathscr{S}_k$ such that ϕ uses at least k colors on S.
- (c) [10 points] Prove that for all positive integers k, $\chi(G_k) = k$. You may use the statement of (b) even if you did not prove it.

²Now we have $|\mathscr{S}_k| + 1$ disjoint copies of G_k ; by construction, there are no edges between any two of them.