NDMI012: Combinatorics and Graph Theory 2

Lecture #10

Extremal combinatorics

Irena Penev

May 5, 2021

• Turán's theorem;

- Turán's theorem;
- the Erdős-Ko-Rado theorem;

- Turán's theorem;
- the Erdős-Ko-Rado theorem;
- the Sunflower lemma.

Part I: Turán's theorem

Part I: Turán's theorem

Definition

Given a positive integer n and a graph H, an n-vertex graph G without an H subgraph is *extremal* (for the property of not containing H as a subgraph) if it has the largest possible number of edges among all n-vertex graphs without an H subgraph; ex(n, H) is the number of edges of an extremal n-vertex graph without an H subgraph.

• So, ex(n, H) is the maximum number of edges that an *n*-vertex graph that does not contain H as a subgraph can have. • Any extremal graph G without an H subgraph is "edge-maximal" without an H subgraph, i.e. any graph obtained from G by adding one or more edges to it, contains H as a subgraph.

- Any extremal graph G without an H subgraph is "edge-maximal" without an H subgraph, i.e. any graph obtained from G by adding one or more edges to it, contains H as a subgraph.
- The converse, however, does not hold in general: it is possible that a graph is edge-maximal without an *H* subgraph, without being extremal.

- Any extremal graph G without an H subgraph is "edge-maximal" without an H subgraph, i.e. any graph obtained from G by adding one or more edges to it, contains H as a subgraph.
- The converse, however, does not hold in general: it is possible that a graph is edge-maximal without an *H* subgraph, without being extremal.
 - For example, $2K_2$ is a four-vertex edge-maximal graph without a P_4 subgraph, but it is not extremal: indeed, $K_{1,3}$ also has four vertices and no P_4 subgraph, and it has more edges than $2K_2$.

Mantel's theorem

For any positive integer *n*, we have that $ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$, and moreover, $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ is an extremal *n*-vertex graph without a K_3 subgraph.

Proof. Combinatorics & Graphs 1.

Mantel's theorem

For any positive integer *n*, we have that $ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$, and moreover, $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ is an extremal *n*-vertex graph without a K_3 subgraph.

Proof. Combinatorics & Graphs 1.

 Mantel's theorem is a special case of Turán's theorem, to which we now turn.

Definition

For a positive integer r, a *complete r-partite graph* is a graph G whose vertex set can be partitioned into r (possibly empty) stable sets (called *parts*), pairwise complete to each other.

Definition

A complete multipartite graph is any graph that is complete r-partite for some r.

Definition

The *r*-partite Turán graph on *n* vertices, denoted by $T_r(n)$, is the complete *r*-partite graph on *n* vertices, in which the sizes of any two parts differ by at most one (so, each part is of size $\lfloor \frac{n}{r} \rfloor$ or $\lceil \frac{n}{r} \rceil$); $t_r(n)$ is the number of edges of $T_r(n)$.

Let *n* and *r* be positive integers. Then $e_x(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

• Duplicating a vertex x of a graph G produces a supergraph $G \circ x$ by adding to G a vertex x' and making it adjacent to all the neighbors of x in G, and to no other vertices of G (in particular, x and x' are nonadjacent in $G \circ x$).

Duplicating a vertex x of a graph G produces a supergraph G ∘ x by adding to G a vertex x' and making it adjacent to all the neighbors of x in G, and to no other vertices of G (in particular, x and x' are nonadjacent in G ∘ x).

Obviously, ω(G ∘ x) = ω(G), i.e. G contains K_{r+1} is a subgraph iff G ∘ x does.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof. We may assume that r < n, for otherwise, $T_r(n) \cong K_n$, and the result is immediate.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof. We may assume that r < n, for otherwise, $T_r(n) \cong K_n$, and the result is immediate.

It is clear that $T_r(n)$ is an *n*-vertex graph without a K_{r+1} subgraph.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof. We may assume that r < n, for otherwise, $T_r(n) \cong K_n$, and the result is immediate.

It is clear that $T_r(n)$ is an *n*-vertex graph without a K_{r+1} subgraph. Now, let G be any *n*-vertex extremal graph without a K_{r+1} subgraph. We must show that $G \cong T_r(n)$.

Let *n* and *r* be positive integers. Then $e_x(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim.

Let *n* and *r* be positive integers. Then $e_x(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise.

Let *n* and *r* be positive integers. Then $e_x(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then non-adjacency is not an equivalence relation on V(G),

Let *n* and *r* be positive integers. Then $e_x(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then non-adjacency is not an equivalence relation on V(G), and it follows that there exist pairwise distinct vertices $y_1, x, y_2 \in V(G)$ s.t. $y_1x, xy_2 \notin E(G)$, but $y_1y_2 \in E(G)$.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then non-adjacency is not an equivalence relation on V(G), and it follows that there exist pairwise distinct vertices $y_1, x, y_2 \in V(G)$ s.t. $y_1x, xy_2 \notin E(G)$, but $y_1y_2 \in E(G)$. If $d_G(y_1) > d_G(x)$, then $G_1 := (G \setminus x) \circ y_1$ is an *n*-vertex graph that does not contain K_{r+1} as a subgraph, and $|E(G_1)| > |E(G)|$, contrary to the fact that G is extremal.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then non-adjacency is not an equivalence relation on V(G), and it follows that there exist pairwise distinct vertices $y_1, x, y_2 \in V(G)$ s.t. $y_1x, xy_2 \notin E(G)$, but $y_1y_2 \in E(G)$. If $d_G(y_1) > d_G(x)$, then $G_1 := (G \setminus x) \circ y_1$ is an *n*-vertex graph that does not contain K_{r+1} as a subgraph, and $|E(G_1)| > |E(G)|$, contrary to the fact that G is extremal. So, $d_G(y_1) \leq d_G(x)$, and similarly, $d_G(y_2) \leq d_G(x)$.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim (continued). Reminder: $y_1x, xy_2 \notin E(G)$ and $y_1y_2 \in E(G)$; $d_G(y_1), d_G(y_2) \leq d_G(x)$.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim (continued). Reminder: $y_1x, xy_2 \notin E(G)$ and $y_1y_2 \in E(G)$; $d_G(y_1), d_G(y_2) \leq d_G(x)$. Now, let G' be the graph obtained from $G \setminus \{y_1, y_2\}$ by duplicating x twice.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim (continued). Reminder: $y_1x, xy_2 \notin E(G)$ and $y_1y_2 \in E(G)$; $d_G(y_1), d_G(y_2) \leq d_G(x)$. Now, let G' be the graph obtained from $G \setminus \{y_1, y_2\}$ by duplicating x twice. Then G' is an *n*-vertex graph with no K_{r+1} subgraph, and (since $y_1y_2 \in E(G)$) we have that

 $|E(G')| = |E(G)| - (d_G(y_1) + d_G(y_2)) + 1 + 2d_G(x) \ge |E(G)| + 1$, contrary to the fact that G is extremal. This proves the Claim.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Now, using the Claim, we fix a partition (S_1, \ldots, S_k) of V(G) into non-empty stable sets, pairwise complete to each other.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Now, using the Claim, we fix a partition (S_1, \ldots, S_k) of V(G) into non-empty stable sets, pairwise complete to each other. Clearly, G contains K_k is a subgraph, and so $k \leq r$.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Now, using the Claim, we fix a partition (S_1, \ldots, S_k) of V(G) into non-empty stable sets, pairwise complete to each other. Clearly, G contains K_k is a subgraph, and so $k \leq r$. Suppose that k < r.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Now, using the Claim, we fix a partition (S_1, \ldots, S_k) of V(G) into non-empty stable sets, pairwise complete to each other. Clearly, Gcontains K_k is a subgraph, and so $k \leq r$. Suppose that k < r. Then since r < n, at least one of the sets S_1, \ldots, S_k has more than one vertex; by symmetry, we may assume that $|S_k| \geq 2$. Fix $a \in S_k$.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is *n*-vertex extremal graph without a K_{r+1} subgraph.

Now, using the Claim, we fix a partition (S_1, \ldots, S_k) of V(G) into non-empty stable sets, pairwise complete to each other. Clearly, Gcontains K_k is a subgraph, and so $k \le r$. Suppose that k < r. Then since r < n, at least one of the sets S_1, \ldots, S_k has more than one vertex; by symmetry, we may assume that $|S_k| \ge 2$. Fix $a \in S_k$. Then we get a contradiction to the fact that G is extremal as follows (next slide; formal details: Lecture Notes).

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued).

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued).

So, r = k.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; *G* is *n*-vertex extremal graph without a K_{r+1} subgraph; *G* is a complete *r*-partite graph with (non-empty) parts S_1, \ldots, S_r . WTS $G \cong T_r(n)$.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; *G* is *n*-vertex extremal graph without a K_{r+1} subgraph; *G* is a complete *r*-partite graph with (non-empty) parts S_1, \ldots, S_r . WTS $G \cong T_r(n)$. It remains to show that any two of S_1, \ldots, S_r differ in size by at most one.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; *G* is *n*-vertex extremal graph without a K_{r+1} subgraph; *G* is a complete *r*-partite graph with (non-empty) parts S_1, \ldots, S_r . WTS $G \cong T_r(n)$. It remains to show that any two of S_1, \ldots, S_r differ in size by at most one. Suppose otherwise.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; *G* is *n*-vertex extremal graph without a K_{r+1} subgraph; *G* is a complete *r*-partite graph with (non-empty) parts S_1, \ldots, S_r . WTS $G \cong T_r(n)$. It remains to show that any two of S_1, \ldots, S_r differ in size by at most one. Suppose otherwise. By symmetry, we may assume that $|S_1| \ge |S_2| + 2$.

Let *n* and *r* be positive integers. Then $e_X(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; *G* is *n*-vertex extremal graph without a K_{r+1} subgraph; *G* is a complete *r*-partite graph with (non-empty) parts S_1, \ldots, S_r . WTS $G \cong T_r(n)$. It remains to show that any two of S_1, \ldots, S_r differ in size by at most one. Suppose otherwise. By symmetry, we may assume that $|S_1| \ge |S_2| + 2$. Now, fix a vetex $a \in S_1$, and "move" *a* from S_1 to S_2 (i.e. delete edges between *a* and S_2 , and add edges between *a* and $S_1 \setminus \{a\}$).

Let *n* and *r* be positive integers. Then $e_x(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; *G* is *n*-vertex extremal graph without a K_{r+1} subgraph; *G* is a complete *r*-partite graph with (non-empty) parts S_1, \ldots, S_r . WTS $G \cong T_r(n)$. It remains to show that any two of S_1, \ldots, S_r differ in size by at most one. Suppose otherwise. By symmetry, we may assume that $|S_1| \ge |S_2| + 2$. Now, fix a vetex $a \in S_1$, and "move" *a* from S_1 to S_2 (i.e. delete edges between *a* and S_2 , and add edges between *a* and $S_1 \setminus \{a\}$). This increases the number of edges without creating a K_{r+1} subgraph, contrary to the fact that *G* is extremal.

Let *n* and *r* be positive integers. Then $ex(n, K_{r+1}) = t_r(n)$, and furthermore, $T_r(n)$ is the unique (up to isomorphism) extremal *n*-vertex graph without a K_{r+1} subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph without a K_{r+1} subgraph; G is a complete r-partite graph with (non-empty) parts S_1, \ldots, S_r . WTS $G \cong T_r(n)$. It remains to show that any two of S_1, \ldots, S_r differ in size by at most one. Suppose otherwise. By symmetry, we may assume that $|S_1| \ge |S_2| + 2$. Now, fix a vetex $a \in S_1$, and "move" a from S_1 to S_2 (i.e. delete edges between a and S_2 , and add edges between a and $S_1 \setminus \{a\}$). This increases the number of edges without creating a K_{r+1} subgraph, contrary to the fact that G is extremal. So, $G \cong T_r(n)$.

- Suppose we are given positive integers *r* and *n*, and we want to select a maximum number of pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.
 - What this this maximum number?

- Suppose we are given positive integers *r* and *n*, and we want to select a maximum number of pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.
 - What this this maximum number?
- For r > ⁿ/₂, any two r-element subsets of {1,..., n} intersect, and there are (ⁿ/_r) such subsets.

- Suppose we are given positive integers *r* and *n*, and we want to select a maximum number of pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.
 - What this this maximum number?
- For r > n/2, any two r-element subsets of {1,..., n} intersect, and there are (n/r) such subsets.
- How about if $r \leq \frac{n}{2}$?

- Suppose we are given positive integers *r* and *n*, and we want to select a maximum number of pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.
 - What this this maximum number?
- For r > n/2, any two r-element subsets of {1,..., n} intersect, and there are (n/r) such subsets.
- How about if $r \leq \frac{n}{2}$?
 - In that case, we can consider all *r*-element subsets of $\{1, \ldots, n\}$ that contain *n*.
 - There are $\binom{n-1}{r-1}$ such subsets, and obviously, they pairwise intersect.

- Suppose we are given positive integers *r* and *n*, and we want to select a maximum number of pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.
 - What this this maximum number?
- For r > n/2, any two r-element subsets of {1,..., n} intersect, and there are (n/r) such subsets.
- How about if $r \leq \frac{n}{2}$?
 - In that case, we can consider all *r*-element subsets of $\{1, \ldots, n\}$ that contain *n*.
 - There are $\binom{n-1}{r-1}$ such subsets, and obviously, they pairwise intersect.
 - As the following theorem shows, this is in fact best possible.

- Suppose we are given positive integers *r* and *n*, and we want to select a maximum number of pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.
 - What this this maximum number?
- For r > ⁿ/₂, any two r-element subsets of {1,..., n} intersect, and there are (ⁿ/_r) such subsets.
- How about if $r \leq \frac{n}{2}$?
 - In that case, we can consider all *r*-element subsets of $\{1, \ldots, n\}$ that contain *n*.
 - There are $\binom{n-1}{r-1}$ such subsets, and obviously, they pairwise intersect.
 - As the following theorem shows, this is in fact best possible.

The Erdős-Ko-Rado theorem

Let *r* and *n* be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.

Let r and n be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting r-element subsets of $\{1, \ldots, n\}$.

Proof.

Let r and n be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting r-element subsets of $\{1, \ldots, n\}$.

Proof. Let A_1, \ldots, A_m be pairwise distinct and pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$. WTS $m \leq \binom{n-1}{r-1}$. Let *c* be the number of ordered pairs (C, A), where

- C is a directed cycle with vertex set {1,...,n};
 - vertics 1,..., n need **not** appear in that order on the cycle;
- A is an r-vertex directed subpath of C;
- $V(A) = A_i$ for some $i \in \{1, \ldots, m\}$.

Let r and n be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting r-element subsets of $\{1, \ldots, n\}$.

Proof. Let A_1, \ldots, A_m be pairwise distinct and pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$. WTS $m \leq \binom{n-1}{r-1}$. Let *c* be the number of ordered pairs (*C*, *A*), where

- C is a directed cycle with vertex set {1,...,n};
 - vertics 1,..., n need **not** appear in that order on the cycle;
- A is an r-vertex directed subpath of C;
- $V(A) = A_i$ for some $i \in \{1, \ldots, m\}$.

Now we count in two ways, as follows.

Let r and n be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting r-element subsets of $\{1, \ldots, n\}$.

Proof. Let A_1, \ldots, A_m be pairwise distinct and pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$. WTS $m \leq \binom{n-1}{r-1}$. Let *c* be the number of ordered pairs (C, A), where

- C is a directed cycle with vertex set {1,...,n};
 - vertics 1,..., n need **not** appear in that order on the cycle;
- A is an r-vertex directed subpath of C;
- $V(A) = A_i$ for some $i \in \{1, \ldots, m\}$.

Now we count in two ways, as follows. On the one hand, we can form an ordered pair (C, A) by first selecting one of the sets A_1, \ldots, A_m (we have *m* choices),

Let *r* and *n* be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.

Proof. Let A_1, \ldots, A_m be pairwise distinct and pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$. WTS $m \leq \binom{n-1}{r-1}$. Let *c* be the number of ordered pairs (C, A), where

- C is a directed cycle with vertex set {1,...,n};
 - vertics 1,..., n need **not** appear in that order on the cycle;
- A is an r-vertex directed subpath of C;
- $V(A) = A_i$ for some $i \in \{1, \ldots, m\}$.

Now we count in two ways, as follows. On the one hand, we can form an ordered pair (C, A) by first selecting one of the sets A_1, \ldots, A_m (we have *m* choices), then ordering its vertices to form a directed path (there are r! choices),

Let *r* and *n* be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.

Proof. Let A_1, \ldots, A_m be pairwise distinct and pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$. WTS $m \leq \binom{n-1}{r-1}$. Let *c* be the number of ordered pairs (C, A), where

- C is a directed cycle with vertex set {1,...,n};
 - vertics 1,..., n need **not** appear in that order on the cycle;
- A is an r-vertex directed subpath of C;
- $V(A) = A_i$ for some $i \in \{1, \ldots, m\}$.

Now we count in two ways, as follows. On the one hand, we can form an ordered pair (C, A) by first selecting one of the sets A_1, \ldots, A_m (we have *m* choices), then ordering its vertices to form a directed path (there are r! choices), and then ordering the remaining n - r vertices to complete the cycle *C* (there are (n - r)! choices).

Let *r* and *n* be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.

Proof. Let A_1, \ldots, A_m be pairwise distinct and pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$. WTS $m \leq \binom{n-1}{r-1}$. Let *c* be the number of ordered pairs (C, A), where

- C is a directed cycle with vertex set {1,...,n};
 - vertics 1,..., n need **not** appear in that order on the cycle;
- A is an r-vertex directed subpath of C;
- $V(A) = A_i$ for some $i \in \{1, \ldots, m\}$.

Now we count in two ways, as follows. On the one hand, we can form an ordered pair (C, A) by first selecting one of the sets A_1, \ldots, A_m (we have *m* choices), then ordering its vertices to form a directed path (there are *r*! choices), and then ordering the remaining n - r vertices to complete the cycle *C* (there are (n - r)! choices). So, c = mr!(n - r)!.

- C is a directed cycle with vertex set {1,..., n};
- A is an r-vertex directed subpath of C;

•
$$V(A) = A_i$$
 for some $i \in \{1, ..., m\}$;

$$c = mr!(n-r)!.$$

- *C* is a directed cycle with vertex set {1,..., *n*};
- A is an r-vertex directed subpath of C;
- $V(A) = A_i$ for some $i \in \{1, \ldots, m\}$;
- c = mr!(n-r)!.

We now count in another way.

- *C* is a directed cycle with vertex set {1,..., *n*};
- A is an r-vertex directed subpath of C;

•
$$V(A) = A_i$$
 for some $i \in \{1, ..., m\};$

$$c = mr!(n-r)!.$$

We now count in another way. First, there are (n-1)! ways of ordering $\{1, \ldots, n\}$ to obtain a directed cycle C.

- *C* is a directed cycle with vertex set {1,..., *n*};
- A is an r-vertex directed subpath of C;

•
$$V(A) = A_i$$
 for some $i \in \{1, ..., m\};$

$$c = mr!(n-r)!.$$

We now count in another way. First, there are (n-1)! ways of ordering $\{1, \ldots, n\}$ to obtain a directed cycle *C*. WTS that for fixed *C*, there are at most *r* directed subpaths of *C* that correspond to one of A_i 's.

- *C* is a directed cycle with vertex set {1,..., *n*};
- A is an r-vertex directed subpath of C;

•
$$V(A) = A_i$$
 for some $i \in \{1, ..., m\}$;

$$c = mr!(n-r)!.$$

We now count in another way. First, there are (n-1)! ways of ordering $\{1, \ldots, n\}$ to obtain a directed cycle *C*. WTS that for fixed *C*, there are at most *r* directed subpaths of *C* that correspond to one of A_i 's. Indeed, suppose the subpath a_1, a_2, \ldots, a_r of *C* corresponds to one of A_1, \ldots, A_m .

Then for any other subpath of *C* corresponding to one of A_1, \ldots, A_m (and therefore containing at least one of a_1, \ldots, a_r), there exists some $i \in \{1, \ldots, n-1\}$ s.t. either a_i is the terminal vertex of the path, or a_{i+1} is the initial vertex of the path;

Then for any other subpath of *C* corresponding to one of A_1, \ldots, A_m (and therefore containing at least one of a_1, \ldots, a_r), there exists some $i \in \{1, \ldots, n-1\}$ s.t. either a_i is the terminal vertex of the path, or a_{i+1} is the initial vertex of the path; but since $r \leq \frac{n}{2}$, at most one of those choices is possible.

Then for any other subpath of *C* corresponding to one of A_1, \ldots, A_m (and therefore containing at least one of a_1, \ldots, a_r), there exists some $i \in \{1, \ldots, n-1\}$ s.t. either a_i is the terminal vertex of the path, or a_{i+1} is the initial vertex of the path; but since $r \leq \frac{n}{2}$, at most one of those choices is possible. This proves that

$$c \leq (n-1)!r.$$

Let *r* and *n* be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.

Proof (continued). Reminder: A_1, \ldots, A_m are pairwise distinct and pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$; $mr!(n-r)! = c \leq (n-1)!r$.

Let *r* and *n* be positive integers s.t. $r \leq \frac{n}{2}$. Then there are at most $\binom{n-1}{r-1}$ pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$.

Proof (continued). Reminder: A_1, \ldots, A_m are pairwise distinct and pairwise intersecting *r*-element subsets of $\{1, \ldots, n\}$; $mr!(n-r)! = c \le (n-1)!r$. So, (n-1)!r.

$$m \leq \frac{(n-1)!r}{r!(n-r)!} = \binom{n-1}{r-1},$$

which is what we needed to show.

Part III: The Sunflower lemma

Part III: The Sunflower lemma

Definition

A sunflower is a family (i.e. collection) \mathscr{S} of sets (called *petals*) s.t. there exists a set S (called a *kernel*) with the property that for all distinct $S_1, S_2 \in \mathscr{S}$, we have that $S_1 \cap S_2 = S$.

• A sunflower $\mathscr{S} = \{S_1, \ldots, S_k\}$ with kernel S:

Definition

A sunflower is a family (i.e. collection) \mathscr{S} of sets (called *petals*) s.t. there exists a set S (called a *kernel*) with the property that for all distinct $S_1, S_2 \in \mathscr{S}$, we have that $S_1 \cap S_2 = S$.

Definition

A sunflower is a family (i.e. collection) \mathscr{S} of sets (called *petals*) s.t. there exists a set S (called a *kernel*) with the property that for all distinct $S_1, S_2 \in \mathscr{S}$, we have that $S_1 \cap S_2 = S$.

The Sunflower lemma [Erdős-Rado]

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof.
Definition

A sunflower is a family (i.e. collection) \mathscr{S} of sets (called *petals*) s.t. there exists a set S (called a *kernel*) with the property that for all distinct $S_1, S_2 \in \mathscr{S}$, we have that $S_1 \cap S_2 = S$.

The Sunflower lemma [Erdős-Rado]

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof. We assume inductively that the lemma is true for smaller values of ℓ .

Definition

A sunflower is a family (i.e. collection) \mathscr{S} of sets (called *petals*) s.t. there exists a set S (called a *kernel*) with the property that for all distinct $S_1, S_2 \in \mathscr{S}$, we have that $S_1 \cap S_2 = S$.

The Sunflower lemma [Erdős-Rado]

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof. We assume inductively that the lemma is true for smaller values of ℓ . If $p \leq 2$ or $\ell = 1$, then it's easy (details: Lecture Notes). So, we assume that $p \geq 3$ and $\ell \geq 2$.

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ .

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ .

Let $\mathscr{D}\subseteq\mathscr{A}$ be a collection of pairwise disjoint sets, with $|\mathscr{D}|$ chosen maximum.

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ .

Let $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets, with $|\mathscr{D}|$ chosen maximum. If $|\mathscr{D}| \ge p$, then any p elements of \mathscr{D} form a sunflower (with an empty kernel), and we are done.

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ .

Let $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets, with $|\mathscr{D}|$ chosen maximum. If $|\mathscr{D}| \ge p$, then any p elements of \mathscr{D} form a sunflower (with an empty kernel), and we are done. So assume that $|\mathscr{D}| < p$.

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ .

Let $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets, with $|\mathscr{D}|$ chosen maximum. If $|\mathscr{D}| \ge p$, then any p elements of \mathscr{D} form a sunflower (with an empty kernel), and we are done. So assume that $|\mathscr{D}| < p$. Let $D = \bigcup \mathscr{D}$; then $|D| \le |\mathscr{D}|\ell \le (p-1)\ell$.

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ .

Let $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets, with $|\mathscr{D}|$ chosen maximum. If $|\mathscr{D}| \ge p$, then any p elements of \mathscr{D} form a sunflower (with an empty kernel), and we are done. So assume that $|\mathscr{D}| < p$. Let $D = \bigcup \mathscr{D}$; then $|D| \le |\mathscr{D}|\ell \le (p-1)\ell$. Furthermore, since $|\mathscr{A}| \ge \ell \ge 2$, the maximality of \mathscr{D} guarantees that \mathscr{D} contains at least one non-empty set, and so $D \ne \emptyset$.

Proof of the Claim.

Proof of the Claim. We consider the case when $\emptyset \notin \mathscr{A}$ (see the Lecture Notes for the other case).

Proof of the Claim. We consider the case when $\emptyset \notin \mathscr{A}$ (see the Lecture Notes for the other case).

Then every element of \mathscr{A} intersects D: indeed, since $\emptyset \notin \mathscr{D}$, we know that every element of \mathscr{D} intersects D, and by the maximality of \mathscr{D} , every element of $\mathscr{A} \setminus \mathscr{D}$ intersects D.

Proof of the Claim. We consider the case when $\emptyset \notin \mathscr{A}$ (see the Lecture Notes for the other case).

Then every element of \mathscr{A} intersects D: indeed, since $\emptyset \notin \mathscr{D}$, we know that every element of \mathscr{D} intersects D, and by the maximality of \mathscr{D} , every element of $\mathscr{A} \setminus \mathscr{D}$ intersects D. But then by the Pigeonhole Principle, some element of D belongs to at least

$$\left\lceil rac{|\mathscr{A}|}{|D|}
ight
ceil > rac{(p-1)^\ell \ell!}{(p-1)\ell} = (p-1)^{\ell-1} (\ell-1)!,$$

elements of \mathcal{A} , which is what we needed. This proves the Claim.

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ ; $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets of maximum possible size; $D = \bigcup \mathscr{D}$.

Claim. There exists some $d \in D$ s.t. d belongs to more than $(p-1)^{\ell-1}(\ell-1)!$ elements of \mathscr{A} .

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ ; $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets of maximum possible size; $D = \bigcup \mathscr{D}$.

Claim. There exists some $d \in D$ s.t. d belongs to more than $(p-1)^{\ell-1}(\ell-1)!$ elements of \mathscr{A} .

Let $d \in D$ be as in the Claim,

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ ; $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets of maximum possible size; $D = \bigcup \mathscr{D}$.

Claim. There exists some $d \in D$ s.t. d belongs to more than $(p-1)^{\ell-1}(\ell-1)!$ elements of \mathscr{A} .

Let $d \in D$ be as in the Claim, and set $\mathscr{A}' := \{A \setminus \{d\} \mid A \in \mathscr{A}, d \in A\}.$

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ ; $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets of maximum possible size; $D = \bigcup \mathscr{D}$.

Claim. There exists some $d \in D$ s.t. d belongs to more than $(p-1)^{\ell-1}(\ell-1)!$ elements of \mathscr{A} .

Let $d \in D$ be as in the Claim, and set $\mathscr{A}' := \{A \setminus \{d\} \mid A \in \mathscr{A}, d \in A\}$. Then $|\mathscr{A}'| > (p-1)^{\ell-1}(\ell-1)!$, and $|A| \leq \ell - 1 \ \forall A \in \mathscr{A}'$.

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ ; $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets of maximum possible size; $D = \bigcup \mathscr{D}$.

Claim. There exists some $d \in D$ s.t. d belongs to more than $(p-1)^{\ell-1}(\ell-1)!$ elements of \mathscr{A} .

Let $d \in D$ be as in the Claim, and set $\mathscr{A}' := \{A \setminus \{d\} \mid A \in \mathscr{A}, d \in A\}$. Then $|\mathscr{A}'| > (p-1)^{\ell-1}(\ell-1)!$, and $|A| \leq \ell - 1 \ \forall A \in \mathscr{A}'$. So, by the ind. hyp., \exists sunflower $\mathscr{S}' \subseteq \mathscr{A}'$ with p petals.

Let ℓ and p be positive integers, and let \mathscr{A} be a family of sets s.t.

- $|A| \leq \ell$ for all $A \in \mathscr{A}$, and
- $|\mathscr{A}| > (p-1)^{\ell} \ell!$.

Then there exists a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Proof (continued). Reminder: $p \ge 3$, $\ell \ge 2$; true for smaller values of ℓ ; $\mathscr{D} \subseteq \mathscr{A}$ be a collection of pairwise disjoint sets of maximum possible size; $D = \bigcup \mathscr{D}$.

Claim. There exists some $d \in D$ s.t. d belongs to more than $(p-1)^{\ell-1}(\ell-1)!$ elements of \mathscr{A} .

Let $d \in D$ be as in the Claim, and set $\mathscr{A}' := \{A \setminus \{d\} \mid A \in \mathscr{A}, d \in A\}$. Then $|\mathscr{A}'| > (p-1)^{\ell-1}(\ell-1)!$, and $|A| \leq \ell - 1 \quad \forall A \in \mathscr{A}'$. So, by the ind. hyp., \exists sunflower $\mathscr{S}' \subseteq \mathscr{A}'$ with p petals. Now, set $\mathscr{S} := \{A \cup \{d\} \mid A \in \mathscr{S}'\}$; then $\mathscr{S} \subseteq \mathscr{A}$ is a sunflower with p petals, and we are done.