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In this lecture, we will cover three theorems:

Turán’s theorem;
the Erdős-Ko-Rado theorem;
the Sunflower lemma.
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Part I: Turán’s theorem

Definition
Given a positive integer n and a graph H, an n-vertex graph G
without an H subgraph is extremal (for the property of not
containing H as a subgraph) if it has the largest possible number
of edges among all n-vertex graphs without an H subgraph;
ex(n, H) is the number of edges of an extremal n-vertex graph
without an H subgraph.

So, ex(n, H) is the maximum number of edges that an
n-vertex graph that does not contain H as a subgraph can
have.
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Any extremal graph G without an H subgraph is
“edge-maximal” without an H subgraph, i.e. any graph
obtained from G by adding one or more edges to it, contains
H as a subgraph.

The converse, however, does not hold in general: it is possible
that a graph is edge-maximal without an H subgraph, without
being extremal.

For example, 2K2 is a four-vertex edge-maximal graph without
a P4 subgraph, but it is not extremal: indeed, K1,3 also has
four vertices and no P4 subgraph, and it has more edges than
2K2.
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Mantel’s theorem

For any positive integer n, we have that ex(n, K3) = bn2

4 c, and
moreover, Kb n

2 c,d
n
2 e is an extremal n-vertex graph without a K3

subgraph.

Proof. Combinatorics & Graphs 1.

Mantel’s theorem is a special case of Turán’s theorem, to
which we now turn.



Mantel’s theorem

For any positive integer n, we have that ex(n, K3) = bn2

4 c, and
moreover, Kb n

2 c,d
n
2 e is an extremal n-vertex graph without a K3

subgraph.

Proof. Combinatorics & Graphs 1.

Mantel’s theorem is a special case of Turán’s theorem, to
which we now turn.



Definition
For a positive integer r , a complete r -partite graph is a graph G
whose vertex set can be partitioned into r (possibly empty) stable
sets (called parts), pairwise complete to each other.

S1

S2

S3

Definition
A complete multipartite graph is any graph that is complete
r -partite for some r .



Definition
The r -partite Turán graph on n vertices, denoted by Tr (n), is the
complete r -partite graph on n vertices, in which the sizes of any
two parts differ by at most one (so, each part is of size bn

r c or
dn

r e); tr (n) is the number of edges of Tr (n).
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Turán’s theorem
Let n and r be positive integers. Then ex(n, Kr+1) = tr (n), and
furthermore, Tr (n) is the unique (up to isomorphism) extremal
n-vertex graph without a Kr+1 subgraph.
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Duplicating a vertex x of a graph G produces a supergraph
G ◦ x by adding to G a vertex x ′ and making it adjacent to all
the neighbors of x in G , and to no other vertices of G (in
particular, x and x ′ are nonadjacent in G ◦ x).

x x

x′

G G ◦ x

Obviously, ω(G ◦ x) = ω(G), i.e. G contains Kr+1 is a
subgraph iff G ◦ x does.
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Turán’s theorem
Let n and r be positive integers. Then ex(n, Kr+1) = tr (n), and
furthermore, Tr (n) is the unique (up to isomorphism) extremal
n-vertex graph without a Kr+1 subgraph.

Proof.

We may assume that r < n, for otherwise, Tr (n) ∼= Kn, and
the result is immediate.
It is clear that Tr (n) is an n-vertex graph without a Kr+1
subgraph. Now, let G be any n-vertex extremal graph without a
Kr+1 subgraph. We must show that G ∼= Tr (n).
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Turán’s theorem
Let n and r be positive integers. Then ex(n, Kr+1) = tr (n), and
furthermore, Tr (n) is the unique (up to isomorphism) extremal
n-vertex graph without a Kr+1 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a Kr+1 subgraph.

Claim. G is a complete multipartite graph.

Proof of the Claim.

Suppose otherwise. Then non-adjacency is not
an equivalence relation on V (G), and it follows that there exist
pairwise distinct vertices y1, x , y2 ∈ V (G) s.t. y1x , xy2 /∈ E (G), but
y1y2 ∈ E (G). If dG(y1) > dG(x), then G1 := (G \ x) ◦ y1 is an
n-vertex graph that does not contain Kr+1 as a subgraph, and
|E (G1)| > |E (G)|, contrary to the fact that G is extremal.
So, dG(y1) ≤ dG(x), and similarly, dG(y2) ≤ dG(x).
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Proof of the Claim (continued). Reminder: y1x , xy2 /∈ E (G) and
y1y2 ∈ E (G); dG(y1), dG(y2) ≤ dG(x).

Now, let G ′ be the graph
obtained from G \ {y1, y2} by duplicating x twice. Then G ′ is an
n-vertex graph with no Kr+1 subgraph, and (since y1y2 ∈ E (G))
we have that
|E (G ′)| = |E (G)| − (dG(y1) + dG(y2)) + 1 + 2dG(x) ≥ |E (G)|+ 1,
contrary to the fact that G is extremal. This proves the Claim.
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Turán’s theorem
Let n and r be positive integers. Then ex(n, Kr+1) = tr (n), and
furthermore, Tr (n) is the unique (up to isomorphism) extremal
n-vertex graph without a Kr+1 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a Kr+1 subgraph.
Now, using the Claim, we fix a partition (S1, . . . , Sk) of V (G) into
non-empty stable sets, pairwise complete to each other.

Clearly, G
contains Kk is a subgraph, and so k ≤ r . Suppose that k < r .
Then since r < n, at least one of the sets S1, . . . , Sk has more than
one vertex; by symmetry, we may assume that |Sk | ≥ 2. Fix
a ∈ Sk . Then we get a contradiction to the fact that G is extremal
as follows (next slide; formal details: Lecture Notes).
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Sk \ {a}

So, r = k.
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Turán’s theorem
Let n and r be positive integers. Then ex(n, Kr+1) = tr (n), and
furthermore, Tr (n) is the unique (up to isomorphism) extremal
n-vertex graph without a Kr+1 subgraph.

Proof (continued). Reminder: r < n; G is n-vertex extremal graph
without a Kr+1 subgraph; G is a complete r -partite graph with
(non-empty) parts S1, . . . , Sr . WTS G ∼= Tr (n).

It remains to show that any two of S1, . . . , Sr differ in size by at
most one. Suppose otherwise. By symmetry, we may assume that
|S1| ≥ |S2|+ 2. Now, fix a vetex a ∈ S1, and “move” a from S1 to
S2 (i.e. delete edges between a and S2, and add edges between a
and S1 \ {a}). This increases the number of edges without
creating a Kr+1 subgraph, contrary to the fact that G is extremal.
So, G ∼= Tr (n).
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Part II: The Erdős-Ko-Rado theorem

Suppose we are given positive integers r and n, and we want
to select a maximum number of pairwise intersecting
r -element subsets of {1, . . . , n}.

What this this maximum number?
For r > n

2 , any two r -element subsets of {1, . . . , n} intersect,
and there are

(n
r
)

such subsets.
How about if r ≤ n

2 ?

In that case, we can consider all r -element subsets of
{1, . . . , n} that contain n.
There are

(n−1
r−1
)

such subsets, and obviously, they pairwise
intersect.
As the following theorem shows, this is in fact best possible.

The Erdős-Ko-Rado theorem
Let r and n be positive integers s.t. r ≤ n

2 . Then there are at most(n−1
r−1
)

pairwise intersecting r -element subsets of {1, . . . , n}.
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Part II: The Erdős-Ko-Rado theorem
Suppose we are given positive integers r and n, and we want
to select a maximum number of pairwise intersecting
r -element subsets of {1, . . . , n}.

What this this maximum number?
For r > n

2 , any two r -element subsets of {1, . . . , n} intersect,
and there are

(n
r
)

such subsets.
How about if r ≤ n

2 ?
In that case, we can consider all r -element subsets of
{1, . . . , n} that contain n.
There are

(n−1
r−1
)

such subsets, and obviously, they pairwise
intersect.
As the following theorem shows, this is in fact best possible.
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The Erdős-Ko-Rado theorem
Let r and n be positive integers s.t. r ≤ n

2 . Then there are at most(n−1
r−1
)

pairwise intersecting r -element subsets of {1, . . . , n}.

Proof.

Let A1, . . . , Am be pairwise distinct and pairwise
intersecting r -element subsets of {1, . . . , n}. WTS m ≤

(n−1
r−1
)
.

Let c be the number of ordered pairs (C , A), where
C is a directed cycle with vertex set {1, . . . , n};

vertics 1, . . . , n need not appear in that order on the cycle;
A is an r -vertex directed subpath of C ;
V (A) = Ai for some i ∈ {1, . . . , m}.

Now we count in two ways, as follows. On the one hand, we can
form an ordered pair (C , A) by first selecting one of the sets
A1, . . . , Am (we have m choices), then ordering its vertices to form
a directed path (there are r ! choices), and then ordering the
remaining n − r vertices to complete the cycle C (there are
(n − r)! choices). So, c = mr !(n − r)!.



The Erdős-Ko-Rado theorem
Let r and n be positive integers s.t. r ≤ n

2 . Then there are at most(n−1
r−1
)

pairwise intersecting r -element subsets of {1, . . . , n}.

Proof. Let A1, . . . , Am be pairwise distinct and pairwise
intersecting r -element subsets of {1, . . . , n}. WTS m ≤

(n−1
r−1
)
.

Let c be the number of ordered pairs (C , A), where
C is a directed cycle with vertex set {1, . . . , n};

vertics 1, . . . , n need not appear in that order on the cycle;
A is an r -vertex directed subpath of C ;
V (A) = Ai for some i ∈ {1, . . . , m}.

Now we count in two ways, as follows. On the one hand, we can
form an ordered pair (C , A) by first selecting one of the sets
A1, . . . , Am (we have m choices), then ordering its vertices to form
a directed path (there are r ! choices), and then ordering the
remaining n − r vertices to complete the cycle C (there are
(n − r)! choices). So, c = mr !(n − r)!.
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Proof (continued). Reminder: A1, . . . , Am are pairwise distinct and
pairwise intersecting r -element subsets of {1, . . . , n}; c is the
number of ordered pairs (C , A), where

C is a directed cycle with vertex set {1, . . . , n};
A is an r -vertex directed subpath of C ;
V (A) = Ai for some i ∈ {1, . . . , m};

c = mr !(n − r)!.

We now count in another way. First, there are (n − 1)! ways of
ordering {1, . . . , n} to obtain a directed cycle C . WTS that for
fixed C , there are at most r directed subpaths of C that
correspond to one of Ai ’s. Indeed, suppose the subpath
a1, a2, . . . , ar of C corresponds to one of A1, . . . , Am.

a1
ar

ai ai+1
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a1
ar

ai ai+1

Then for any other subpath of C corresponding to one of
A1, . . . , Am (and therefore containing at least one of a1, . . . , ar ),
there exists some i ∈ {1, . . . , n − 1} s.t. either ai is the terminal
vertex of the path, or ai+1 is the initial vertex of the path;

but since
r ≤ n

2 , at most one of those choices is possible. This proves that

c ≤ (n − 1)!r .
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The Erdős-Ko-Rado theorem
Let r and n be positive integers s.t. r ≤ n

2 . Then there are at most(n−1
r−1
)

pairwise intersecting r -element subsets of {1, . . . , n}.

Proof (continued). Reminder: A1, . . . , Am are pairwise distinct and
pairwise intersecting r -element subsets of {1, . . . , n};
mr !(n − r)! = c ≤ (n − 1)!r .

So,
m ≤ (n−1)!r

r !(n−r)! =
(n−1

r−1
)
,

which is what we needed to show.
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Part III: The Sunflower lemma

Definition
A sunflower is a family (i.e. collection) S of sets (called petals)
s.t. there exists a set S (called a kernel) with the property that for
all distinct S1, S2 ∈ S , we have that S1 ∩ S2 = S.

A sunflower S = {S1, . . . , Sk} with kernel S:

S

S1 \ S

S2 \ S

S3 \ S

Sk \ S
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Definition
A sunflower is a family (i.e. collection) S of sets (called petals)
s.t. there exists a set S (called a kernel) with the property that for
all distinct S1, S2 ∈ S , we have that S1 ∩ S2 = S.

The Sunflower lemma [Erdős-Rado]
Let ` and p be positive integers, and let A be a family of sets s.t.

|A| ≤ ` for all A ∈ A , and
|A | > (p − 1)``!.

Then there exists a sunflower S ⊆ A with p petals.

Proof. We assume inductively that the lemma is true for smaller
values of `. If p ≤ 2 or ` = 1, then it’s easy (details: Lecture
Notes). So, we assume that p ≥ 3 and ` ≥ 2.
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Let ` and p be positive integers, and let A be a family of sets s.t.

|A| ≤ ` for all A ∈ A , and
|A | > (p − 1)``!.

Then there exists a sunflower S ⊆ A with p petals.

Proof. We assume inductively that the lemma is true for smaller
values of `.

If p ≤ 2 or ` = 1, then it’s easy (details: Lecture
Notes). So, we assume that p ≥ 3 and ` ≥ 2.



Definition
A sunflower is a family (i.e. collection) S of sets (called petals)
s.t. there exists a set S (called a kernel) with the property that for
all distinct S1, S2 ∈ S , we have that S1 ∩ S2 = S.

The Sunflower lemma [Erdős-Rado]
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|A| ≤ ` for all A ∈ A , and
|A | > (p − 1)``!.

Then there exists a sunflower S ⊆ A with p petals.

Proof (continued). Reminder: p ≥ 3, ` ≥ 2; true for smaller values
of `.

Let D ⊆ A be a collection of pairwise disjoint sets, with |D |
chosen maximum. If |D | ≥ p, then any p elements of D form a
sunflower (with an empty kernel), and we are done. So assume
that |D | < p. Let D =

⋃
D ; then |D| ≤ |D |` ≤ (p − 1)`.

Furthermore, since |A | ≥ ` ≥ 2, the maximality of D guarantees
that D contains at least one non-empty set, and so D 6= ∅.
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that D contains at least one non-empty set, and so D 6= ∅.
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Claim. There exists some d ∈ D s.t. d belongs to more
than (p − 1)`−1(`− 1)! elements of A .

Proof of the Claim.

We consider the case when ∅ /∈ A (see the
Lecture Notes for the other case).
Then every element of A intersects D: indeed, since ∅ /∈ D , we
know that every element of D intersects D, and by the maximality
of D , every element of A \D intersects D. But then by the
Pigeonhole Principle, some element of D belongs to at least⌈

|A |
|D|

⌉
> (p−1)``!

(p−1)` = (p − 1)`−1(`− 1)!,

elements of A , which is what we needed. This proves the Claim.
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Proof (continued). Reminder: p ≥ 3, ` ≥ 2; true for smaller values
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possible size; D =

⋃
D .

Claim. There exists some d ∈ D s.t. d belongs to more
than (p − 1)`−1(`− 1)! elements of A .

Let d ∈ D be as in the Claim, and set
A ′ := {A \ {d} | A ∈ A , d ∈ A}. Then |A ′| > (p − 1)`−1(`− 1)!,
and |A| ≤ `− 1 ∀A ∈ A ′. So, by the ind. hyp., ∃ sunflower
S ′ ⊆ A ′ with p petals. Now, set S := {A ∪ {d} | A ∈ S ′}; then
S ⊆ A is a sunflower with p petals, and we are done.
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Let ` and p be positive integers, and let A be a family of sets s.t.

|A| ≤ ` for all A ∈ A , and
|A | > (p − 1)``!.

Then there exists a sunflower S ⊆ A with p petals.

Proof (continued). Reminder: p ≥ 3, ` ≥ 2; true for smaller values
of `; D ⊆ A be a collection of pairwise disjoint sets of maximum
possible size; D =

⋃
D .

Claim. There exists some d ∈ D s.t. d belongs to more
than (p − 1)`−1(`− 1)! elements of A .

Let d ∈ D be as in the Claim, and set
A ′ := {A \ {d} | A ∈ A , d ∈ A}. Then |A ′| > (p − 1)`−1(`− 1)!,
and |A| ≤ `− 1 ∀A ∈ A ′. So, by the ind. hyp., ∃ sunflower
S ′ ⊆ A ′ with p petals.

Now, set S := {A ∪ {d} | A ∈ S ′}; then
S ⊆ A is a sunflower with p petals, and we are done.



The Sunflower lemma [Erdős-Rado]
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