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Lecture #10
Extremal combinatorics

Irena Penev

1 Turan’s theorem

Given a positive integer n and a graph H, an n-vertex graph G without an
H subgraph is extremal (for the property of not containing H as a subgraph)
if it has the largest possible number of edges among all n-vertex graphs
without an H subgraph; ex(n, H) is the number of edges of an extremal
n-vertex graph without an H subgraph. In other words, ex(n,H) is the
maximum number of edges that an n-vertex graph that does not contain H
as a subgraph can have.

Obviously, any extremal graph G without an H subgraph is “edge-
maximal” without an H subgraph, i.e. any graph obtained from G by adding
one or more edges to it, contains H as a subgraph. The converse, however,
does not hold in general: it is possible that a graph is edge-maximal without
an H subgraph, without being extremal. For example, 2K5 is a four-vertex
edge-maximal graph without a P subgraph,! but it is not extremal: indeed,
K1 3 also has four vertices and no P, subgraph, and it has more edges than
2K5.
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The following was proven in Combinatorics & Graphs Theory 1.

Mantel’s theorem. For any positive integer n, we have that ex(n, K3) =
L”%J, and moreover, KL%H% 1s an extremal n-vertexr graph without a K3

subgraph.

! As usual, Py is the four-vertex (and three-edge) path.



Mantel’s theorem is a special case of Turan’s theorem, to which we now
turn.

For a positive integer r, a complete r-partite graph is a graph G whose
vertex set can be partitioned into r (possibly empty) stable sets (called parts),
pairwise complete to each other. For example, the graph below is complete
3-partite, with parts 51, S, S3.

A complete multipartite graph is any graph that is complete r-partite for
some 7.

The r-partite Turan graph on n vertices, denoted by T).(n), is the complete
r-partite graph on n vertices, in which the sizes of any two parts differ by at
most one (so, each part is of size [ ] or [2]); ¢-(n) is the number of edges of
T,(n). We note that the complete 3-partite graph above is in fact the graph
T5(8).

Recall that duplicating a verter x of a graph G produces a supergraph
Gox by adding to G a vertex ' and making it adjacent to all the neighbors of
x in G, and to no other vertices of G (in particular, z and 2 are nonadjacent
in G ox). An example is shown below.

G Goux

Obviously, w(G o x) = w(G), i.e. G contains K, 1 is a subgraph if and only
if G o x does.

Turdn’s theorem. Let n and r be positive integers. Then ex(n, K,41) =
tr(n), and furthermore, T, (n) is the unique (up to isomorphism) extremal
n-vertex graph without a K,41 subgraph.

Proof. We may assume that r < n, for otherwise, T,.(n) = K, and the result
is immediate.

It is clear that T,.(n) is an n-vertex graph without a K, ;1 subgraph. Now,
let G be any n-vertex extremal graph without a K, subgraph. We must
show that G = T,.(n).



Claim. G is a complete multipartite graph.

Proof of the Claim. Suppose otherwise. Then non-adjacency is not an
equivalence relation on V(G), and it follows that there exist pairwise distinct
vertices y1,z,y2 € V(G) such that yyz,xys ¢ E(G), but y1y2 € E(G). If
da(y1) > dg(x), then G1 := (G \ ) oy; is an n-vertex graph that does not
contain K, 11 as a subgraph, and |FE(G1)| > |E(G)|, contrary to the fact that
G is extremal.

So, da(y1) < dg(z), and similarly, dg(y2) < dg(x). Now, let G’ be the
graph obtained from G\ {y1,y2} by duplicating = twice. Then G’ is an
n-vertex graph with no K, subgraph, and (since y1y2 € E(G)) we have
that |[E(G')| = |E(G)| = (da(y1) +da(y2)) +1+2da(x) = |[E(G)[+1, contrary
to the fact that G is extremal. This proves the Claim. B

Now, using the Claim, we fix a partition (S1,...,Sk) of V(G) into non-
empty stable sets, pairwise complete to each other. Clearly, G contains K}
is a subgraph,? and so k < r. Suppose that k& < r. Then since r < n, at
least one of the sets Sy, ..., S, has more than one vertex; by symmetry, we
may assume that |Sg| > 2. Fix a € Sk. Then consider the graph G’ obtained
from G by adding edges between a and all vertices of Sy \ {a}; then G’ is
a complete (k + 1)-partite graph, it does not contain K,; as a subgraph
(because k < r), and it has more edges than G, contrary to the fact that G
is extremal. So, k =r.

It remains to show that any two of Si,...,.S, differ in size by at most
one (this will imply that G = T,.(n)). Suppose otherwise. By symmetry, we
may assume that |Si| > |S2| + 2. Now, fix a vetex a € S1, and let G’ be
the graph obtained by first deleting all edges between a and S5, and then
adding all edges between a and S \ {a}. (This effectively “moves” a into
Sy.) Now G is still a complete r-partite graph on n vertices, and it does not
contain K, as a subgraph. Furthermore, since |S1| > |S2| 4 2, we see that
|E(G")| > |E(G)| + 1. But this contradicts the fact that G is extremal. [

2 The Erdos-Ko-Rado theorem

Suppose we are given positive integers r and n, and we want to select a
maximum number of pairwise intersecting r-element subsets of {1,...,n}.
What this this maximum number? For r > &, any two r-element subsets of
{1,...,n} intersect, and there are (:f) such subsets. How about if » < 47 In
that case, we can consider all r-element subsets of {1,...,n} that contain n;
there are (::11) such subsets, and obviously, they pairwise intersect. As the
following theorem shows, this is in fact best possible.

Indeed, we just take one vertex from each S;, and we obtain a clique of size k.



The Erdds-Ko-Rado theorem. Let r and n be positive integers such that
r < 5. Then there are at most (:fj) pairwise intersecting r-element subsets

of {1,...,n}.

Proof. Let Ai,...,A, be pairwise distinct and pairwise intersecting r-
element subsets of {1,...,n}. We must show that m < (:f:ll)
Let ¢ be the number of ordered pairs (C, A), where

e C is a directed cycle with vertex set {1,...,n};3
e A is an r-vertex directed subpath of C;
o V(A) = A, for some i€ {1,...,m}.

Now we count in two ways, as follows. On the one hand, we can form
an ordered pair (C, A) by first selecting one of the sets Ay, ..., A, (we have
m choices), then ordering its vertices to form a directed path (there are !
choices), and then ordering the remaining n — r vertices to complete the
cycle C (there are (n — r)! choices). So,

c = mrlin—r)

We now count in another way. First, there are (n — 1)! ways of ordering
{1,...,n} to obtain a directed cycle C. Next, we claim that for fixed
C, there are at most r directed subpaths of C that correspond to one of
A;’s. Indeed, suppose the subpath aq,as,...,a, of C' corresponds to one
of Ay,..., Ay,. Then for any other subpath of C corresponding to one of
A1, ..., Ap (and therefore containing at least one of aq,...,a,), there exists
some i € {1,...,n — 1} such that either a; is the terminal vertex of the
path, or a;41 is the initial vertex of the path; but since r < 7, the r-vertex
subpath terminating at a; and the r-vertex subpath starting at a;;+; have no

vertices in common, and so at most one of them can correspond to one of

Aq, ..., Ay,. Thus, in addition to aq, ..., a,, there are at most r — 1 subpaths
of C corresponding to one of Ay,..., Ay,,; in total, at most r subpaths of C'
correspond to one of Ay,..., A,,. This proves that

¢c < (n—1lr

‘We now have that

mrli(n—r)l = ¢ <(n-—1ln
and so
m < fodm = (),
which is what we needed to show. O
3Vertics 1,...,n need not appear in that order on the cycle.



3 The Sunflower lemma

A sunflower is a family (i.e. collection) . of sets (called petals) such that
there exists a set S (called a kernel) with the property that for all distinct
51,99 € ., we have that S; NSy = S.

The Sunflower lemma (Erdés-Rado). Let ¢ and p be positive integers, and
let & be a family of sets such that

o |[Al </ forall Ac o/, and
o || > (p—1)%.
Then there exists a sunflower ¥ C &/ with p petals.

Proof. We assume inductively that the lemma is true for smaller values of
¢. More precisely, we assume that for all positive integers ¢/ < £, and all
families .7’ of sets such that

o |A| <V forall Ae o/ and
o |’ > (p—1)"01,

there exists a sunflower ./ C &/’ with p petals.

Note that || > p; so, if p < 2, then any p elements of &/ form a
sunflower with p petals, and we are done. So, we may assume that p > 3.
Next, suppose that £ = 1. Then |A| <1 for all A € & and |&/| >p—1. We
then take any p elements of &/, and we observe that they form a sunflower
(with an empty kernel). So, from now on, we assume that ¢ > 2.

Let 2 C o/ be a collection of pairwise disjoint sets, with |Z| chosen
maximum. If |2| > p, then any p elements of Z form a sunflower (with an
empty kernel), and we are done. So assume that |Z| < p. Let D = |J Z;
then |D| < |2|¢ < (p — 1)¢. Furthermore, since |&7| > ¢ > 2, the maximality
of 2 guarantees that 2 contains at least one non-empty set, and so D # ().

Claim. There exists some d € D such that d belongs to more
than (p — 1)~1(¢ — 1)! elements of 7.

Proof of the Claim. We consider two cases: when () € <7, and when this is
not the case.

Suppose first that () ¢ 7 (and consequently, ) ¢ 2). Then every element
of o intersects D: indeed, since () ¢ &, we know that every element of &
intersects D, and by the maximality of &, every element of &/ \ & intersects
D. But then by the Pigeonhole Principle, some element of D belongs to at
least

(p—1)¢

elements of o/, which is what we needed.

—_1)\¢
7] > B = e-ue-



Suppose now that ) € «/. Then the maximality of 2 guarantees that
) € D. Since D # 0, it follows that |2] > 2. Since ) € &, we see that
|ID| < (|Z] —1)¢ < (p—2)¢. Now by the maximality of Z, every element of
o/ \ {0} intersects D. But then by the Pigeonhole Principle, some element
of D belongs to at least

A\ {0} (p-1)%0!
{ D] W > e

= p-DTe-DE

> (p—1)1—-1)

elements of &, which is what we needed. This proves the Claim. l

Let d € D be as in the Claim, and set &' := {A\ {d} | A € &/,d € A}.
Then |&/’'| > (p — 1)*1(¢ — 1)!; furthermore, |A| < ¢ —1 for all A € &/’. So,
by the induction hypothesis, there exists a sunflower ./ C &7’ with p petals.
Now, set . := {AU{d} | A € '}; then .¥ C & is a sunflower with p
petals, and we are done. ]



