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Lecture #9

The Tutte polynomial

Irena Penev

1 Multigraphs

A multigraph is an ordered pair G = (V (G), E(G)) such that V (G) and E(G)
are finite sets (called the vertex set and edge set, respectively), and each edge
(i.e. element of E(G)) is associated with two (possibly identical) vertices (i.e.
elements of V (G)), called its endpoints. If an edge has only one endpoint
(i.e. its two endpoints are the same), then this edge is called a loop. If two
distinct edges have the same endpoints, then those edges are parallel. An
edge is incident with a vertex, if that vertex is an endpoint of the edge. The
degree of a vertex in a multigraph is the number of edges that it is incident
with, with loops counting twice. (In the example below, all vertices are of
degree four.) A multigraph is loopless if it has no loops.

parallel edges

loop

A proper (vertex) coloring of a loopless multigraph G is an assignment of
colors to the vertices of G in such a way that, whenever two distinct vertices
are joined by an edge (i.e. are the endpoints of the same edge), they receive
different colors. If a multigraph has a loop, then it has no proper colorings.1

A k-coloring of a multigraph G is a proper coloring of G that uses colors
1, . . . , k (not all of these colors need be used).

For an edge e of a multigraph G, we denote by G − e the multigraph
obtained by deleting e from G.

1Here, the idea is that if e is a loop, then its unique endpoint is adjacent to itself.
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If e is a non-loop edge of a multigraph G, then the multigraph G/e
obtained by contracting e is the multigraph obtained by first deleting e, and
then identifying its endpoints to a single vertex. (Note that edges parallel to
e become loops, and it is also possible that new parallel edges are created).
An example is shown below.

e

G G/e

The topic of this lecture are graph polynomials, or more precisely, multi-
graph polynomials (for recursive purposes, it is convenient to allow loops and
parallel edges). There are a number of such polynomials. Here, we consider
two: the chromatic polynomial and the Tutte polynomial.

2 The chromatic polynomial

Lemma 2.1. For each multigraph G, there exists a unique polynomial πG
(with integer coefficients) of degree at most |V (G)| such that for any non-
negative integer k, πG(k) is the number of k-colorings of G.

Proof. We proceed by induction on the number of edges. Fix a multigraph
G, and assume inductively that the lemma is true for multigrpahs with fewer
than |E(G)| edges.2

Uniqueness follows immediately from the fact that for any non-negative
integer d, any two polynomials of degree at most d that agree on at least
d+ 1 points are identical.3 It remains to prove existence. If G is edgeless,
then πG(x) = x|V (G)| is the polynomial that we need.4 If G has at least one
loop, then πG(x) = 0 is the polynomial we need.5

From now on, we assume that G is loopless and has at least one edge, say
e. The induction hypothesis applied to G− e and G/e yields polynomials

2So, we assume inductively that for all multigraphs G′ such that |E(G′)| < |E(G)|, there
exists a unique polynomial πG′ of degree at most |V (G′)| such that for any non-negative
integer k, πG′(k) is the number of k-colorings of G′.

3Indeed, suppose p1 and p2 are polynomials of degree at most |V (G)| such that for any
non-negative integer k, p1(k) = p2(k) is the number of k-colorings of G. But then p1 and
p2 agree on infinitely many points, and in particular, they agree on at least |V (G)| + 1
points. So, p1 and p2 are identical.

4Indeed, if G is edgeless, then for any non-negative integer k, there are k|V (G)| many
k-colorings of G (we simply assign colors from the set {1, . . . , k} independently to the
vertices of G).

5Indeed, if G has at least one loop, then G has no proper colorings.
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πG−e and πG/e of degree at most |V (G)|, and having the desired properties.
Set

πG := πG−e − πG/e.

Since πG−e and πG/e are of degree at most |V (G)|, so is πG. Now, fix a
non-negative integer k. We must show that there are precisely πG(k) many
k-colorings of G. Clearly, every k-coloring of G is also a proper coloring of
G− e. On the other hand, a k-coloring of G− e is a k-coloring of G if and
only if the two endpoints of e have different colors. Further, k-colorings of
G − e in which both endpoints of e receive the same color correspond to
k-colorings of G/e in the natural way. So, the number of k-colorings of G is
equal to πG−e(k)− πG/e(k) = πG(k), which is what we needed.

The chromatic polynomial of a multigraph G is the polynomial πG from
the statement of Lemma 2.1. Note that the proof of that lemma in fact gives
us a recursive formula for πG, as follows:

• if G is edgeless, then πG(x) = x|V (G)|;

• if G has a loop, then πG(x) = 0;

• if G is loopless and has at least one edge, say e, then

πG(x) = πG−e(x)− πG/e(x).

Note that G− e and G/e have fewer edges than G, and so our formula really
is recursive.

We remark that if G is a loopless multigraph, then χ(G) is equal to the
smallest non-negative integer k such that πG(k) 6= 0. Note that this implies
that computing the chromatic polynomial is NP-hard. However, in some
special cases, the chromatic polynomial is easy to compute. For example:

• πKn(x) = x(x− 1)(x− 2) . . . (x− n+ 1);

• πT (x) = x(x− 1)n−1, for any tree T on n vertices.

3 The Tutte polynomial

For a multigraph G, let k(G) be the number of components of G; for a set
A ⊆ E(G), let kG(A) be the number of components of the multigraph on
vertex set V (G) and edge set A. Note that

kG(A) ≥ max{k(G), |V (G)| − |A|},

and set rG(A) := kG(A) − k(G) and cG(A) := kG(A) + |A| − |V (G)|. For
example, in the multigraph below (with the edges of A in red), we have
that k(G) = 1, kG(A) = 3, |A| = 5, and |V (G)| = 6; so, rG(A) = 2 and
cG(A) = 2.
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Now, the Tutte polynomial TG(x, y) of a multigraph G is defined by

TG(x, y) :=
∑

A⊆E(G)

(x− 1)rG(A)(y − 1)cG(A).

As we shall see, the Tutte polynomial is more “general” than the chromatic
polynomial, i.e. if we know the Tutte polynomial, we can easily compute the
chromatic polynomial (see section 4 below). Since it is NP-hard to compute
the chromatic polynomial, it is NP-hard to compute the Tutte polynomial.

Clearly, if G is edgeless, then TG(x, y) = 1. Otherwise, we can get a
recursive formula for TG(x, y), as follows. (A bridge in a multigraph G is an
edge e of G such that G− e has more components than G.)

Lemma 3.1. Let e be an edge of a multigraph G. Then

TG(x, y) =


xTG/e(x, y) if e is a bridge of G

yTG−e(x, y) if e is a loop of G

TG−e(x, y) + TG/e(x, y) otherwise

Proof.

Claim 1. If e is a bridge of G, then TG(x, y) = xTG/e(x, y).

Proof of Claim 1. Assume that e is a bridge ofG. Then for anyA ⊆ E(G)\{e},
we have the following:

(1) rG(A)− 1
(∗)
= rG(A ∪ {e}) (∗∗)

= rG/e(A),

(2) cG(A ∪ {e}) (∗)
= cG(A)

(∗∗)
= cG/e(A),

where, in both (1) and (2), (*) follows from the fact that e is a bridge of G,
and (**) follows from the fact that contracting an edge does not change the
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number of components. We now compute:

TG(x, y)

=
∑

A⊆E(G)

(x− 1)rG(A)(y − 1)cG(A)

=
∑

A⊆E(G)\{e}

(
(x− 1)rG(A)(y − 1)cG(A) + (x− 1)rG(A∪{e})(y − 1)cG(A∪{e})

)
(1)&(2)

=
∑

A⊆E(G/e)

(
(x− 1)rG/e(A)+1(y − 1)cG/e(A) + (x− 1)rG/e(A)(y − 1)cG/e(A)

)
= x

∑
A⊆E(G/e)

(x− 1)rG/e(A)(y − 1)cG/e(A)

= xTG/e(x, y).

This proves Claim 1. �

Claim 2. If e is a loop of G, then TG(x, y) = yTG−e(x, y).

Proof of Claim 2. Assume that e is a loop of G. Deleting e does not affect
the number of components, and so for each A ⊆ E(G) \ {e}, we have the
following:

(1) rG(A) = rG(A ∪ {e}) = rG−e(A),

(2) cG(A ∪ {e})− 1 = cG(A) = cG−e(A).

We now compute:

TG(x, y)

=
∑

A⊆E(G)

(x− 1)rG(A)(y − 1)cG(A)

=
∑

A⊆E(G)\{e}

(
(x− 1)rG(A)(y − 1)cG(A) + (x− 1)rG(A∪{e})(y − 1)cG(A∪{e})

)
(1)&(2)

=
∑

A⊆E(G−e)

(
(x− 1)rG−e(A)(y − 1)cG−e(A) + (x− 1)rG−e(A)(y − 1)cG−e(A)+1

)
= y

∑
A⊆E(G−e)

(x− 1)rG−e(A)(y − 1)cG−e(A)

= yTG−e(x, y).

This proves Claim 2. �
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Claim 3. If e is neither a bridge nor a loop of G, then TG(x, y) =
TG−e(x, y) + TG/e(x, y).

Proof of Claim 3. Assume that e is neither a bridge nor a loop of G. Then
k(G − e) = k(G/e) = k(G), and it follows that for all A ⊆ E(G), we have
the following:

(1) rG(A) = rG−e(A),

(2) rG(A ∪ {e}) = rG/e(A),

(3) cG(A) = cG−e(A),

(4) cG(A ∪ {e}) = cG/e(A).

We now compute:

TG(x, y)

=
∑

A⊆E(G)

(x− 1)rG(A)(y − 1)cG(A)

=
∑

A⊆E(G)\{e}

(
(x− 1)rG(A)(y − 1)cG(A) + (x− 1)rG(A∪{e})(y − 1)cG(A∪{e})

)
(1)−(4)

=
∑

A⊆E(G)\{e}

(
(x− 1)rG−e(A)(y − 1)cG−e(A) + (x− 1)rG/e(A)(y − 1)cG/e(A)

)
= TG−e(x, y) + TG/e(x, y).

This proves Claim 3. �

By Claims 1, 2, and 3, we are done.

Further, it turns out that the Tutte polynomial is “multiplicative” in a
certain sense, as the following lemma shows.

Lemma 3.2. If multigraphs G1 and G2 have at most one vertex and no
edges in common, then TG1∪G2 = TG1TG2.

Proof. We prove this by induction on the number of edges, using Lemma 3.1.
So, fix multigraphs G1 and G2 that have at most one vertex and no edges
in common, set G := G1 ∪ G2, and assume inductively that the lemma is
true for multigraphs with fewer than |E(G)| edges.6 If G is edgeless then
so are G1 and G2, and we have that TG(x, y) = TG1(x, y) = TG2(x, y) = 1,

6So, we are assuming inductively that for all multigraphs G′1 and G′2 that have at most
one vertex and no edges in common, if the multigraph G′1 ∪ G′2 has fewer than |E(G)|
edges, then TG′

1∪G
′
2

= TG′
1
TG′

2
.
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and we are done. So, we may assume that G has at least one edge, say e.
By symmetry, we may assume that e ∈ E(G2). Note that this means that
G− e = G1 ∪ (G2 − e) and (if e is not a loop) G/e = G1 ∪ (G2/e).

Suppose first that e is a bridge of G (and therefore of G2 as well). Then

TG(x, y) = xTG/e(x, y) by Lemma 3.1

= xTG1∪(G2/e)(x, y)

= xTG1(x, y)TG2/e(x, y) by the induction hypothesis

= TG1(x, y)
(
xTG2/e(x, y)

)
= TG1(x, y)TG2(x, y) by Lemma 3.1

Next, suppose that e is a loop of G (and therefore of G2 as well). Then

TG(x, y) = yTG−e(x, y) by Lemma 3.1

= yTG1∪(G2−e)(x, y)

= yTG1(x, y)TG2−e(x, y) by the induction hypothesis

= TG1(x, y)
(
yTG2−e(x, y)

)
= TG1(x, y)TG2(x, y) by Lemma 3.1

Finally, suppose that e is neither a bridge nor a loop of G; then e is an
edge of G2 that is neither a bridge nor a loop of G2. Then

TG(x, y) = TG−e(x, y) + TG/e(x, y) by Lemma 3.1

= TG1∪(G2−e)(x, y) + TG1∪(G2/e)(x, y)

= TG1(x, y)TG2−e(x, y) + TG1(x, y)TG2/e(x, y) by the

ind. hyp.

= TG1(x, y)
(
TG2−e(x, y) + TG/e(x, y)

)
= TG1(x, y)TG2(x, y) by Lemma 3.1

This completes the argument.

Note that Lemma 3.2 guarantees that the Tutte polynomial of a multi-
graph G is the product of the Tutte polynomials of its blocks.7

7A block of a multigraph G is a maximal connected subgraph of G that has no cut-
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4 The relationship between the chromatic polyno-
mial and the Tutte polynomial

As our next lemma shows, the Tutte polynomial is more general than the
chromatic polynomial, i.e. if we know the Tutte polynomial of a multigraph,
we can easily compute the chromatic polynomial of that multigraph.

Lemma 4.1. Every multigraph G satisfies

πG(x) = (−1)|V (G)|−k(G) xk(G) TG(1− x, 0).

Proof. We proceed by induction on the number of edges. Fix a multigraph
G, and assume inductively that the statement is true for all multigraphs on
fewer than |E(G)| edges.

Suppose first that G is edgeless. Then by section 2, we have that
πG(x) = x|V (G)|. Further, by the definition of the Tutte polynomial, we have
that TG(x, y) = 1, and so TG(1− x, 0) = 1. Further, k(G) = |V (G)|, and so
(−1)|V (G)|−k(G) = 1. But now it is clear that

πG(x) = x|V (G)|

= (−1)|V (G)|−k(G) · x|V (G)| · 1 because |V (G)| = k(G)

= (−1)|V (G)|−k(G) xk(G) TG(1− x, 0) because TG(1− x, 0) = 1

which is what we needed.
From now on, we assume that G has at least one edge, say e. We consider

three cases: when e is a bridge, when e is a loop, and when e is neither a
bridge nor a loop.

Suppose first that e is a bridge of G. Then either G− e and G/e have
exactly the same blocks, or G − e can be obtained from G/e by adding
an isolated vertex. Since TK1(x, y) = 1, Lemma 3.2 now guarantees that

vertices. (However, not all such subgraphs are blocks! We need maximality.) For example,
the (disconnected) graph below has six blocks, in dotted bags.

Note that a (multi)graph can be built from its blocks by repeatedly taking disjoint unions
and gluing along single vertices. In the case of graphs (with no loops and no parallel
edges), blocks are the maximal 2-connected subgraphs, bridges (with their endpoints),
and components on at most two vertices. In the multigraph case, a loop (with its unique
endpoint) is considered a block.
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TG−e = TG/e. We now compute:

πG(x) = πG−e − πG/e by section 2

= (−1)|V (G−e)|−k(G−e) xk(G−e) TG−e(1− x, 0)− by the

−(−1)|V (G/e)|−k(G/e) xk(G/e) TG/e(1− x, 0) induction

hypothesis

= (−1)|V (G)|−k(G)−1 xk(G)+1 TG−e(1− x, 0)−
−(−1)|V (G)|−k(G)−1 xk(G) TG/e(1− x, 0)

= (−1)|V (G)|−k(G)−1 xk(G)(
xTG−e(1− x, 0)− TG/e(1− x, 0)

)
= (−1)|V (G)|−k(G) xk(G) (1− x)TG/e(1− x, 0) because

TG−e = TG/e

= (−1)|V (G)|−k(G) xk(G) TG(1− x, 0) by Lemma 3.1,

which is what we needed.
Next, suppose that e is a loop. Then by section 2, πG(x) = 0. On

the other hand, by Lemma 3.1, we have that TG(x, y) = yTG−e(x, y), and
consequently, TG(1 − x, 0) = 0. It then immediately follows that πG(x) =
(−1)|V (G)|−k(G) xk(G) TG(1− x, 0).

Finally, suppose that e is neither a bridge nor a loop. We then compute:

πG(x) = πG−e(x)− πG/e(x) by section 2

= (−1)|V (G−e)|−k(G−e) xk(G−e) TG−e(1− x, 0)− by the

−(−1)|V (G/e)|−k(G/e) xk(G/e) TG/e(1− x, 0) ind. hyp.

= (−1)|V (G)|−k(G) xk(G) TG−e(1− x, 0)−
−(−1)|V (G)|−k(G)−1 xk(G) TG/e(1− x, 0)

= (−1)|V (G)|−k(G) xk(G) TG−e(1− x, 0)+

+(−1)|V (G)|−k(G) xk(G) TG/e(1− x, 0)

= (−1)|V (G)|−k(G) xk(G)(
TG−e(1− x, 0) + TG/e(1− x, 0)

)
= (−1)|V (G)|−k(G) xk(G) TG(1− x, 0) by Lemma 3.1

which is what we needed. This completes the argument.
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5 Some special points of the Tutte polynomial

In this section, we give a combinatorial interpretation of the Tutte polynomial
evaluated at some special points.

Proposition 5.1. For all multigraphs G, TG(2, 2) = 2|E(G)|.

Proof. By the definition of the Tutte polynomial, we have that

TG(2, 2) =
∑

A⊆E(G)

(2− 1)rG(A)(2− 1)cG(A) =
∑

A⊆E(G)

1.

So, TG(2, 2) is equal to the number of subsets A of E(G), which is precisely
2|E(G)|.

A spanning subgraph of a multigraph G is a multigraph H such that
V (H) = V (G) and E(H) ⊆ E(G). A multigraph is acyclic if it has no cycles;
in particular, acyclic multigraphs have no loops and no parallel edges, and
so an acyclic (multi)graph is simply a forest.

Proposition 5.2. For all multigraphs G, TG(2, 1) is the number of acyclic
spanning subgraphs of G.8

Proof. By the definition of the Tutte polynomial, we have that

TG(2, 1) =
∑

A⊆E(G)

(2− 1)rG(A)(1− 1)cG(A) =
∑

A⊆E(G)

0cG(A)

Now, 0cG(A) = 1 if cG(A) = 0, and 0cG(A) = 0 otherwise. So, TG(2, 1)
is equal to the number of subsets A of E(G) such that cG(A) = 0, i.e.
kG(A) + |A| − |V (G)| = 0, which is equivalent to kG(A) = |V (G)| − |A|. But
this last equality holds precisely when the multigraph (V (G), A) is a forest.
The result is now immediate.

Proposition 5.3. If G is a connected multigraph, then TG(1, 2) is the number
of connected spanning subgraphs of G.

Proof. Let G be a connected multigraph. Then by the definition of the Tutte
polynomial, we have that

TG(1, 2) =
∑

A⊆E(G)

(1− 1)rG(A)(2− 1)cG(A) =
∑

A⊆E(G)

0rG(A)

Now, 0rG(A) = 1 if rG(A) = 0, and 0rG(A) = 0 otherwise. So, TG(1, 2)
is equal to the number of subsets A of E(G) such that rG(A) = 0, i.e.
kG(A) − k(G) = 0. Since G is connected, we have that k(G) = 1, and so
TG(1, 2) is equal to the number of subsets A of E(G) such that kG(A) = 1,
i.e. to the number of connected spanning subgraphs of G.

8As a terminological matter, a spanning acyclic subgraph is not quite the same thing
as a spanning forest. The term “spanning forest” is generally reserved for forests whose
components are spanning trees of the components of the original (multi)graph, which is a
more restricted notion. So, TG(2, 1) need not be the number of spanning forests of G.
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Proposition 5.4. If G is a connected multigraph, then TG(1, 1) is the number
of spanning trees of G.

Proof. Let G be a connected multigraph. Then by the definition of the Tutte
polynomial, we have that

TG(1, 1) =
∑

A⊆E(G)

(1− 1)rG(A)(1− 1)cG(A) =
∑

A⊆E(G)

0rG(A)+cG(A)

Now, 0rG(A)+cG(A) = 1 if rG(A) + cG(A) = 0, and 0rG(A)+cG(A) = 0 otherwise.
So, TG(1, 1) is the number of subsets A of E(G) such that rG(A) = cG(A) = 0.
But rG(A) = 0 if and only if the multigraph (V (G), A) is connected (as in the
proof of Proposition 5.3), and cG(A) = 0 if the multigraph (V (G), A) is if and
only if acyclic (as in the proof of Proposition 5.2). So, rG(A) = cG(A) = 0 if
and only if (V (G), A) is a tree (equivalently: a spanning tree of G).
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