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Lecture #9
The Tutte polynomial

Irena Penev

1 Multigraphs

A multigraph is an ordered pair G = (V(G), E(G)) such that V(G) and E(G)
are finite sets (called the vertez set and edge set, respectively), and each edge
(i.e. element of E(G)) is associated with two (possibly identical) vertices (i.e.
elements of V(G)), called its endpoints. If an edge has only one endpoint
(i.e. its two endpoints are the same), then this edge is called a loop. If two
distinct edges have the same endpoints, then those edges are parallel. An
edge is incident with a vertex, if that vertex is an endpoint of the edge. The
degree of a vertex in a multigraph is the number of edges that it is incident
with, with loops counting twice. (In the example below, all vertices are of
degree four.) A multigraph is loopless if it has no loops.

loop

parallel edges

A proper (vertex) coloring of a loopless multigraph G is an assignment of
colors to the vertices of G in such a way that, whenever two distinct vertices
are joined by an edge (i.e. are the endpoints of the same edge), they receive
different colors. If a multigraph has a loop, then it has no proper colorings.
A k-coloring of a multigraph G is a proper coloring of GG that uses colors
1,...,k (not all of these colors need be used).

For an edge e of a multigraph G, we denote by G — e the multigraph
obtained by deleting e from G.

'Here, the idea is that if e is a loop, then its unique endpoint is adjacent to itself.



If e is a non-loop edge of a multigraph G, then the multigraph G/e
obtained by contracting e is the multigraph obtained by first deleting e, and
then identifying its endpoints to a single vertex. (Note that edges parallel to
e become loops, and it is also possible that new parallel edges are created).
An example is shown below.
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The topic of this lecture are graph polynomials, or more precisely, multi-
graph polynomials (for recursive purposes, it is convenient to allow loops and
parallel edges). There are a number of such polynomials. Here, we consider
two: the chromatic polynomial and the Tutte polynomial.

2 The chromatic polynomial

Lemma 2.1. For each multigraph G, there exists a unique polynomial mg
(with integer coefficients) of degree at most |V (G)| such that for any non-
negative integer k, mg(k) is the number of k-colorings of G.

Proof. We proceed by induction on the number of edges. Fix a multigraph
(G, and assume inductively that the lemma is true for multigrpahs with fewer
than |E(G)| edges.?

Uniqueness follows immediately from the fact that for any non-negative
integer d, any two polynomials of degree at most d that agree on at least
d + 1 points are identical.® It remains to prove existence. If G is edgeless,
then 7g(z) = z!V()l is the polynomial that we need.* If G has at least one
loop, then 7g(x) = 0 is the polynomial we need.’

From now on, we assume that G is loopless and has at least one edge, say
e. The induction hypothesis applied to G — e and G/e yields polynomials

280, we assume inductively that for all multigraphs G’ such that |E(G")| < |E(G)|, there
exists a unique polynomial 7/ of degree at most |V (G’)| such that for any non-negative
integer k, mo (k) is the number of k-colorings of G'.

3Indeed, suppose p1 and p» are polynomials of degree at most |V (G)] such that for any
non-negative integer k, p1(k) = p2(k) is the number of k-colorings of G. But then p; and
p2 agree on infinitely many points, and in particular, they agree on at least [V (G)| + 1
points. So, p1 and ps2 are identical.

“Indeed, if G is edgeless, then for any non-negative integer k, there are kY@ many
k-colorings of G (we simply assign colors from the set {1,...,k} independently to the
vertices of G).

®Indeed, if G has at least one loop, then G has no proper colorings.



TG—e and 7/, of degree at most |V (G)|, and having the desired properties.
Set
TG = TG—e — TG /e

Since Tg—. and 7/, are of degree at most [V (G)|, so is 7g. Now, fix a
non-negative integer k. We must show that there are precisely 7 (k) many
k-colorings of G. Clearly, every k-coloring of G is also a proper coloring of
G — e. On the other hand, a k-coloring of G — e is a k-coloring of G if and
only if the two endpoints of e have different colors. Further, k-colorings of
G — e in which both endpoints of e receive the same color correspond to
k-colorings of GG/e in the natural way. So, the number of k-colorings of G is
equal to mg_e(k) — mg/e(k) = ma(k), which is what we needed. O

The chromatic polynomial of a multigraph G is the polynomial 7 from
the statement of Lemma 2.1. Note that the proof of that lemma in fact gives
us a recursive formula for 7w, as follows:

e if G is edgeless, then wg(z) = z!V(@);
e if G has a loop, then 7g(z) = 0;

e if GG is loopless and has at least one edge, say e, then
Ta(@) = Ta-e() — 7Ge(@).

Note that G — e and G/e have fewer edges than G, and so our formula really
is recursive.

We remark that if G is a loopless multigraph, then x(G) is equal to the
smallest non-negative integer k such that mg (k) # 0. Note that this implies
that computing the chromatic polynomial is NP-hard. However, in some
special cases, the chromatic polynomial is easy to compute. For example:

o x, (v) =z(x—1)(x—2)...(x —n+1);

o 7p(z) = x(x — 1)"~!, for any tree T on n vertices.

3 The Tutte polynomial

For a multigraph G, let k(G) be the number of components of G; for a set
A C E(Q), let kg(A) be the number of components of the multigraph on
vertex set V(G) and edge set A. Note that

ka(A) = maxd{k(G),|V(G)] - [Al},

and set r¢(A) 1= kg(A) — k(GQ) and cg(A) := ka(A) + |A| — |V(G)]|. For
example, in the multigraph below (with the edges of A in red), we have
that k(G) = 1, kq(A) = 3, |A| = 5, and |V(G)| = 6; so, r¢(A) = 2 and
ca(A) =2.



Now, the Tutte polynomial T(x,y) of a multigraph G is defined by

Ta(z,y) = (z — 1)re@(y — 1)ce(A),

>
ACE(G)

As we shall see, the Tutte polynomial is more “general” than the chromatic
polynomial, i.e. if we know the Tutte polynomial, we can easily compute the
chromatic polynomial (see section 4 below). Since it is NP-hard to compute
the chromatic polynomial, it is NP-hard to compute the Tutte polynomial.

Clearly, if G is edgeless, then Tg(x,y) = 1. Otherwise, we can get a
recursive formula for T (x,y), as follows. (A bridge in a multigraph G is an
edge e of G such that G — e has more components than G.)

Lemma 3.1. Let e be an edge of a multigraph G. Then

vTq/e(z,y) if e is a bridge of G

To(z,y) = YTG—c(z,y) if e is a loop of G
To—e(2,y) + Tgre(z,y)  otherwise
Proof.
Claim 1. If e is a bridge of G, then Tg(z,y) = 2T/ c(7,y).

Proof of Claim 1. Assume that e is a bridge of G. Then for any A C E(G)\{e},
we have the following:

(1) ra(A) =12 rg(AU{e}) 2 rg (),

2) co(AU{e}) Y ea(A) 2 cg (),

where, in both (1) and (2), (*) follows from the fact that e is a bridge of G,
and (**) follows from the fact that contracting an edge does not change the



number of components. We now compute:

Tg(iﬂ,y)

_ S (x— 1)7a(A)(y — 1)ca(4)
ACE(G)

= > ((l’ — 1) (y — 1)) 4 (z — 1)re(Avteh (y — 1)cc(AU{e}>>
ACE(G)\{e}

WED 5 ((x C)rase @y 1)eared) (g — 1yrer®)(y - 1)Cc/e(A)>
ACE(G/e)

= r > (z-— 1)TG/e(A) (y — 1)CG/e(A)
ACE(G/e)

= xTG/e($> y)
This proves Claim 1. B
Claim 2. If e is a loop of G, then Tg(x,y) = yIg—c(z,y).

Proof of Claim 2. Assume that e is a loop of G. Deleting e does not affect
the number of components, and so for each A C E(G) \ {e}, we have the
following:

(1) ra(A) = ra(AU{e}) = ra—(A),
(2) ca(AU{e}) =1 =cq(A) = cg—e(4).
We now compute:

Tg(l',y)

_ S (z— 1)7’G(A) (y — ]_)CG(A)
ACE(G)

= E ((x — 1)7“G(A) (y — 1>CG(A) + (z — 1)rG(AU{e})(y _ 1)cG(AU{e})>
ACE(G)\{e}

(1)§(2) )y <(l’ _ 1)T‘G76(A) (y — 1)cG,E(A) + (z — 1)rG,e(A) (y — 1)cG,e(A)+1>
ACE(G—e)

= y S (z—1)ra—e(y —1)cc-c(A)
ACE(G—e)

= YTG—e(2,Y).
This proves Claim 2. B



Claim 3. If e is neither a bridge nor a loop of G, then T (x,y) =
TG’—E(xa y) + TG/e(x7 y)

Proof of Claim 3. Assume that e is neither a bridge nor a loop of G. Then
k(G —e) = k(G/e) = k(G), and it follows that for all A C E(G), we have
the following:

1

(1)
(2) ra
(3)
(4)

4

We now compute:

Tg(ﬂf,y)

=T (@—yey— e
ACE(G)

_ > ((x 1))y — 1)) 4 (7 — 1)retAVIEN (y — 1)CG(Au{e}))
ACE(@)\{e}

— 3 ((:c —1)re-e)(y — 1)c—e(A) 4 (g — 1)rere(A)(y — 1)CG/€(A))
ACE(G)\{e}

= To—e(2,y) + Tare(z,y).

This proves Claim 3. B
By Claims 1, 2, and 3, we are done. O

Further, it turns out that the Tutte polynomial is “multiplicative” in a
certain sense, as the following lemma shows.

Lemma 3.2. If multigraphs G1 and Gy have at most one vertex and no
edges in common, then Tg,ug, = Te,1G,-

Proof. We prove this by induction on the number of edges, using Lemma 3.1.
So, fix multigraphs G; and G5 that have at most one vertex and no edges
in common, set G := G1 U G, and assume inductively that the lemma is
true for multigraphs with fewer than |E(G)| edges.® If G is edgeless then
so are G and Ga, and we have that Tg(z,y) = Te, (z,y) = Ta, (z,y) = 1,

S0, we are assuming inductively that for all multigraphs G} and G% that have at most
one vertex and no edges in common, if the multigraph G} U G5 has fewer than |E(G)|
edges, then TG/IU% = TG/1 TG/2.



and we are done. So, we may assume that G has at least one edge, say e.
By symmetry, we may assume that e € F(G2). Note that this means that
G —e=G1U(G2 —e) and (if e is not a loop) G/e = G U (Gz/e).

Suppose first that e is a bridge of G' (and therefore of G2 as well). Then

To(r,y) = 2Tge(v,y) by Lemma 3.1
= 21G,0(Ga/e) (T, Y)
= 2T, (%, y) T, e(,y) by the induction hypothesis
= TGl(x¢y) (mTGg/e(xay))

Te, (z,y)Ta,(z,y) by Lemma 3.1
Next, suppose that e is a loop of G (and therefore of Gy as well). Then
To(z,y) = ylg-e(r,y) by Lemma 3.1

= ?JTGIU(GQ—@) (.TC, y)

= yTg,(x,9)Tey—e(z,y) by the induction hypothesis

= Tg (2,y) (chz—e(%?J))

= Tg,(z,y)Tg,(z,y) by Lemma, 3.1

Finally, suppose that e is neither a bridge nor a loop of GG; then e is an
edge of G5 that is neither a bridge nor a loop of Go. Then

To(z,y) = Tg-elz,y)+ Tare(z,y) by Lemma 3.1
= Ta,u(Ga—e)(®:Y) + Ta s e) (T, )

= TGl (.fL', y)TGQ—e(x7 y) + TGl (ZL', y)TGQ/C(:E7 y) by the

ind. hyp.
= o, (0,9) (Tes—o(@,9) + Toye(w )
= TGI (xay)TG2 (iL',y) by Lemma 3.1
This completes the argument. O

Note that Lemma 3.2 guarantees that the Tutte polynomial of a multi-
graph G is the product of the Tutte polynomials of its blocks.”

"A block of a multigraph G is a maximal connected subgraph of G that has no cut-



4 The relationship between the chromatic polyno-
mial and the Tutte polynomial

As our next lemma shows, the Tutte polynomial is more general than the
chromatic polynomial, i.e. if we know the Tutte polynomial of a multigraph,
we can easily compute the chromatic polynomial of that multigraph.

Lemma 4.1. Every multigraph G satisfies

Proof. We proceed by induction on the number of edges. Fix a multigraph
G, and assume inductively that the statement is true for all multigraphs on
fewer than |E(G)| edges.

Suppose first that G is edgeless. Then by section 2, we have that
ma(r) = z!V(&I, Further, by the definition of the Tutte polynomial, we have
that To(z,y) = 1, and so T (1 — 2,0) = 1. Further, k(G) = |V(G)|, and so
(—=1)IV(DI=k(&) = 1. But now it is clear that

ra(z) = V@)
= (=1)V@&I=KG) . £ IV(G) . 1 because |V (G)| = k(G)

= (—1)V@N=HKG) k(&) T (1 — 2,0)  because Tg(l — z,0) =1

which is what we needed.

From now on, we assume that G has at least one edge, say e. We consider
three cases: when e is a bridge, when e is a loop, and when e is neither a
bridge nor a loop.

Suppose first that e is a bridge of G. Then either G — e and G/e have
exactly the same blocks, or G — e can be obtained from G/e by adding
an isolated vertex. Since Tk, (x,y) = 1, Lemma 3.2 now guarantees that

vertices. (However, not all such subgraphs are blocks! We need maximality.) For example,
the (disconnected) graph below has six blocks, in dotted bags.

Note that a (multi)graph can be built from its blocks by repeatedly taking disjoint unions
and gluing along single vertices. In the case of graphs (with no loops and no parallel
edges), blocks are the maximal 2-connected subgraphs, bridges (with their endpoints),
and components on at most two vertices. In the multigraph case, a loop (with its unique
endpoint) is considered a block.



TG—e = Tgj.- We now compute:

ra(z) =

TG—e — TG/e
(1) V(G=e)l=KG=6) 2k(G=0) T, (1 — 2, 0)—

—(~)VG/AIRGIe) 1K) Ty (1 — 2, 0)

(—DHIV@I=KE) -1 gk + T, (1 — 2,0)—
—(—=1)V(G)=K(G) =1 zk(G) Tg/e(1 — 2,0)

(—1)V(G)=R(G) =1 zk(G)

<xTG_e(1 —2,0) — T e(l — a, 0))

(~1)MONIHKE) GG (1~ 2)Tg(1 — 2,0)

(—1)V(@Q=K(G) 4HO) Ty (1 — 2,0)

which is what we needed.
Next, suppose that e is a loop. Then by section 2, ng(x) = 0. On
the other hand, by Lemma 3.1, we have that T (x,y) = yTo—e(z,y), and
consequently, T(1 — z,0) = 0. It then immediately follows that mg(x) =
(_1)|V(G)|*k(G) 2k(G) Tg(1 - z,0).
Finally, suppose that e is neither a bridge nor a loop. We then compute:

me(r) =

TG-e() — TGye(T)

(=1)V(G=e)|=k(G—e) 4k(G=e) Ty, (1 — 2,0)—
—(~)VG/AIRGLe) KGO Ty (1 — 2, 0)

(=)@K 1HO) Ty (1 — &,0)
—(~D)V @K1 K@ Ty, (1~ 2,0)

(—D)V@I=FE) 1K) Ty, (1 — a,0)+
H=DVOIKE) 24O Ty, (1~ 2,0)

(—1)V(G)=k(G) yh(G)

(Tg,eu —2,0) + Tge(1 — 0))

(—1)V(@=K(G) 1HO) Ty (1 — 2,0)

which is what we needed. This completes the argument.

by section 2

by the
induction
hypothesis

because
TG*E = TG/e

by Lemma 3.1,

by section 2

by the
ind. hyp.

by Lemma 3.1
O



5 Some special points of the Tutte polynomial

In this section, we give a combinatorial interpretation of the Tutte polynomial
evaluated at some special points.

Proposition 5.1. For all multigraphs G, Tg(2,2) = 2/EGI,
Proof. By the definition of the Tutte polynomial, we have that

Te(2,2) = Y 2-1)eWE—-1<c = 1
ACE(G) ACE(G)

So, Tz(2,2) is equal to the number of subsets A of E(G), which is precisely
9lE(G)] n

A spanning subgraph of a multigraph G is a multigraph H such that
V(H)=V(G) and E(H) C E(G). A multigraph is acyclic if it has no cycles;
in particular, acyclic multigraphs have no loops and no parallel edges, and
so an acyclic (multi)graph is simply a forest.

Proposition 5.2. For all multigraphs G, Tg(2,1) is the number of acyclic
spanning subgraphs of G.8

Proof. By the definition of the Tutte polynomial, we have that

Ta(2,1) = >o(2- I)TG(A)(l — 1)CG(A) = S oca(A)
ACE(G) ACE(G)

Now, 0°¢(4) = 1 if ¢g(A) = 0, and 0°¢(4) = 0 otherwise. So, Tg(2,1)
is equal to the number of subsets A of F(G) such that cq(A) = 0, i.e.
kq(A)+|A| — |V(G)| = 0, which is equivalent to kg(A) = |V(G)| — |A|. But
this last equality holds precisely when the multigraph (V(G), A) is a forest.
The result is now immediate. O

Proposition 5.3. If G is a connected multigraph, then T(1,2) is the number
of connected spanning subgraphs of G.

Proof. Let G be a connected multigraph. Then by the definition of the Tutte
polynomial, we have that
Te(1,2) = S (1 -1 (2 —1)c) = S el
ACE(G) ACE(Q)

Now, 0"¢() = 1 if rg(A) = 0, and 0¢(A) = 0 otherwise. So, Te(1,2)
is equal to the number of subsets A of E(G) such that rg(A) = 0, i.e.
ka(A) — k(G) = 0. Since G is connected, we have that k(G) = 1, and so
T(1,2) is equal to the number of subsets A of F(G) such that kg(A) = 1,
i.e. to the number of connected spanning subgraphs of G. O

8 As a terminological matter, a spanning acyclic subgraph is not quite the same thing
as a spanning forest. The term “spanning forest” is generally reserved for forests whose
components are spanning trees of the components of the original (multi)graph, which is a
more restricted notion. So, T¢(2,1) need not be the number of spanning forests of G.

10



Proposition 5.4. If G is a connected multigraph, then T (1,1) is the number
of spanning trees of G.

Proof. Let G be a connected multigraph. Then by the definition of the Tutte
polynomial, we have that

Ta(1,1) = 2 (1-1)c@a—-1)c@ = v el
ACE(G) ACE(G)

Now, 07¢(A+ec(A) = 1 if rg(A) + cq(A) = 0, and 076 +ec(A) = ( otherwise.
So, Tz(1, 1) is the number of subsets A of E(G) such that rg(A) = cg(A) = 0.
But r¢(A) = 0 if and only if the multigraph (V(G), A) is connected (as in the
proof of Proposition 5.3), and c¢g(A) = 0 if the multigraph (V(G), A) is if and
only if acyclic (as in the proof of Proposition 5.2). So, r¢(A) = cq(A4) =0 if
and only if (V(G), A) is a tree (equivalently: a spanning tree of G). O
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