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Definition
A Hamiltonian cycle (or a Hamilton cycle) of a graph G is a cycle
of G that passes through all vertices of G .

Definition
A graph is Hamiltonian if it has a Hamiltonian cycle.

It is NP-hard to determine if a graph is Hamiltonian.
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Definition
For a real number t > 0, a graph G is t-tough if for every set
S $ V (G), G \ S has at most max{1, |S|t } components.

Conjecture [Chvátal]
There exists some t > 0 s.t. every t-tough graph is Hamiltonian.

Proposition 1.2
Every Hamiltonian graph is 1-tough.



Definition
For a real number t > 0, a graph G is t-tough if for every set
S $ V (G), G \ S has at most max{1, |S|t } components.

Conjecture [Chvátal]
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S $ V (G), G \ S has at most max{1, |S|t } components.

Proposition 1.2
Every Hamiltonian graph is 1-tough.

Proof.

Let G be a Hamiltonian graph, and let S $ V (G). Since G
is Hamiltonian, it is connected; so, if S = ∅, then G \ S = G has
only one component, and we are done. We may now assume that
S 6= ∅. Let C be a Hamiltonian cycle in G . Clearly, C \ S is the
disjoint union of at most |S| many paths, and so C \ S has at most
|S| many components. Since C is a spanning subgraph of G , it is
clear that G \ S has no more components than C \ S does. So,
G \ S has at most |S| many components, and the result follows.
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Lemma 2.1
Let G be a graph, and let x and y be distinct, non-adjacent
vertices of G that satisfy dG(x) + dG(y) ≥ |V (G)|. Then G is
Hamiltonian iff G + xy is Hamiltonian.

Proof.

It is clear that if G is Hamiltonian, then so is G + xy .
Suppose now that G + xy is Hamiltonian; we must show that G is
Hamiltonian. Let C be a Hamiltonian cycle of G + xy . If
xy /∈ E (C), then C is a Hamiltonian cycle of G , and we are done.
So, assume that xy ∈ E (C). Now, consider the path
C − xy = c1, . . . , cn, with c1 = x and cn = y .
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Proof (continued). Let Sx := {i | 1 ≤ i ≤ n − 1, xci+1 ∈ E (G)}
and Sy := {i | 1 ≤ i ≤ n − 1, yci ∈ E (G)}.

Note that
|Sx |+ |Sy | = dG(x) + dG(y) ≥ |V (G)|, whereas
|Sx ∪ Sy | ≤ |V (G)| − 1. So, Sx ∩ Sy 6= ∅. Fix i ∈ Sx ∩ Sy .

x = c1 y = cn

ci+1ci

But now x︸︷︷︸
=c1

, c2, . . . , ci , y︸︷︷︸
=cn

, cn−1, . . . , ci+1, x︸︷︷︸
=c1

is a Hamiltonian

cycle of G , and so G is Hamiltonian.
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Lemma 2.1
Let G be a graph, and let x and y be distinct, non-adjacent
vertices of G that satisfy dG(x) + dG(y) ≥ |V (G)|. Then G is
Hamiltonian iff G + xy is Hamiltonian.

Definition
The Chvátal closure of a graph G is the graph obtained by
repeatedly adding edges between non-adjacent vertices x , y s.t.
d(x) + d(y) ≥ |V (G)|, until no more such edges can be added.

The Chvátal closure of a graph is uniquely defined (i.e. the
order in which edges are added does not matter).

Theorem 2.2
A graph is Hamiltonian iff its Chvátal closure is Hamiltonian.

Proof. This follows from Lemma 2.1 by an easy induction.
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Theorem 2.3 [Ore]
Let G be a graph on at least three vertices. Assume that for all
distinct, non-adjacent vertices x , y of G , we have that
dG(x) + dG(y) ≥ |V (G)|. Then G is Hamiltonian.

Proof. The Chvátal closure of G is the complete graph on |V (G)|
vertices, which (since |V (G)| ≥ 3) is clearly Hamiltonian. So, by
Theorem 2.2, G is also Hamiltonian.

Theorem 2.4 [Dirac]

Let G be a graph on at least three vertices. If δ(G) ≥ |V (G)|
2 , then

G is Hamiltonian.

Proof. This is an immediate corollary of Theorem 2.3.
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Definition
Let a = (a1, . . . , an) be a list (vector) of integers s.t.
0 ≤ a1 ≤ · · · ≤ an ≤ n− 1. A graph G on n vertices dominates a if
for some ordering v1, . . . , vn of the vertices of G , we have that
dG(v1) ≥ a1, . . . , dG(vn) ≥ an. We say that a is Hamiltonian if
every n-vertex graph that dominates a is Hamiltonian.

Theorem 2.5
Let n ≥ 3 be an integer, and let a = (a1, . . . , an) be a sequence of
integers s.t. 0 ≤ a1 ≤ · · · ≤ an ≤ n − 1. Then the following are
equivalent:
(a) for all indices i < n

2 , if ai ≤ i , then an−i ≥ n − i ;
(b) a is Hamiltonian.
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(a) for all indices i < n
2 , if ai ≤ i , then an−i ≥ n − i ;

(b) a is Hamiltonian.

Proof.

Suppose first that (a) holds; we must prove (b). Suppose
otherwise. Then there exists a graph on n vertices that dominates
a, but is not Hamiltonian; among all such graphs, let G be one
with as many edges as possible. Since G has at least three vertices
and is not Hamiltonian, we see that G is not complete. Fix
distinct, non-adjacent vertices u, v ∈ V (G) s.t. dG(u) + dG(v) is
maximum; by symmetry, we may assume that dG(u) ≤ dG(v).
Then G + uv dominates a and has more edges than G , and so
G + uv is Hamiltonian. Let C be a Hamiltonian cycle in G + uv .
Then uv ∈ E (C), for otherwise, C would be a Hamiltonian cycle in
G , contrary to the fact that G is not Hamiltonian. We now
consider the path C − uv = x1, . . . , xn, with x1 = u and xn = v .
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(a) for all indices i < n
2 , if ai ≤ i , then an−i ≥ n − i ;

(b) a is Hamiltonian.

Proof (continued). Let S := {i | 1 ≤ i ≤ n − 1, uxi+1 ∈ E (G)};
clearly, s := |S| = dG(u). If there exists some i ∈ S s.t.
vxi ∈ E (G), then x1︸︷︷︸

=u

, x2, . . . , xi , xn︸︷︷︸
=v

, xn−1, . . . , xi+1, x1︸︷︷︸
=u

would be

a Hamiltonian cycle in G , contrary to the fact that G is not
Hamiltonian.

u = x1 v = xn

xi+1xi

So, no such i exists, and it follows that dG(v) ≤ n − 1− s.
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(a) for all indices i < n
2 , if ai ≤ i , then an−i ≥ n − i ;

(b) a is Hamiltonian.

Proof (continued). Reminder:
S = {i | 1 ≤ i ≤ n − 1, uxi+1 ∈ E (G)}, s = |S| = dG(u),
dG(v) ≤ n − 1− s, v is non-adjacent to all xi ’s with i ∈ S.

But now dG(u) + dG(v) ≤ s + (n − 1− s) = n − 1; since
dG(u) ≤ dG(v), we deduce that dG(u) < n

2 , and so s < n
2 .

Further, by the maximality of dG(u) + dG(v), we see that for all
i ∈ S, we have that dG(xi ) ≤ dG(u) = s. So, at least s vertices of
G (i.e. all the xi ’s with i ∈ S) have degree at most s < n

2 in G ,
and it follows that a1, . . . , as ≤ s < n

2 .
But since as ≤ s < n

2 , (a) guarantees that an−s ≥ n − s; but now
n − s ≤ an−s ≤ · · · ≤ an, i.e. at least s + 1 vertices of G have
degree at least n − s. Since dG(u) = s, we see that u is
non-adjacent to at least one of these s + 1 vertices, call it y . But
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Suppose now that (a) does not hold; we must
show that (b) does not hold either. (So, we must exhibit an
n-vertex graph that dominates a and is not Hamiltonian.) Since
(a) does not hold, there exists some index i < n

2 s.t. ai ≤ i and
an−i ≤ n − i − 1. Now the graph below dominates a (details:
Lecture Notes).
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Also, the graph is not 1-tough, because deleting {vn−i+1, . . . , vn}
yields a graph with i + 1 components. So, by Proposition 1.2, G is
not Hamiltonian, and it follows that (b) does not hold.
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Lemma 3.1
Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

We’ll prove Lemma 3.1, but let’s first prove a corollary
(Theorem 3.2).

Theorem 3.2
Let G be a Hamiltonian graph, all of whose vertices are of odd
degree. Then G has at least three Hamiltonian cycles.

The bound from Theorem 3.2 is best possible: indeed, K4 has
precisely three Hamiltonian cycles.
Let’s now prove Theorem 3.2 (assuming Lemma 3.1).
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degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1).

Let C1 be a Hamiltonian cycle of G ,
and let e be some edge of C1. Then by Lemma 3.1, there exists a
Hamiltonian cycle C2 6= C1 that also contains the edge e. Since
C1,C2 are distinct Hamiltonian cycles, we see that there exists an
edge e1 ∈ E (C1) \ E (C2); but then Lemma 3.1 guarantees that
there exists a Hamiltonian cycle C3 6= C1 that contains e1. Since
e1 ∈ E (C3) \ E (C2), we see that C3 6= C2. But now C1,C2,C3 are
pairwise distinct Hamiltonian cycles of G .
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Lemma 3.1
Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Proof.

Let e = xy be an edge of G ; we must show that e belongs
to an even number of Hamiltonian cycles of G .
A lollipop is a connected subgraph H of G s.t. V (H) = V (G),
e ∈ E (H), and H satisfies one of the following:
(1) H is a cycle;
(2) dH(x) = 1, H has one vertex of degree three, and all other

vertices of H are of degree two.
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Proof (continued).
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e

If H is a lollipop that satisfies (1), then H has a unique tail,
namely the unique edge of H incident with x and distinct from e.
On the other hand, if H is a lollipop that satisfies (2), then H has
two tails, namely, the two edges of the unique cycle of H that are
incident with the unique vertex of degree three in H.
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Proof (continued). We now form an auxiliary graph L, as follows.

The vertices of L are the lollipops. Two lollipops, H1 and H2, are
adjacent in L iff there exist tails e1 of H1 and e2 of H2 s.t.
H1 − e1 = H2 − e2. For example, in the picture below, if Hi (for
i ∈ {1, 2}) consists of the blue and black edges, plus the red edge
ei , then lollipops H1 and H2 are adjacent in L.
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Proof (continued). Suppose that H = x , y , u1, . . . , ut , z , x (t ≥ 0)
is a lollipop satisfying (1), i.e. H is a Hamiltonian cycle of G
containing e.

x

y

e
z

u1
ut

Then xz is the unique tail of H, and the neighbors of H in L are
precisely the graphs that can be obtained from H − xz by adding
an edge between z and a vertex in NG(z) \ NH(z). So,
dL(H) = |NG(z) \ NH(z)| = dG(z)− 2; since dG(z) is odd, so is
dL(H).
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Proof (continued). Suppose now that H is a lollipop satisfying (2);
let z , u1, . . . , ut , z (t ≥ 2) be the unique cycle of H, where z is the
unique vertex of degree three in H.
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Proof (continued).
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Then the lollipop H has two tails, namely zu1 and zut , and the
neighbors of H in L are precisely the graphs that an be obtained in
one of the following two ways as follows:

by starting with H − zu1, and then adding an edge between u1
and NG(u1) \ {z , u2};
by starting with H − zut , and then adding an edge between ut
and NG(u1) \ {z , ut−1}.

So, dL(H) = (dG(u1)− 2) + (dG(ut)− 2) = dG(u1) + dG(ut)− 4.
Since all vertices of G have odd degree, we deduce that dL(H) is
even.
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even.



Lemma 3.1
Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Proof (continued). We have now shown that the odd-degree
vertices of our auxiliary graph L are precisely the Hamiltonian
cycles of H that contain the edge e.

But clearly, L has an even
number of odd-degree vertices (because the sum of degrees in any
graph is even), and so the number of Hamiltonian cycles of G
containing e is even.
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