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@ It is NP-hard to determine if a graph is Hamiltonian.
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Definition

For a real number t > 0, a graph G is t-tough if for every set
S S V(G), G\ 'S has at most max{1, |—f|} components.

Proposition 1.2

Every Hamiltonian graph is 1-tough.

Proof. Let G be a Hamiltonian graph, and let S G V(G). Since G
is Hamiltonian, it is connected; so, if S =), then G\ S = G has
only one component, and we are done. We may now assume that
S # (. Let C be a Hamiltonian cycle in G. Clearly, C\ S is the
disjoint union of at most |S| many paths, and so C\ S has at most
|S| many components. Since C is a spanning subgraph of G, it is
clear that G\ S has no more components than C\ S does. So,

G \ S has at most |S| many components, and the result follows.



Let G be a graph, and let x and y be distinct, non-adjacent
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Hamiltonian iff G + xy is Hamiltonian.
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Suppose now that G + xy is Hamiltonian; we must show that G is
Hamiltonian. Let C be a Hamiltonian cycle of G + xy. If

xy ¢ E(C), then C is a Hamiltonian cycle of G, and we are done.
So, assume that xy € E(C).



Let G be a graph, and let x and y be distinct, non-adjacent
vertices of G that satisfy dg(x) + dg(y) > |V(G)|. Then G is
Hamiltonian iff G + xy is Hamiltonian.

Proof. It is clear that if G is Hamiltonian, then so is G + xy.

Suppose now that G + xy is Hamiltonian; we must show that G is
Hamiltonian. Let C be a Hamiltonian cycle of G + xy. If

xy ¢ E(C), then C is a Hamiltonian cycle of G, and we are done.
So, assume that xy € E(C). Now, consider the path
C—xy=cac,...,Ch, Withcg =xand ¢, =y.



Let G be a graph, and let x and y be distinct, non-adjacent
vertices of G that satisfy dg(x) + dg(y) > |V(G)|. Then G is
Hamiltonian iff G + xy is Hamiltonian.

Proof (continued). Let Sy :={i|1<i<n—1, xcit1 € E(G)}
and S, :={i|1<i<n-—1, yge E(G)}.



Let G be a graph, and let x and y be distinct, non-adjacent
vertices of G that satisfy dg(x) + dg(y) > |V(G)|. Then G is
Hamiltonian iff G + xy is Hamiltonian.

Proof (continued). Let Sy :={i|1<i<n—1, xcit1 € E(G)}
and S, :={i|1<i<n-1, yg e E(G)}. Note that

|Sx| + 1Sy = do(x) + dg(y) > [V(G)], whereas

|Sx US| < |V(G)|—1. So, Sx NS, #0. Fixi € 5,NS,.

C; Ci+1
T = Yy=ctn
But now x ,c,...,¢ Che1y-..,Cj x is a Hamiltonian
5 €2, yCiy Y ,Cn—1, s Ci415
=C =cp =C

cycle of G, and so G is Hamiltonian.
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Lemma 2.1

Let G be a graph, and let x and y be distinct, non-adjacent
vertices of G that satisfy dg(x) + dg(y) > |V(G)|. Then G is
Hamiltonian iff G 4 xy is Hamiltonian.

Definition

The Chvatal closure of a graph G is the graph obtained by
repeatedly adding edges between non-adjacent vertices x, y s.t.
d(x)+ d(y) > |V(G)|, until no more such edges can be added.

@ The Chvatal closure of a graph is uniquely defined (i.e. the
order in which edges are added does not matter).

A graph is Hamiltonian iff its Chvatal closure is Hamiltonian.

Proof. This follows from Lemma 2.1 by an easy induction.



Theorem 2.3 [Ore]

Let G be a graph on at least three vertices. Assume that for all
distinct, non-adjacent vertices x, y of G, we have that
dg(x) + dg(y) > |V(G)|. Then G is Hamiltonian.

Proof. The Chvétal closure of G is the complete graph on |V(G)|
vertices, which (since |V(G)| > 3) is clearly Hamiltonian. So, by
Theorem 2.2, G is also Hamiltonian.



Theorem 2.3 [Ore]

Let G be a graph on at least three vertices. Assume that for all
distinct, non-adjacent vertices x, y of G, we have that
dg(x) + dg(y) > |V(G)|. Then G is Hamiltonian.

Proof. The Chvétal closure of G is the complete graph on |V(G)|
vertices, which (since |V(G)| > 3) is clearly Hamiltonian. So, by
Theorem 2.2, G is also Hamiltonian.

Theorem 2.4 [Dirac]

|V(G)

Let G be a graph on at least three vertices. If §(G) > ()| then

2
G is Hamiltonian.

Proof. This is an immediate corollary of Theorem 2.3.
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Let a = (a1,...,an) be a list (vector) of integers s.t.
0<a <---<a,<n—1. Agraph G on n vertices dominates a if
for some ordering vi, ..., v, of the vertices of G, we have that

dg(v1) > a1,...,dg(va) > a,. We say that a is Hamiltonian if
every n-vertex graph that dominates a is Hamiltonian.
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Let a = (a1,...,an) be a list (vector) of integers s.t.

0<a <---<a,<n—1. Agraph G on n vertices dominates a if
for some ordering vi, ..., v, of the vertices of G, we have that
dg(v1) > a1,...,dg(va) > a,. We say that a is Hamiltonian if
every n-vertex graph that dominates a is Hamiltonian.

Theorem 2.5

Let n > 3 be an integer, and let a = (a1, ..., a,) be a sequence of
integers s.t. 0 < a; <--- < a, < n—1. Then the following are
equivalent:

(a) for all indices i < 7, if a; < i, then a,_; > n—i;

(b) ais Hamiltonian.
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(b) ais Hamiltonian.
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otherwise. Then there exists a graph on n vertices that dominates
a, but is not Hamiltonian; among all such graphs, let G be one
with as many edges as possible.
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and is not Hamiltonian, we see that G is not complete.
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G + uv is Hamiltonian.
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(b) ais Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose
otherwise. Then there exists a graph on n vertices that dominates
a, but is not Hamiltonian; among all such graphs, let G be one
with as many edges as possible. Since G has at least three vertices
and is not Hamiltonian, we see that G is not complete. Fix
distinct, non-adjacent vertices u, v € V(G) s.t. dg(u) + dg(v) is
maximum; by symmetry, we may assume that dg(u) < dg(v).
Then G + uv dominates a and has more edges than G, and so

G + uv is Hamiltonian. Let C be a Hamiltonian cycle in G 4 wv.
Then uv € E(C), for otherwise, C would be a Hamiltonian cycle in
G, contrary to the fact that G is not Hamiltonian.



(a) for all indices i < 3, if a; </, then a,_; > n — i
(b) ais Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose
otherwise. Then there exists a graph on n vertices that dominates
a, but is not Hamiltonian; among all such graphs, let G be one
with as many edges as possible. Since G has at least three vertices
and is not Hamiltonian, we see that G is not complete. Fix
distinct, non-adjacent vertices u, v € V(G) s.t. dg(u) + dg(v) is
maximum; by symmetry, we may assume that dg(u) < dg(v).
Then G + uv dominates a and has more edges than G, and so

G + uv is Hamiltonian. Let C be a Hamiltonian cycle in G 4 wv.
Then uv € E(C), for otherwise, C would be a Hamiltonian cycle in
G, contrary to the fact that G is not Hamiltonian. We now
consider the path C — uv = xq,...,x,, with x1 = u and x, = v.
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clearly, s := |S| = dg(u). If there exists some i € S s.t.

vx; € E(G), then X1 ,x2,...,Xi, Xn ,Xn—1,---,Xi+1, x1 would be
~— ~— ~—
=u =v =u

a Hamiltonian cyclg in G, contrary to the fact that G is not
Hamiltonian.
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Proof (continued). Let S:={i|1<i<n-—1, ux1 € E(G)};
clearly, s := |S| = dg(u). If there exists some i € S s.t.

vx; € E(G), then X1 ,x2,...,Xi, Xn ,Xn—1,---,Xi+1, x1 would be
~— ~— ~—
=u =v =u

a Hamiltonian cyclg in G, contrary to the fact that G is not
Hamiltonian.

T Tit+1

U =T vV =Ty

So, no such i exists, and it follows that dg(v) < n—1—s.
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dg(v) < n—1—s, vis non-adjacent to all x;'s with / € S.
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dg(v) < n—1—s, vis non-adjacent to all x;'s with / € S.
But now dg(u) +dg(v) <s+(n—1—s)=n—1; since
dg(u) < dg(v), we deduce that dg(u) < 5, and so s < 3.
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Further, by the maximality of dg(u) + dg(v), we see that for all
i € S, we have that dg(x;) < dg(u) =s.
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Proof (continued). Reminder:
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dg(u) < dg(v), we deduce that dg(u) < 5, and so s < 3.
Further, by the maximality of dg(u) + dg(v), we see that for all

i € S, we have that dg(x;) < dg(u) = s. So, at least s vertices of
G (i.e. all the x;'s with i € S) have degree at most s < 7 in G,
and it follows that ag,...,as <5 < 3.

But since as < s < 7, (a) guarantees that a,_s > n—s;
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Proof (continued). Reminder:

S={i|1<i<n-—1, uxiy1 € E(G)}, s =|S| = dg(uv),

dg(v) < n—1—s, vis non-adjacent to all x;'s with / € S.

But now dg(u) +dg(v) <s+(n—1—s)=n—1; since

dg(u) < dg(v), we deduce that dg(u) < 5, and so s < 3.
Further, by the maximality of dg(u) + dg(v), we see that for all
i € S, we have that dg(x;) < dg(u) = s. So, at least s vertices of
G (i.e. all the x;'s with i € S) have degree at most s < 7 in G,
and it follows that ag,...,as <5 < 3.

But since as < s < g (a) guarantees that a,_s > n — s; but now
n—s<ap,s<---<ap ie. atleast s+ 1 vertices of G have
degree at least n — s.



(a) for all indices i < 7, if a; < i, then a,_; > n— 1,
(b) ais Hamiltonian.

Proof (continued). Reminder:

S={i|1<i<n-—1, uxiy1 € E(G)}, s =|S| = dg(uv),

dg(v) < n—1—s, vis non-adjacent to all x;'s with / € S.

But now dg(u) +dg(v) <s+(n—1—s)=n—1; since

dg(u) < dg(v), we deduce that dg(u) < 5, and so s < 3.
Further, by the maximality of dg(u) + dg(v), we see that for all

i € S, we have that dg(x;) < dg(u) = s. So, at least s vertices of
G (i.e. all the x;'s with i € S) have degree at most s < 7 in G,
and it follows that ag,...,as <5 < 3.

But since as < s < g (a) guarantees that a,_s > n — s; but now
n—s<ap,s<---<ap ie. atleast s+ 1 vertices of G have
degree at least n — s. Since dg(u) = s, we see that u is
non-adjacent to at least one of these s + 1 vertices, call it y. But
now dg(u) + dg(y) >s+(n—s)=n>n—12>dg(u) + dg(v),
contrary to the maximality of dg(u) + dg(v). So, (b) holds.
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Proof (continued).



(a) for all indices i < 7, if a; < i, then a,_; > n—1;
(b) ais Hamiltonian.
Proof (continued). Suppose now that (a) does not hold; we must

show that (b) does not hold either. (So, we must exhibit an
n-vertex graph that dominates a and is not Hamiltonian.)



(a) for all indices i < 7, if a; < i, then a,_; > n—1;
(b) ais Hamiltonian.

Proof (continued). Suppose now that (a) does not hold; we must
show that (b) does not hold either. (So, we must exhibit an
n-vertex graph that dominates a and is not Hamiltonian.) Since
(a) does not hold, there exists some index i < 5 s.t. a; < i and

an—i<n—ij—1.



(a) for all indices i < 7, if a; < i, then a,_; > n—1;
(b) ais Hamiltonian.

Proof (continued). Suppose now that (a) does not hold; we must
show that (b) does not hold either. (So, we must exhibit an
n-vertex graph that dominates a and is not Hamiltonian.) Since
(a) does not hold, there exists some index i < 5 s.t. a; < i and
ap—i < n—i—1. Now the graph below dominates a (details:

Lecture Notes).

o Uitl

o Un—i

U1 Un—i+1

Vi Un

stable set clique



(a) for all indices i < 3, if a; </, then a,_; > n — i

(b) ais Hamiltonian.

Proof (continued).
o Uitl
o !
o Un—i
(5] Un—it1
o=
v; Uy

stable set clique



(a) for all indices i < 3, if a; </, then a,_; > n — i
(b) ais Hamiltonian.

Proof (continued).

v) [

o=
—

v; Uy,

stable set clique

Also, the graph is not 1-tough, because deleting {v,—jt1,...,Vn}
yields a graph with i + 1 components. So, by Proposition 1.2, G is
not Hamiltonian, and it follows that (b) does not hold.



Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.




Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

o We'll prove Lemma 3.1, but let’s first prove a corollary
(Theorem 3.2).
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In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

o We'll prove Lemma 3.1, but let’s first prove a corollary
(Theorem 3.2).

Let G be a Hamiltonian graph, all of whose vertices are of odd
degree. Then G has at least three Hamiltonian cycles.




Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

o We'll prove Lemma 3.1, but let’s first prove a corollary
(Theorem 3.2).

Let G be a Hamiltonian graph, all of whose vertices are of odd
degree. Then G has at least three Hamiltonian cycles.

@ The bound from Theorem 3.2 is best possible: indeed, K4 has
precisely three Hamiltonian cycles.



Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

o We'll prove Lemma 3.1, but let’s first prove a corollary
(Theorem 3.2).

Let G be a Hamiltonian graph, all of whose vertices are of odd
degree. Then G has at least three Hamiltonian cycles.

@ The bound from Theorem 3.2 is best possible: indeed, K4 has
precisely three Hamiltonian cycles.

@ Let's now prove Theorem 3.2 (assuming Lemma 3.1).



Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Let G be a Hamiltonian graph, all of whose vertices are of odd
degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1).



Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Let G be a Hamiltonian graph, all of whose vertices are of odd
degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1). Let C; be a Hamiltonian cycle of G,
and let e be some edge of C;.



Let G be a graph in which all vertices are of odd degree. Then
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Proof (assuming Lemma 3.1). Let C; be a Hamiltonian cycle of G,
and let e be some edge of C;. Then by Lemma 3.1, there exists a
Hamiltonian cycle C; # C; that also contains the edge e. Since
(1, G are distinct Hamiltonian cycles, we see that there exists an
edge e1 € E(G) \ E(G);
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In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.
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Proof (assuming Lemma 3.1). Let C; be a Hamiltonian cycle of G,
and let e be some edge of C;. Then by Lemma 3.1, there exists a
Hamiltonian cycle C; # C; that also contains the edge e. Since
(1, G are distinct Hamiltonian cycles, we see that there exists an
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Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Let G be a Hamiltonian graph, all of whose vertices are of odd
degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1). Let C; be a Hamiltonian cycle of G,
and let e be some edge of C;. Then by Lemma 3.1, there exists a
Hamiltonian cycle C; # C; that also contains the edge e. Since
(1, G are distinct Hamiltonian cycles, we see that there exists an
edge e; € E(G) \ E((); but then Lemma 3.1 guarantees that
there exists a Hamiltonian cycle C3 # (C; that contains e;. Since
e1 € E(G) \ E((G), we see that C3 # Co.



Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Let G be a Hamiltonian graph, all of whose vertices are of odd
degree. Then G has at least three Hamiltonian cycles.

Proof (assuming Lemma 3.1). Let C; be a Hamiltonian cycle of G,
and let e be some edge of C;. Then by Lemma 3.1, there exists a
Hamiltonian cycle C; # C; that also contains the edge e. Since
(1, G are distinct Hamiltonian cycles, we see that there exists an
edge e; € E(G) \ E((); but then Lemma 3.1 guarantees that
there exists a Hamiltonian cycle C3 # (C; that contains e;. Since
e1 € E(G3) \ E(G), we see that Gz # G, But now Gi, G, G5 are
pairwise distinct Hamiltonian cycles of G.
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In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Proof. Let e = xy be an edge of G; we must show that e belongs
to an even number of Hamiltonian cycles of G.



Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Proof. Let e = xy be an edge of G; we must show that e belongs
to an even number of Hamiltonian cycles of G.

A lollipop is a connected subgraph H of G s.t. V(H) = V(G),

e € E(H), and H satisfies one of the following:

(1) His a cycle;
(2) du(x) =1, H has one vertex of degree three, and all other
vertices of H are of degree two.



Proof (continued).




Proof (continued).

If H is a lollipop that satisfies (1), then H has a unique tail,
namely the unique edge of H incident with x and distinct from e.
On the other hand, if H is a lollipop that satisfies (2), then H has
two tails, namely, the two edges of the unique cycle of H that are
incident with the unique vertex of degree three in H.



Proof (continued). We now form an auxiliary graph L, as follows.
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The vertices of L are the lollipops. Two lollipops, H1 and H>, are
adjacent in L iff there exist tails e; of H; and ey of Hs s.t.

H1 — €1 = H2 — €.



Proof (continued). We now form an auxiliary graph L, as follows.
The vertices of L are the lollipops. Two lollipops, H1 and H>, are
adjacent in L iff there exist tails e; of H; and ey of Hs s.t.

Hi — e1 = H, — ep. For example, in the picture below, if H; (for
i € {1,2}) consists of the blue and black edges, plus the red edge
e;, then lollipops H; and Hs are adjacent in L.




Proof (continued). Suppose that H = x,y, u1,...,u, z,x (t > 0)
is a lollipop satisfying (1), i.e. H is a Hamiltonian cycle of G
containing e.

Uy
w
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is a lollipop satisfying (1), i.e. H is a Hamiltonian cycle of G
containing e.

Uy
w

Then xz is the unique tail of H, and the neighbors of H in L are
precisely the graphs that can be obtained from H — xz by adding
an edge between z and a vertex in Ng(z) \ Ny(z).



Proof (continued). Suppose that H = x,y, u1,...,u, z,x (t > 0)
is a lollipop satisfying (1), i.e. H is a Hamiltonian cycle of G
containing e.

Uy
w

Then xz is the unique tail of H, and the neighbors of H in L are
precisely the graphs that can be obtained from H — xz by adding
an edge between z and a vertex in Ng(z) \ Nu(z). So,

di(H) = |Ng(z) \ Nu(z)| = dg(z) — 2; since dg(z) is odd, so is
di(H).



Proof (continued). Suppose now that H is a lollipop satisfying (2);
let z,u1,...,ur,z (t > 2) be the unique cycle of H, where z is the
unique vertex of degree three in H.




Proof (continued).

Then the lollipop H has two tails, namely zu; and zu;, and the
neighbors of H in L are precisely the graphs that an be obtained in
one of the following two ways as follows:
@ by starting with H — zuq, and then adding an edge between u;
and Ng(u1) \ {z, uz};
@ by starting with H — zu;, and then adding an edge between u;
and NG(Ul) \ {Z, Ut—l}-



Proof (continued).

Then the lollipop H has two tails, namely zu; and zu;, and the
neighbors of H in L are precisely the graphs that an be obtained in
one of the following two ways as follows:
@ by starting with H — zuq, and then adding an edge between u;
and Ng(u1) \ {z, uz};
@ by starting with H — zu;, and then adding an edge between u;
and NG(Ul) \ {Z, Ut—l}-
So, di(H) = (dg(u1) — 2) + (dg(ut) — 2) = dg(u1) + dg(ue) — 4.
Since all vertices of G have odd degree, we deduce that d;(H) is
even.



Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Proof (continued). We have now shown that the odd-degree
vertices of our auxiliary graph L are precisely the Hamiltonian
cycles of H that contain the edge e.



Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.
In particular, every edge of G that belongs to a Hamiltonian cycle,
belongs to at least two Hamiltonian cycles.

Proof (continued). We have now shown that the odd-degree
vertices of our auxiliary graph L are precisely the Hamiltonian
cycles of H that contain the edge e. But clearly, L has an even
number of odd-degree vertices (because the sum of degrees in any
graph is even), and so the number of Hamiltonian cycles of G
containing e is even.



