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Lecture #8

Hamiltonian graphs

Irena Penev

1 Hamiltonian graphs and t-toughness

A Hamiltonian cycle (or a Hamilton cycle) of a graph G is a cycle of G
that passes through all vertices of G. An example is shown below (the
Hamiltonian cycle is in red.)

A graph is Hamiltonian if it has a Hamiltonian cycle.
We remark that it is NP-hard to determine whether a graph is Hamil-

tonian. This is in contrast with Eulerian graphs: to check if a graph is
Eulerian, we need only check if it is connected and all vertices are of even
degree, which can obviously be done in polynomial time. Nevertheless, there
are some sufficient conditions for Hamiltonicity, which can easily be check in
polynomial time (see section 2 below).

For a real number t > 0, a graph G is t-tough if for every set S $ V (G),

G \ S has at most max{1, |S|t } components.

Conjecture 1.1 (Chvátal). There exists some t > 0 such that every t-tough
graph is Hamiltonian.

The conjecture above remains open. We do have the following simple
proposition, though.

Proposition 1.2. Every Hamiltonian graph is 1-tough.

Proof. Let G be a Hamiltonian graph, and let S $ V (G). Since G is
Hamiltonian, it is connected; so, if S = ∅, then G \ S = G has only one
component, and we are done. We may now assume that S 6= ∅. Let C be a
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Hamiltonian cycle in G. Clearly, C \ S is the disjoint union of at most |S|
many paths, and so C \ S has at most |S| many components. Since C is a
spanning subgraph of G,1 it is clear that G\S has no more components than
C \ S does.2 So, G \ S has at most |S| many components, and the result
follows.

2 Hamiltonian graphs and vertex degrees

Lemma 2.1. Let G be a graph, and let x and y be distinct, non-adjacent
vertices of G that satisfy dG(x) + dG(y) ≥ |V (G)|. Then G is Hamiltonian
if and only if G+ xy is Hamiltonian.

Proof. It is clear that if G is Hamiltonian, then so is G+ xy.3

Suppose now that G + xy is Hamiltonian; we must show that G is
Hamiltonian. Let C be a Hamiltonian cycle of G + xy. If xy /∈ E(C),
then C is a Hamiltonian cycle of G, and we are done. So, assume that
xy ∈ E(C). Now, consider the path C − xy = c1, . . . , cn, with c1 = x and
cn = y.4 Let Sx := {i | 1 ≤ i ≤ n − 1, xci+1 ∈ E(G)} and Sy := {i | 1 ≤
i ≤ n − 1, yci ∈ E(G)}. Note that |Sx| + |Sy| = dG(x) + dG(y) ≥ |V (G)|,
whereas |Sx ∪ Sy| ≤ |V (G)| − 1. So, Sx ∩ Sy 6= ∅. Fix i ∈ Sx ∩ Sy. Since
x = c1 and y = cn are non-adjacent in G, we see that 2 ≤ n− 2. But now
x︸︷︷︸

=c1

, c2, . . . , ci, y︸︷︷︸
=cn

, cn−1, . . . , ci+1, x︸︷︷︸
=c1

is a Hamiltonian cycle of G, and so

G is Hamiltonian.

x = c1 y = cn

ci+1ci

The Chvátal closure of a graph G is the graph obtained by repeatedly
adding edges between non-adjacent vertices x, y such that d(x) + d(y) ≥
|V (G)|, until no more such edges can be added. It is easy to see that the
Chvátal closure of a graph is uniquely defined (i.e. the order in which edges
are added does not matter).

1A spanning subgraph of a graph G is a subgraph of G that contains all vertices of G.
2Indeed, G \ S can be obtained from C \ S by possibly adding edges, and adding edges

cannot increase the number of components.
3Indeed, any Hamiltonian cycle of G is also a Hamiltonian cycle of G+ xy.
4Since C is a Hamiltonian cycle of G+ xy, we have that V (G) = V (C) = {c1, . . . , cn}.
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Theorem 2.2. A graph is Hamiltonian if and only if its Chvátal closure is
Hamiltonian.

Proof. This follows from Lemma 2.1 by an easy induction.

Theorem 2.3 (Ore). Let G be a graph on at least three vertices. Assume that
for all distinct, non-adjacent vertices x, y of G, we have that dG(x)+dG(y) ≥
|V (G)|. Then G is Hamiltonian.

Proof. The Chvátal closure of G is the complete graph on |V (G)| vertices,
which (since |V (G)| ≥ 3) is clearly Hamiltonian. So, by Theorem 2.2, G is
also Hamiltonian.

Theorem 2.4 (Dirac). Let G be a graph on at least three vertices. If

δ(G) ≥ |V (G)|
2 , then G is Hamiltonian.

Proof. This is an immediate corollary of Theorem 2.3.

Let a = (a1, . . . , an) be a list (vector) of integers such that 0 ≤ a1 ≤
· · · ≤ an ≤ n− 1. A graph G on n vertices dominates a if for some ordering
v1, . . . , vn of the vertices of G, we have that dG(v1) ≥ a1, . . . , dG(vn) ≥ an.
We say that a is Hamiltonian if every n-vertex graph that dominates a is
Hamiltonian.

Theorem 2.5. Let n ≥ 3 be an integer, and let a = (a1, . . . , an) be a
sequence of integers such that 0 ≤ a1 ≤ · · · ≤ an ≤ n− 1. Then the following
are equivalent:

(a) for all indices i < n
2 , if ai ≤ i, then an−i ≥ n− i;

(b) a is Hamiltonian.

Proof. Suppose first that (a) holds; we must prove (b). Suppose otherwise.
Then there exists a graph on n vertices that dominates a, but is not Hamil-
tonian; among all such graphs, let G be one with as many edges as possible.
Since G has at least three vertices and is not Hamiltonian, we see that G
is not complete. Fix distinct, non-adjacent vertices u, v ∈ V (G) such that
dG(u)+dG(v) is maximum; by symmetry, we may assume that dG(u) ≤ dG(v).
Then G + uv dominates a and has more edges than G, and so G + uv is
Hamiltonian. Let C be a Hamiltonian cycle in G+ uv. Then uv ∈ E(C), for
otherwise, C would be a Hamiltonian cycle in G, contrary to the fact that
G is not Hamiltonian. We now consider the path C − uv = x1, . . . , xn, with
x1 = u and xn = v. Let S := {i | 1 ≤ i ≤ n − 1, uxi+1 ∈ E(G)}; clearly,
s := |S| = dG(u). If there exists some i ∈ S such that vxi ∈ E(G), then
x1︸︷︷︸
=u

, x2, . . . , xi, xn︸︷︷︸
=v

, xn−1, . . . , xi+1, x1︸︷︷︸
=u

would be a Hamiltonian cycle in G,

contrary to the fact that G is not Hamiltonian.
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u = x1 v = xn

xi+1xi

So, no such i exists, and it follows that dG(v) ≤ n − 1 − s. But now
dG(u) + dG(v) ≤ s + (n − 1 − s) = n − 1; since dG(u) ≤ dG(v), we deduce
that dG(u) < n

2 , and so s < n
2 . Further, by the maximality of dG(u) + dG(v),

we see that for all i ∈ S, we have that dG(xi) ≤ dG(u) = s.5 So, at least s
vertices of G (i.e. all the xi’s with i ∈ S) have degree at most s < n

2 in G,
and it follows that a1, . . . , as ≤ s < n

2 .6 But since as ≤ s < n
2 , (a) guarantees

that an−s ≥ n − s; but now n − s ≤ an−s ≤ · · · ≤ an, i.e. at least s + 1
vertices of G have degree at least n − s. Since dG(u) = s, we see that u
is non-adjacent to at least one of these s + 1 vertices, call it y. But now
dG(u) + dG(y) ≥ s+ (n− s) = n > n− 1 ≥ dG(u) + dG(v), contrary to the
maximality of dG(u) + dG(v). So, (b) holds.

Suppose now that (a) does not hold; we must show that (b) does not
hold either.7 Since (a) does not hold, there exists some index i < n

2 such that
ai ≤ i and an−i ≤ n− i− 1. Let G be the graph with vertex set {v1, . . . , vn},
with adjacency as follows:

• {vi+1, . . . , vn} is a clique;

• {v1, . . . , vi} is complete to {vn−i+1, . . . , vn};

• there are no other edges in G.

The graph G is represented below.

vi+1

vn−i

vn−i+1

vn

v1

vi

...

...

...

stable set clique

5Here, we are using the fact that v is non-adjacent to all vertices xi with i ∈ S.
6We are using the fact that a1 ≤ · · · ≤ an, and that G dominates a.
7So, we must exhibit an n-vertex graph that dominates a and is not Hamiltonian.
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Then

• dG(v1) = · · · = dG(vi) = i ≥ ai ≥ · · · ≥ ai;

• dG(vi+1) = · · · = dG(vn−i) = n− i− 1 ≥ an−i ≥ · · · ≥ ai+1;

• dG(vn−i+1) = · · · = dG(vn) = n− 1 ≥ an ≥ · · · ≥ an−i+1.

So, G dominates a. On the other hand, G \ {vn−i+1, . . . , vn} has i + 1
components, and so G is not 1-tough; so, by Proposition 1.2, G is not
Hamiltonian, and it follows that (b) does not hold.

3 Number of Hamiltonian cycles

Lemma 3.1. Let G be a graph in which all vertices are of odd degree. Then
every edge of G belongs to an even number of Hamiltonian cycles.8 In
particular, every edge of G that belongs to a Hamiltonian cycle, belongs to at
least two Hamiltonian cycles.

Proof. Let e = xy be an edge of G; we must show that e belongs to an even
number of Hamiltonian cycles of G.

A lollipop is a connected subgraph H of G such that V (H) = V (G),9

e ∈ E(H), and H satisfies one of the following:

(1) H is a cycle;

(2) dH(x) = 1, H has one vertex of degree three, and all other vertices of
H are of degree two.

Note that lollipops satisfying (1) are precisely the Hamiltonian cycles of G
that contain the edge e. On the other hand, in case (2), H consists of a
cycle, plus a path that has exactly one vertex in common with the cycle,
and furthermore, x is the endpoint of this path that does not belong to the
cycle. The two types of lollipop are represented below (the edge e = xy is in
blue).10

8It is possible that an edge of G does not belong to any Hamiltonian cycles of G, and
indeed, it is possible that G is not Hamiltonian: zero counts as an even number.

9So, H is a spanning subgraph of G.
10In case (2), it is possible that y is in fact the unique vertex of H of degree three.
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x

y

x

y

(1) (2)

e

e

If H is a lollipop that satisfies (1), then H has a unique tail, namely the
unique edge of H incident with x and distinct from e. On the other hand, if
H is a lollipop that satisfies (2), then H has two tails, namely, the two edges
of the unique cycle of H that are incident with the unique vertex of degree
three in H. (In the picture above the tails are in red.)

We now form an auxiliary graph L, as follows. The vertices of L are the
lollipops. Two lollipops, H1 and H2, are adjacent in L if and only if there
exist tails e1 of H1 and e2 of H2 such that H1 − e1 = H2 − e2.11

Suppose that H = x, y, u1, . . . , ut, z, x (t ≥ 0) is a lollipop satisfying (1),
i.e. H is a Hamiltonian cycle of G containing e. Then xz is the unique tail of
H, and the neighbors of H in L are precisely the graphs that can be obtained
from H − xz by adding an edge between z and a vertex in NG(z) \NH(z).
So, dL(H) = |NG(z) \NH(z)| = dG(z)− 2; since dG(z) is odd, so is dL(H).

Suppose now that H is a lollipop satisfying (2); let z, u1, . . . , ut, z (t ≥ 2)
be the unique cycle of H, where z is the unique vertex of degree three in H.
Then the lollipop H has two tails, namely zu1 and zut, and the neighbors of
H in L are precisely the graphs that an be obtained in one of the following
two ways as follows:

11For example, in the picture below, if Hi (for i ∈ {1, 2}) consists of the blue and black
edges, plus the red edge ei, then lollipops H1 and H2 are adjacent in L.

x

y

e1

e2

e
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• by starting with H − zu1, and then adding an edge between u1 and
NG(u1) \ {z, u2};

• by starting with H − zut, and then adding an edge between ut and
NG(u1) \ {z, ut−1}.

So, dL(H) = (dG(u1)− 2) + (dG(ut)− 2) = dG(u1) + dG(ut)− 4. Since all
vertices of G have odd degree, we deduce that dL(H) is even.

We have now shown that the odd-degree vertices of our auxiliary graph
L are precisely the Hamiltonian cycles of H that contain the edge e. But
clearly, L has an even number of odd-degree vertices,12 and so the number
of Hamiltonian cycles of G containing e is even.

Theorem 3.2. Let G be a Hamiltonian graph, all of whose vertices are of
odd degree. Then G has at least three Hamiltonian cycles.

Proof. Let C1 be a Hamiltonian cycle of G, and let e be some edge of C1.
Then by Lemma 3.1, there exists a Hamiltonian cycle C2 6= C1 that also
contains the edge e. Since C1, C2 are distinct Hamiltonian cycles, we see that
there exists an edge e1 ∈ E(C1) \ E(C2); but then Lemma 3.1 guarantees
that there exists a Hamiltonian cycle C3 6= C1 that contains e1. Since
e1 ∈ E(C3) \ E(C2), we see that C3 6= C2. But now C1, C2, C3 are pairwise
distinct Hamiltonian cycles of G.

We note that the bound from Theorem 3.2 is best possible: indeed, K4

has precisely three Hamiltonian cycles.

12This follows from the fact that the sum of degrees in any graph is even (indeed, it is
equal to twice the number of edges).
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