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This lecture consists of three parts:

1 triangle-free graphs of arbitrarily large chromatic number;
2 a very brief introduction to perfect graphs;
3 chordal graphs.



This lecture consists of three parts:
1 triangle-free graphs of arbitrarily large chromatic number;

2 a very brief introduction to perfect graphs;
3 chordal graphs.



This lecture consists of three parts:
1 triangle-free graphs of arbitrarily large chromatic number;
2 a very brief introduction to perfect graphs;

3 chordal graphs.



This lecture consists of three parts:
1 triangle-free graphs of arbitrarily large chromatic number;
2 a very brief introduction to perfect graphs;
3 chordal graphs.



Part I: Triangle-free graphs of arbitrarily large chromatic number

Every graph G satisfies ω(G) ≤ χ(G).
So, the simplest way to construct a graph of high chromatic
number is to construct a graph that has a large clique number.
However, as we shall see, it is possible to construct graphs of
small clique number and large chromatic number.

Definition
A triangle in a graph G is a clique of size three. A graph is
triangle-free if it contains no triangles.

So, a graph is triangle-free if and only if its clique number is
at most two.
Our goal is to construct a family of triangle-free graphs of
arbitrarily large chromatic number.
There are several known constructions; here, we give the one
due to Mycielski (1955).
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Mycielski constructed a family of graphs {Mk}∞k=2 as in the
picture below (formal definition: Lecture Notes).

M2 M3 M4

v1 v2

u1 u2

w

v1 v2

v3v5

v4

u1 u2

u3
u4

u5

w



Lemma 1.1
For all integers k ≥ 2, Mk satisfies ω(Mk) = 2 and χ(Mk) = k.

Proof (outline).

We proceed by induction on k. The lemma is
clearly true for k = 2. Next, fix an integer k ≥ 2, and assume
inductively that ω(Mk) = 2 and χ(Mk) = k. WTS ω(Mk+1) = 2
and χ(Mk+1) = k + 1.
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ω(Mk+1) = 2: easy. (Details: Lecture Notes.)
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Lemma 1.1
For all integers k ≥ 2, Mk satisfies ω(Mk) = 2 and χ(Mk) = k.

Proof (outline, continued). WTS χ(Mk+1) = k + 1.
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To see that χ(Mk+1) ≤ k + 1, properly color Mk with colors
1, . . . , k (possible by the induction hypothesis), then color each ui
with the same color as vi , and finally color w with color k + 1.

Suppose now χ(Mk+1) ≤ k, and fix a proper coloring
c : V (Mk+1)→ {1, . . . , k} of Mk+1. We will construct a proper
coloring of Mk with only k − 1 colors, contrary to the induction
hypothesis.
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Proof (outline, continued). WMA c(w) = k. Then no ui receives
color k.
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Let Vk := {vi | c(vi ) = k}. Then Vk is a stable set. Now recolor
each vi ∈ Vk with color c(ui ). This produces a coloring of Mk that
uses only k − 1 colors, a contradiction.
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Lemma 1.1
For all integers k ≥ 2, Mk satisfies ω(Mk) = 2 and χ(Mk) = k.

Theorem 1.2
There exist triangle-free graphs of arbitrarily large chromatic
number. More precisely, for every positive integer k, there exists a
graph G such that ω(G) = 2 and χ(G) ≥ k.

Proof. This follows from Lemma 1.2.

Erdős (1961) applied the probabilistic method to demonstrate
the existence of graphs with arbitrarily high girth and
chromatic number.

The girth of a graph G that has at least one cycle is the length
of the shortest cycle in G .

Graphs of high girth are triangle-free, and so this result of
Erdős is stronger than Theorem 1.2.
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Erdős (1961) applied the probabilistic method to demonstrate
the existence of graphs with arbitrarily high girth and
chromatic number.

The girth of a graph G that has at least one cycle is the length
of the shortest cycle in G .

Graphs of high girth are triangle-free, and so this result of
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Part II: A very brief introduction to perfect graphs
We saw that there exist graphs of small clique number, but
large chromatic number.

At the other extreme, we might consider graphs for which
χ = ω.
This, however, turns out not to be a very interesting question.
Indeed, suppose H is any graph at all, and let G be the
disjoint union of H and Kχ(H).
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H =M4 Kχ(H) = K4

Then χ(G) = ω(G), but we can say very little about the
structure of G (since G was built starting from an arbitrary
graph H).
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Definition
A graph is perfect if all its induced subgraphs H satisfy
χ(H) = ω(H).

Since every graph is an induced subgraph of itself, we see that
every perfect graph G satisfies χ(G) = ω(G).
Importantly, though, in a perfect graph, χ = ω should hold
not only for the graph itself, but also for all its induced
subgraphs.
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Part III: Chordal graphs
Definition
A graph is chordal (or triangulated) if every cycle of length strictly
greater than three has a chord (a chord of a cycle is an edge
joining two nonconsecutive vertices of the cycle).

In other words, a graph is chordal if it contains no induced
cycles of length at least four.

not chordal chordal



not chordal chordal

Note that all induced subgraphs of a chordal graph are
chordal.

Chordal graphs were one of the first classes of graphs to be
recognized as perfect; the study of chordal graphs can be seen
as the beginning of the theory of perfect graphs.
As we shall see, there are efficient algorithms for recognizing
chordal graphs and for solving the vertex coloring and related
optimization problems on chordal graphs.
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Definition
A cutset of a graph is a set of vertices whose deletion yields a
disconnected graph. More precisely, a cutset of a graph G is a
(possibly empty) set S $ V (G) such that G \ S is disconnected. A
clique-cutset is a cutset that is a clique, that is, a clique-cutset of
a graph G is a clique C $ V (G) of G such that G \ C is
disconnected.

A 6= ∅ C B 6= ∅

G

clique cutset



Lemma 3.1
Let G be a chordal graph that is not complete, let x and y be
non-adjacent vertices of G , and let S be a minimal cutset of G
separating x and y . Then S is a clique of G .

Proof (outline).

Suppose that S is not a clique, and let u and v be
two nonadjacent vertices of S. Let Cx be the component of G \ S
that contains x , and let Cy be the component of G \ S that
contains y .

u

v

SCx Cy

Px

Py

Now Px ∪ Py is an induced cycle of length at least four in G , a
contradiction.
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separating x and y . Then S is a clique of G .

Theorem 3.2
If G is a chordal graph, then either G is a complete graph or G
admits a clique-cutset.

Proof. Let G be a chordal graph that is not complete. Let x and y
be non-adjacent vertices of G , and let S be a minimal cutset of G
separating x from y . By Lemma 3.1, S is a clique. It follows that
S is a clique-cutset of G .
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Definition
A graph is perfect if all its induced subgraphs H satisfy
χ(H) = ω(H).

Corollary 3.3
Chordal graphs are perfect.

Proof.

Since every induced subgraph of a chordal graph is chordal,
it is enough to show that every chordal graph G satisfies
χ(G) = ω(G). So, fix a chordal graph G , and assume inductively
that all chordal graphs G ′ on fewer than |V (G)| vertices satisfy
χ(G ′) = ω(G ′). WTS χ(G) = ω(G). If G is a complete graph,
then it is clear that χ(G) = ω(G). So, assume that G is not
complete. Then by Theorem 3.2, G admits a clique-cutset, call it
C .
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Chordal graphs are perfect.

Proof (continued).

Let A1, . . . ,At (t ≥ 2) be the vertex sets of the
components of G \ C . For all i ∈ {1, . . . , t}, let Gi := G [Ai ∪ C ].
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Note that every clique of G is in fact a clique of one of G1, . . . ,Gt ,
and it follows that ω(G) = max{ω(G1), . . . , ω(Gt)}. On the other
hand, by Lemma 2.1 from Lecture Notes 4, we have that
χ(G) = max{χ(G1), . . . , χ(Gt)}. Finally, for all i ∈ {1, . . . , t}, the
induction hypothesis guarantees that χ(Gi ) = ω(Gi ).
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Proof (continued).
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So,
χ(G) = max{χ(G1), . . . , χ(Gt)}

= max{ω(G1), . . . , ω(Gt)}
= ω(G),

which is what we needed.



Definition
A vertex x of a graph G is simplicial if NG(x) is a clique of G .

Theorem 3.4 [Dirac, 1961]
Every chordal graph has a simplicial vertex. Moreover, every
chordal graph that is not complete has (at least) two non-adjacent
simplicial vertices.

Proof (outline). By induction on the number of vertices. Obviously
true for complete graphs. If G is chordal, but not complete, then
by induction hypothesis, G [A ∪ C ] has a simplicial vertex a ∈ A,
and G [B ∪ C ] has a simplicial vertex b ∈ B. Now a and b are
non-adjacent simplicial vertices of G .
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Definition
A vertex x of a graph G is simplicial if NG(x) is a clique of G .

Definition
A simplicial elimination ordering (sometimes also called a perfect
elimination ordering) of a graph G is an ordering v1, . . . , vn of its
vertices such that for all i ∈ {1, . . . , n}, vi is simplicial in the graph
G [vi , . . . , vn].

For instance, v1, . . . , v6 is a simplicial elimination ordering of
the graph G in the picture below.

v1
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v3

v4

v5

v6
G

Indeed (next slide).
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G[v1, v2, v3, v4, v5, v6] G[v2, v3, v4, v5, v6]

G[v3, v4, v5, v6] G[v4, v5, v6] G[v5, v6] G[v6]



Theorem 3.5 [Fulkerson and Gross, 1965]
For a graph G , the following statements are equivalent:

(i) G is chordal;
(ii) G has a simplicial elimination ordering;

(iii) for all non-adjacent vertices x and y of G , every minimal
cutset of G separating x from y is a clique.

Proof (outline).

(i) ⇒ (iii): This follows from Lemma 3.1.
(iii) ⇒ (i): If (i) is false, then (iii) is false. (Details: Lecture
Notes.)
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Theorem 3.5 [Fulkerson and Gross, 1965]
For a graph G , the following statements are equivalent:

(i) G is chordal;
(ii) G has a simplicial elimination ordering;

(iii) for all non-adjacent vertices x and y of G , every minimal
cutset of G separating x from y is a clique.

Proof (outline, continued). (i) ⇒ (ii):

We proceed by induction
on the number of vertices. Clearly, the claim holds for one-vertex
graphs. Now, fix a positive integer n, and assume that the claim
holds for all chordal graphs on n vertices. Let H be a chordal
graph on n + 1 vertices. By Theorem 3.4, H has at least one
simplicial vertex, call it x0. Then H \ x0 is a chordal graph on n
vertices, and so by the induction hypothesis, H \ x0 has a simplicial
elimination ordering, say x1, . . . , xn. But now x0, x1, . . . , xn is a
simplicial elimination ordering of H.
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(iii) for all non-adjacent vertices x and y of G , every minimal
cutset of G separating x from y is a clique.

Proof (outline, continued). (ii) ⇒ (i):

Suppose that v1, . . . , vn is
a simplicial elimination ordering of G ; we claim that G is chordal.
Let C be an induced cycle of G . Let x = vi be the lowest-indexed
vertex that belongs C , and let y , z be the two neighbors of x in C .

x = vi

y

z
C

Then yz ∈ E (G), and so C is a triangle. Thus, G is chordal.
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(i) G is chordal;
(ii) G has a simplicial elimination ordering;

(iii) for all non-adjacent vertices x and y of G , every minimal
cutset of G separating x from y is a clique.

Note that Theorem 3.5 gives an O(n4) time recognition
algorithm for chordal graphs (we repeatedly search for
simplicial vertices).
In fact, chordal graphs can be recognized in O(n + m) time
using the so called Lexicographic breadth-first-search
(LexBFS) due to Rose, Tarjan, and Lueker (1976), but we
omit the details.
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Our next goal is to construct efficient algorithms solving the
Graph Coloring, Maximum Clique, Maximum
Stable Set, and Minimum Clique Cover problems on
chordal graphs.

For the rest of this lecture, G is a chordal graph on n vertices,
and v1, . . . , vn is a simplicial elimination ordering on G .
For each i ∈ {1, . . . , n}, set Xi := NG [vi ] ∩ {vi , . . . , vn}.

So, Xi is the closed neighborhood of vi in the graph
G [vi , . . . , vn].
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Lemma 3.6
X1, . . . ,Xn are all cliques of G . Furthermore, for every maximal
clique C of G , there exists some i ∈ {1, . . . , n} such that C = Xi .a

aHowever, not all Xi ’s need be maximal cliques.

Proof.

The fact that the sets Xi are cliques follows immediately
from the definition of a simplicial elimination ordering and the
construction of the sets Xi . Now, let C be a maximal clique of G .
Let i ∈ {1, . . . , n} be minimal with vi ∈ C . Then clearly, C ⊆ Xi .
Since C is a maximal clique, and Xi is a clique, it follows that
C = Xi .

Theorem 3.7 [Fulkerson and Gross, 1965]
G has at most n maximal cliques. Furthermore, equality holds if
and only if G is edgeless.

Proof. This follows from Lemma 3.6 (Details: Lecture Notes.)
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Definition
A clique cover of a graph H is a partition of V (H) into cliques.
The clique cover number of H, denoted by χ(H), is the smallest
size of a clique cover of H; a minimum clique cover of H is a clique
cover of size precisely χ(H).

Since proper colorings correspond to partitions of the vertex
set into stable sets (color classes), it is clear that every graph
H satisfies χ(H) = χ(H) and α(H) ≤ χ(H).
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We define a (finite) sequence i1, . . . , it as follows.

First, let i1 := 1.
Once i1, . . . , ij−1 have been defined, we either terminate or
extend the sequence, as follows.
If V (G) = Xi1 ∪ · · · ∪ Xij−1 , then we set t = j − 1, and we
terminate the sequence; otherwise, we let ij ∈ {1, . . . , n} be
the smallest index such that vij /∈ Xi1 ∪ · · · ∪ Xij−1 .
Set Y1 := Xi1 , and for all j ∈ {2, . . . , t}, set
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Lemma 3.9
G can be optimally colored (i.e. properly colored using precisely
χ(G) colors) by applying the greedy coloring algorithm to G with
the ordering vn, . . . , v1.a

aSo, we are using the reverse of our simplicial elimination ordering.

Proof.

Clearly, the greedy coloring produces a proper coloring of G .
If we apply the greedy coloring algorithm to G with the ordering
vn, . . . , v1, then when we reach a vertex vi , the neighbors of vi that
have already been colored are precisely those from the clique
Xi \ {vi}, and consequently, at most ω(G)− 1 neighbors of vi have
already been colored. Thus, the greedy algorithm applied to G
with this ordering uses no more than ω(G) colors. Since every
graph H satisfies χ(H) ≥ ω(H), it follows that the greedy coloring
algorithm used precisely ω(G) colors, and that the coloring that it
produced is optimal.
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Lemma 3.6
X1, . . . ,Xn are all cliques of G . Furthermore, for every maximal
clique C of G , there exists some i ∈ {1, . . . , n} such that C = Xi .

Theorem 3.8 [Gavril, 1972]
The set {vi1 , . . . , vit} is a maximum stable set of G , and
(Y1, . . . ,Yt) is a minimum clique cover of G .

Lemma 3.9
G can be optimally colored (i.e. properly colored using precisely
χ(G) colors) by applying the greedy coloring algorithm to G with
the ordering vn, . . . , v1.

Clearly, Lemma 3.6, Theorem 3.8, and Lemma 3.9 yield
polynomial time algorithms for finding a maximum clique, a
maximum stable set, a minimum clique-cover, and an optimal
coloring of a chordal graph.



Lemma 3.6
X1, . . . ,Xn are all cliques of G . Furthermore, for every maximal
clique C of G , there exists some i ∈ {1, . . . , n} such that C = Xi .

Theorem 3.8 [Gavril, 1972]
The set {vi1 , . . . , vit} is a maximum stable set of G , and
(Y1, . . . ,Yt) is a minimum clique cover of G .

Lemma 3.9
G can be optimally colored (i.e. properly colored using precisely
χ(G) colors) by applying the greedy coloring algorithm to G with
the ordering vn, . . . , v1.

Clearly, Lemma 3.6, Theorem 3.8, and Lemma 3.9 yield
polynomial time algorithms for finding a maximum clique, a
maximum stable set, a minimum clique-cover, and an optimal
coloring of a chordal graph.


