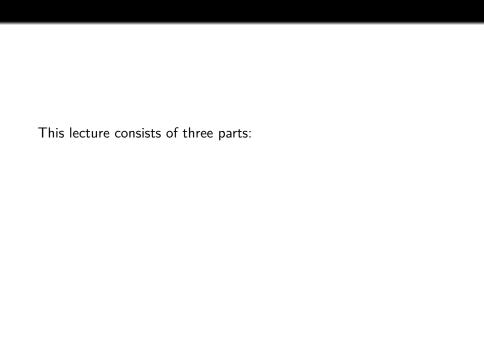
NDMI012: Combinatorics and Graph Theory 2

Lecture #6

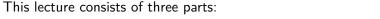
Chordal graphs

Irena Penev

April 7, 2021



- This lecture consists of three parts:

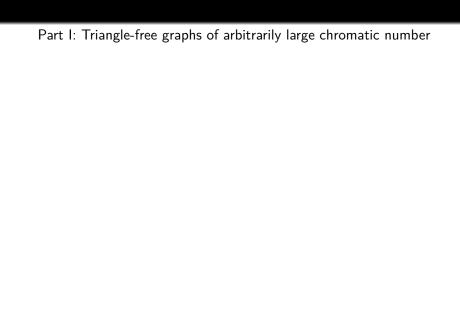


2 a very brief introduction to perfect graphs;

- 1 triangle-free graphs of arbitrarily large chromatic number;

This lecture consists of three parts:

- triangle-free graphs of arbitrarily large chromatic number;
 - a very brief introduction to perfect graphs;
- chordal graphs.



• Every graph G satisfies $\omega(G) \leq \chi(G)$.

- Every graph G satisfies $\omega(G) \leq \chi(G)$.
- So, the simplest way to construct a graph of high chromatic number is to construct a graph that has a large clique number.

- Every graph G satisfies $\omega(G) \leq \chi(G)$.
- So, the simplest way to construct a graph of high chromatic number is to construct a graph that has a large clique number.
- However, as we shall see, it is possible to construct graphs of small clique number and large chromatic number.

- Every graph G satisfies $\omega(G) \leq \chi(G)$.
- So, the simplest way to construct a graph of high chromatic number is to construct a graph that has a large clique number.
- However, as we shall see, it is possible to construct graphs of small clique number and large chromatic number.

Definition

A *triangle* in a graph G is a clique of size three. A graph is *triangle-free* if it contains no triangles.

 So, a graph is triangle-free if and only if its clique number is at most two.

- Every graph G satisfies $\omega(G) \leq \chi(G)$.
- So, the simplest way to construct a graph of high chromatic number is to construct a graph that has a large clique number.
- However, as we shall see, it is possible to construct graphs of small clique number and large chromatic number.

Definition

A triangle in a graph G is a clique of size three. A graph is triangle-free if it contains no triangles.

- So, a graph is triangle-free if and only if its clique number is at most two.
- Our goal is to construct a family of triangle-free graphs of arbitrarily large chromatic number.

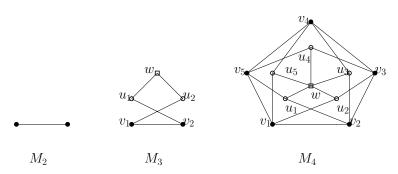
- Every graph G satisfies $\omega(G) \leq \chi(G)$.
- So, the simplest way to construct a graph of high chromatic number is to construct a graph that has a large clique number.
- However, as we shall see, it is possible to construct graphs of small clique number and large chromatic number.

Definition

A *triangle* in a graph G is a clique of size three. A graph is *triangle-free* if it contains no triangles.

- So, a graph is triangle-free if and only if its clique number is at most two.
- Our goal is to construct a family of triangle-free graphs of arbitrarily large chromatic number.
- There are several known constructions; here, we give the one due to Mycielski (1955).

• Mycielski constructed a family of graphs $\{M_k\}_{k=2}^{\infty}$ as in the picture below (formal definition: Lecture Notes).



For all integers $k \geq 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Proof (outline).

For all integers $k \geq 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

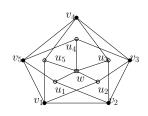
Proof (outline). We proceed by induction on k.

For all integers $k \geq 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Proof (outline). We proceed by induction on k. The lemma is clearly true for k=2.

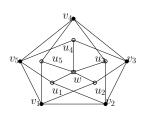
For all integers $k \ge 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Proof (outline). We proceed by induction on k. The lemma is clearly true for k=2. Next, fix an integer $k\geq 2$, and assume inductively that $\omega(M_k)=2$ and $\chi(M_k)=k$. WTS $\omega(M_{k+1})=2$ and $\chi(M_{k+1})=k+1$.



For all integers $k \ge 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

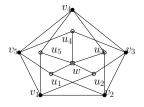
Proof (outline). We proceed by induction on k. The lemma is clearly true for k=2. Next, fix an integer $k\geq 2$, and assume inductively that $\omega(M_k)=2$ and $\chi(M_k)=k$. WTS $\omega(M_{k+1})=2$ and $\chi(M_{k+1})=k+1$.



 $\omega(M_{k+1}) = 2$: easy. (Details: Lecture Notes.)

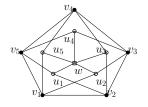
For all integers $k \geq 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Proof (outline, continued). WTS $\chi(M_{k+1}) = k + 1$.



For all integers $k \ge 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

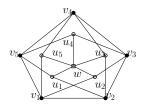
Proof (outline, continued). WTS $\chi(M_{k+1}) = k + 1$.



To see that $\chi(M_{k+1}) \leq k+1$, properly color M_k with colors $1, \ldots, k$ (possible by the induction hypothesis), then color each u_i with the same color as v_i , and finally color w with color k+1.

For all integers $k \geq 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Proof (outline, continued). WTS $\chi(M_{k+1}) = k + 1$.

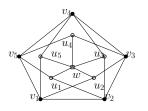


To see that $\chi(M_{k+1}) \leq k+1$, properly color M_k with colors $1, \ldots, k$ (possible by the induction hypothesis), then color each u_i with the same color as v_i , and finally color w with color k+1.

Suppose now $\chi(M_{k+1}) \leq k$, and fix a proper coloring $c: V(M_{k+1}) \to \{1, \dots, k\}$ of M_{k+1} .

For all integers $k \ge 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Proof (outline, continued). WTS $\chi(M_{k+1}) = k + 1$.

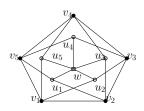


To see that $\chi(M_{k+1}) \leq k+1$, properly color M_k with colors $1, \ldots, k$ (possible by the induction hypothesis), then color each u_i with the same color as v_i , and finally color w with color k+1.

Suppose now $\chi(M_{k+1}) \leq k$, and fix a proper coloring $c: V(M_{k+1}) \to \{1,\ldots,k\}$ of M_{k+1} . We will construct a proper coloring of M_k with only k-1 colors, contrary to the induction hypothesis.

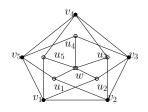
For all integers $k \ge 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Proof (outline, continued). WMA c(w) = k. Then no u_i receives color k.



For all integers $k \ge 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

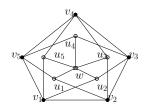
Proof (outline, continued). WMA c(w) = k. Then no u_i receives color k.



Let $V_k := \{v_i \mid c(v_i) = k\}$. Then V_k is a stable set.

For all integers $k \geq 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

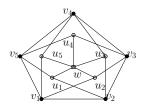
Proof (outline, continued). WMA c(w) = k. Then no u_i receives color k.



Let $V_k := \{v_i \mid c(v_i) = k\}$. Then V_k is a stable set. Now recolor each $v_i \in V_k$ with color $c(u_i)$.

For all integers $k \ge 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Proof (outline, continued). WMA c(w) = k. Then no u_i receives color k.



Let $V_k := \{v_i \mid c(v_i) = k\}$. Then V_k is a stable set. Now recolor each $v_i \in V_k$ with color $c(u_i)$. This produces a coloring of M_k that uses only k-1 colors, a contradiction.

For all integers $k \geq 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

For all integers $k \geq 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Theorem 1.2

There exist triangle-free graphs of arbitrarily large chromatic number. More precisely, for every positive integer k, there exists a graph G such that $\omega(G)=2$ and $\chi(G)\geq k$.

Proof. This follows from Lemma 1.2.

For all integers $k \geq 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Theorem 1.2

There exist triangle-free graphs of arbitrarily large chromatic number. More precisely, for every positive integer k, there exists a graph G such that $\omega(G)=2$ and $\chi(G)\geq k$.

Proof. This follows from Lemma 1.2.

- Erdős (1961) applied the probabilistic method to demonstrate the existence of graphs with arbitrarily high girth and chromatic number.
 - The *girth* of a graph *G* that has at least one cycle is the length of the shortest cycle in *G*.

For all integers $k \ge 2$, M_k satisfies $\omega(M_k) = 2$ and $\chi(M_k) = k$.

Theorem 1.2

There exist triangle-free graphs of arbitrarily large chromatic number. More precisely, for every positive integer k, there exists a graph G such that $\omega(G) = 2$ and $\chi(G) \geq k$.

Proof. This follows from Lemma 1.2.

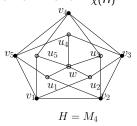
- Erdős (1961) applied the probabilistic method to demonstrate the existence of graphs with arbitrarily high girth and chromatic number.
 - The *girth* of a graph *G* that has at least one cycle is the length of the shortest cycle in *G*.
- Graphs of high girth are triangle-free, and so this result of Erdős is stronger than Theorem 1.2.

• We saw that there exist graphs of small clique number, but large chromatic number.

- We saw that there exist graphs of small clique number, but large chromatic number.
- At the other extreme, we might consider graphs for which $\chi = \omega$.

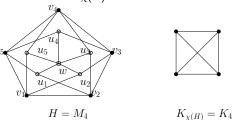
- We saw that there exist graphs of small clique number, but large chromatic number.
- At the other extreme, we might consider graphs for which $\chi=\omega.$
- This, however, turns out not to be a very interesting question.

- We saw that there exist graphs of small clique number, but large chromatic number.
- At the other extreme, we might consider graphs for which $\chi=\omega.$
- This, however, turns out not to be a very interesting question.
- Indeed, suppose H is any graph at all, and let G be the disjoint union of H and $K_{\gamma(H)}$.



 $K_{\gamma(H)} = K_4$

- We saw that there exist graphs of small clique number, but large chromatic number.
- At the other extreme, we might consider graphs for which $\chi=\omega.$
- This, however, turns out not to be a very interesting question.
- Indeed, suppose H is any graph at all, and let G be the disjoint union of H and $K_{\gamma(H)}$.



• Then $\chi(G) = \omega(G)$, but we can say very little about the structure of G (since G was built starting from an arbitrary graph H).

Definition

A graph is *perfect* if all its induced subgraphs H satisfy $\chi(H) = \omega(H)$.

A graph is *perfect* if all its induced subgraphs H satisfy $\chi(H) = \omega(H)$.

• Since every graph is an induced subgraph of itself, we see that every perfect graph G satisfies $\chi(G) = \omega(G)$.

A graph is *perfect* if all its induced subgraphs H satisfy $\chi(H) = \omega(H)$.

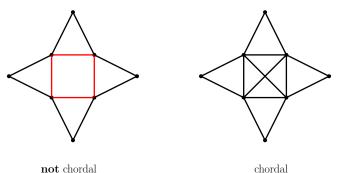
- Since every graph is an induced subgraph of itself, we see that every perfect graph G satisfies $\chi(G) = \omega(G)$.
- Importantly, though, in a perfect graph, $\chi=\omega$ should hold not only for the graph itself, but also for all its induced subgraphs.

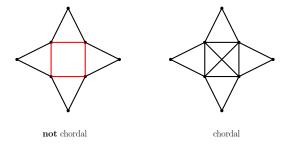
Part III: Chordal graphs

Definition

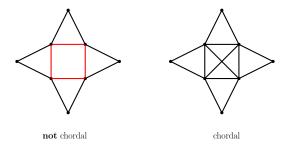
A graph is *chordal* (or *triangulated*) if every cycle of length strictly greater than three has a chord (a *chord* of a cycle is an edge joining two nonconsecutive vertices of the cycle).

• In other words, a graph is *chordal* if it contains no induced cycles of length at least four.

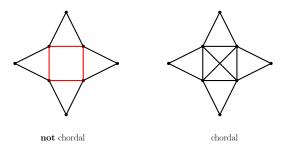




 Note that all induced subgraphs of a chordal graph are chordal.

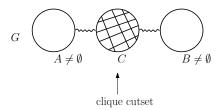


- Note that all induced subgraphs of a chordal graph are chordal.
- Chordal graphs were one of the first classes of graphs to be recognized as perfect; the study of chordal graphs can be seen as the beginning of the theory of perfect graphs.



- Note that all induced subgraphs of a chordal graph are chordal.
- Chordal graphs were one of the first classes of graphs to be recognized as perfect; the study of chordal graphs can be seen as the beginning of the theory of perfect graphs.
- As we shall see, there are efficient algorithms for recognizing chordal graphs and for solving the vertex coloring and related optimization problems on chordal graphs.

A *cutset* of a graph is a set of vertices whose deletion yields a disconnected graph. More precisely, a *cutset* of a graph G is a (possibly empty) set $S \subsetneq V(G)$ such that $G \setminus S$ is disconnected. A *clique-cutset* is a cutset that is a clique, that is, a *clique-cutset* of a graph G is a clique $C \subsetneq V(G)$ of G such that $G \setminus C$ is disconnected.

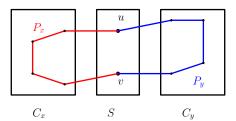


Let G be a chordal graph that is not complete, let x and y be non-adjacent vertices of G, and let S be a minimal cutset of G separating x and y. Then S is a clique of G.

Proof (outline).

Let G be a chordal graph that is not complete, let x and y be non-adjacent vertices of G, and let S be a minimal cutset of G separating x and y. Then S is a clique of G.

Proof (outline). Suppose that S is not a clique, and let u and v be two nonadjacent vertices of S. Let C_x be the component of $G \setminus S$ that contains x, and let C_y be the component of $G \setminus S$ that contains y.



Now $P_x \cup P_y$ is an induced cycle of length at least four in G, a contradiction.

Let G be a chordal graph that is not complete, let x and y be non-adjacent vertices of G, and let S be a minimal cutset of G separating x and y. Then S is a clique of G.

Let G be a chordal graph that is not complete, let x and y be non-adjacent vertices of G, and let S be a minimal cutset of G separating x and y. Then S is a clique of G.

Theorem 3.2

If G is a chordal graph, then either G is a complete graph or G admits a clique-cutset.

Proof.

Let G be a chordal graph that is not complete, let x and y be non-adjacent vertices of G, and let S be a minimal cutset of G separating x and y. Then S is a clique of G.

Theorem 3.2

If G is a chordal graph, then either G is a complete graph or G admits a clique-cutset.

Proof. Let G be a chordal graph that is not complete. Let X and Y be non-adjacent vertices of G, and let S be a minimal cutset of G separating X from Y. By Lemma 3.1, S is a clique. It follows that S is a clique-cutset of G.

A graph is *perfect* if all its induced subgraphs H satisfy $\chi(H) = \omega(H)$.

Corollary 3.3

Chordal graphs are perfect.

Proof.

A graph is *perfect* if all its induced subgraphs H satisfy $\chi(H) = \omega(H)$.

Corollary 3.3

Chordal graphs are perfect.

Proof. Since every induced subgraph of a chordal graph is chordal, it is enough to show that every chordal graph G satisfies $\chi(G)=\omega(G)$.

A graph is *perfect* if all its induced subgraphs H satisfy $\chi(H) = \omega(H)$.

Corollary 3.3

Chordal graphs are perfect.

Proof. Since every induced subgraph of a chordal graph is chordal, it is enough to show that every chordal graph G satisfies $\chi(G) = \omega(G)$. So, fix a chordal graph G, and assume inductively that all chordal graphs G' on fewer than |V(G)| vertices satisfy $\chi(G') = \omega(G')$. WTS $\chi(G) = \omega(G)$.

A graph is *perfect* if all its induced subgraphs H satisfy $\chi(H) = \omega(H)$.

Corollary 3.3

Chordal graphs are perfect.

Proof. Since every induced subgraph of a chordal graph is chordal, it is enough to show that every chordal graph G satisfies $\chi(G) = \omega(G)$. So, fix a chordal graph G, and assume inductively that all chordal graphs G' on fewer than |V(G)| vertices satisfy $\chi(G') = \omega(G')$. WTS $\chi(G) = \omega(G)$. If G is a complete graph, then it is clear that $\chi(G) = \omega(G)$.

A graph is *perfect* if all its induced subgraphs H satisfy $\chi(H) = \omega(H)$.

Corollary 3.3

Chordal graphs are perfect.

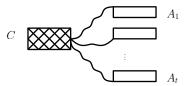
Proof. Since every induced subgraph of a chordal graph is chordal, it is enough to show that every chordal graph G satisfies $\chi(G) = \omega(G)$. So, fix a chordal graph G, and assume inductively that all chordal graphs G' on fewer than |V(G)| vertices satisfy $\chi(G') = \omega(G')$. WTS $\chi(G) = \omega(G)$. If G is a complete graph, then it is clear that $\chi(G) = \omega(G)$. So, assume that G is not complete. Then by Theorem 3.2, G admits a clique-cutset, call it G.

Chordal graphs are perfect.

Proof (continued).

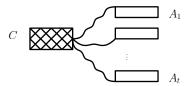
Chordal graphs are perfect.

Proof (continued). Let A_1, \ldots, A_t $(t \ge 2)$ be the vertex sets of the components of $G \setminus C$. For all $i \in \{1, \ldots, t\}$, let $G_i := G[A_i \cup C]$.



Chordal graphs are perfect.

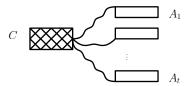
Proof (continued). Let A_1, \ldots, A_t $(t \ge 2)$ be the vertex sets of the components of $G \setminus C$. For all $i \in \{1, \ldots, t\}$, let $G_i := G[A_i \cup C]$.



Note that every clique of G is in fact a clique of one of G_1, \ldots, G_t , and it follows that $\omega(G) = \max\{\omega(G_1), \ldots, \omega(G_t)\}$.

Chordal graphs are perfect.

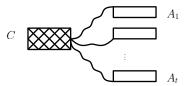
Proof (continued). Let A_1, \ldots, A_t $(t \ge 2)$ be the vertex sets of the components of $G \setminus C$. For all $i \in \{1, \ldots, t\}$, let $G_i := G[A_i \cup C]$.



Note that every clique of G is in fact a clique of one of G_1, \ldots, G_t , and it follows that $\omega(G) = \max\{\omega(G_1), \ldots, \omega(G_t)\}$. On the other hand, by Lemma 2.1 from Lecture Notes 4, we have that $\chi(G) = \max\{\chi(G_1), \ldots, \chi(G_t)\}$.

Chordal graphs are perfect.

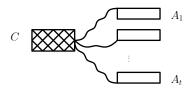
Proof (continued). Let A_1, \ldots, A_t $(t \ge 2)$ be the vertex sets of the components of $G \setminus C$. For all $i \in \{1, \ldots, t\}$, let $G_i := G[A_i \cup C]$.



Note that every clique of G is in fact a clique of one of G_1,\ldots,G_t , and it follows that $\omega(G)=\max\{\omega(G_1),\ldots,\omega(G_t)\}$. On the other hand, by Lemma 2.1 from Lecture Notes 4, we have that $\chi(G)=\max\{\chi(G_1),\ldots,\chi(G_t)\}$. Finally, for all $i\in\{1,\ldots,t\}$, the induction hypothesis guarantees that $\chi(G_i)=\omega(G_i)$.

Chordal graphs are perfect.

Proof (continued).



So,

$$\chi(G) = \max\{\chi(G_1), \dots, \chi(G_t)\}$$

$$= \max\{\omega(G_1), \dots, \omega(G_t)\}$$

$$= \omega(G),$$

which is what we needed.

A vertex x of a graph G is simplicial if $N_G(x)$ is a clique of G.

A vertex x of a graph G is simplicial if $N_G(x)$ is a clique of G.

Theorem 3.4 [Dirac, 1961]

Every chordal graph has a simplicial vertex. Moreover, every chordal graph that is not complete has (at least) two non-adjacent simplicial vertices.

Proof (outline).

A vertex x of a graph G is simplicial if $N_G(x)$ is a clique of G.

Theorem 3.4 [Dirac, 1961]

Every chordal graph has a simplicial vertex. Moreover, every chordal graph that is not complete has (at least) two non-adjacent simplicial vertices.

Proof (outline). By induction on the number of vertices.

A vertex x of a graph G is simplicial if $N_G(x)$ is a clique of G.

Theorem 3.4 [Dirac, 1961]

Every chordal graph has a simplicial vertex. Moreover, every chordal graph that is not complete has (at least) two non-adjacent simplicial vertices.

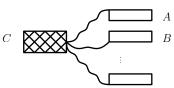
Proof (outline). By induction on the number of vertices. Obviously true for complete graphs.

A vertex x of a graph G is simplicial if $N_G(x)$ is a clique of G.

Theorem 3.4 [Dirac, 1961]

Every chordal graph has a simplicial vertex. Moreover, every chordal graph that is not complete has (at least) two non-adjacent simplicial vertices.

Proof (outline). By induction on the number of vertices. Obviously true for complete graphs. If G is chordal, but not complete, then by induction hypothesis, $G[A \cup C]$ has a simplicial vertex $a \in A$, and $G[B \cup C]$ has a simplicial vertex $b \in B$. Now a and b are non-adjacent simplicial vertices of G.



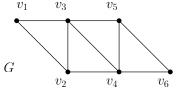
A vertex x of a graph G is simplicial if $N_G(x)$ is a clique of G.

A vertex x of a graph G is simplicial if $N_G(x)$ is a clique of G.

Definition

A simplicial elimination ordering (sometimes also called a perfect elimination ordering) of a graph G is an ordering v_1, \ldots, v_n of its vertices such that for all $i \in \{1, \ldots, n\}$, v_i is simplicial in the graph $G[v_i, \ldots, v_n]$.

• For instance, v_1, \ldots, v_6 is a simplicial elimination ordering of the graph G in the picture below.

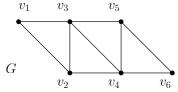


A vertex x of a graph G is simplicial if $N_G(x)$ is a clique of G.

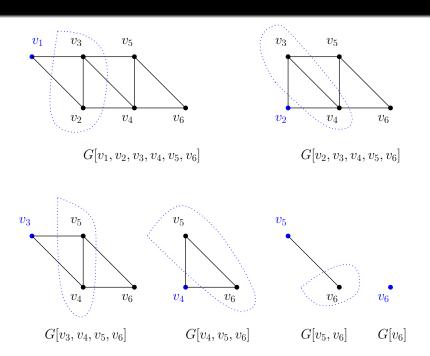
Definition

A simplicial elimination ordering (sometimes also called a perfect elimination ordering) of a graph G is an ordering v_1, \ldots, v_n of its vertices such that for all $i \in \{1, \ldots, n\}$, v_i is simplicial in the graph $G[v_i, \ldots, v_n]$.

• For instance, v_1, \ldots, v_6 is a simplicial elimination ordering of the graph G in the picture below.



• Indeed (next slide).



For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline).

For a graph G, the following statements are equivalent:

- (i) G is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

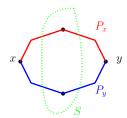
Proof (outline). (i) \Rightarrow (iii): This follows from Lemma 3.1.

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline). (i) \Rightarrow (iii): This follows from Lemma 3.1.

(iii) \Rightarrow (i): If (i) is false, then (iii) is false. (Details: Lecture Notes.)



For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline, continued). (i) \Rightarrow (ii):

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline, continued). (i) \Rightarrow (ii): We proceed by induction on the number of vertices.

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline, continued). (i) \Rightarrow (ii): We proceed by induction on the number of vertices. Clearly, the claim holds for one-vertex graphs.

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline, continued). (i) \Rightarrow (ii): We proceed by induction on the number of vertices. Clearly, the claim holds for one-vertex graphs. Now, fix a positive integer n, and assume that the claim holds for all chordal graphs on n vertices. Let H be a chordal graph on n+1 vertices. By Theorem 3.4, H has at least one simplicial vertex, call it x_0 .

For a graph G, the following statements are equivalent:

- (i) G is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline, continued). (i) \Rightarrow (ii): We proceed by induction on the number of vertices. Clearly, the claim holds for one-vertex graphs. Now, fix a positive integer n, and assume that the claim holds for all chordal graphs on n vertices. Let H be a chordal graph on n+1 vertices. By Theorem 3.4, H has at least one simplicial vertex, call it x_0 . Then $H \setminus x_0$ is a chordal graph on n vertices, and so by the induction hypothesis, $H \setminus x_0$ has a simplicial elimination ordering, say x_1, \ldots, x_n .

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline, continued). (i) \Rightarrow (ii): We proceed by induction on the number of vertices. Clearly, the claim holds for one-vertex graphs. Now, fix a positive integer n, and assume that the claim holds for all chordal graphs on n vertices. Let H be a chordal graph on n+1 vertices. By Theorem 3.4, H has at least one simplicial vertex, call it x_0 . Then $H \setminus x_0$ is a chordal graph on n vertices, and so by the induction hypothesis, $H \setminus x_0$ has a simplicial elimination ordering, say x_1, \ldots, x_n . But now x_0, x_1, \ldots, x_n is a simplicial elimination ordering of H.

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline, continued). (ii) \Rightarrow (i):

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline, continued). (ii) \Rightarrow (i): Suppose that v_1, \ldots, v_n is a simplicial elimination ordering of G; we claim that G is chordal.

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

Proof (outline, continued). (ii) \Rightarrow (i): Suppose that v_1, \ldots, v_n is a simplicial elimination ordering of G; we claim that G is chordal. Let C be an induced cycle of G. Let $x = v_i$ be the lowest-indexed vertex that belongs C, and let y, z be the two neighbors of x in C.

Then $yz \in E(G)$, and so C is a triangle. Thus, G is chordal.

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.

For a graph G, the following statements are equivalent:

- (i) G is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.
 - Note that Theorem 3.5 gives an $O(n^4)$ time recognition algorithm for chordal graphs (we repeatedly search for simplicial vertices).

For a graph G, the following statements are equivalent:

- (i) *G* is chordal;
- (ii) G has a simplicial elimination ordering;
- (iii) for all non-adjacent vertices x and y of G, every minimal cutset of G separating x from y is a clique.
 - Note that Theorem 3.5 gives an $O(n^4)$ time recognition algorithm for chordal graphs (we repeatedly search for simplicial vertices).
 - In fact, chordal graphs can be recognized in O(n+m) time using the so called Lexicographic breadth-first-search (LexBFS) due to Rose, Tarjan, and Lueker (1976), but we omit the details.

• Our next goal is to construct efficient algorithms solving the GRAPH COLORING, MAXIMUM CLIQUE, MAXIMUM STABLE SET, and MINIMUM CLIQUE COVER problems on

chordal graphs.

- Our next goal is to construct efficient algorithms solving the GRAPH COLORING, MAXIMUM CLIQUE, MAXIMUM STABLE SET, and MINIMUM CLIQUE COVER problems on chordal graphs.
- For the rest of this lecture, G is a chordal graph on n vertices, and v_1, \ldots, v_n is a simplicial elimination ordering on G.

- Our next goal is to construct efficient algorithms solving the GRAPH COLORING, MAXIMUM CLIQUE, MAXIMUM STABLE SET, and MINIMUM CLIQUE COVER problems on
- chordal graphs. • For the rest of this lecture, G is a chordal graph on n vertices, and v_1, \ldots, v_n is a simplicial elimination ordering on G.
- For each $i \in \{1, ..., n\}$, set $X_i := N_G[v_i] \cap \{v_i, ..., v_n\}$.

• So, X_i is the closed neighborhood of v_i in the graph

 $G[v_i,\ldots,v_n].$

 X_1,\ldots,X_n are all cliques of G. Furthermore, for every maximal clique C of G, there exists some $i\in\{1,\ldots,n\}$ such that $C=X_i$.

Proof.

^aHowever, not all X_i 's need be maximal cliques.

 X_1, \ldots, X_n are all cliques of G. Furthermore, for every maximal clique C of G, there exists some $i \in \{1, \ldots, n\}$ such that $C = X_i$.

Proof. The fact that the sets X_i are cliques follows immediately from the definition of a simplicial elimination ordering and the construction of the sets X_i .

^aHowever, not all X_i 's need be maximal cliques.

 X_1, \ldots, X_n are all cliques of G. Furthermore, for every maximal clique C of G, there exists some $i \in \{1, \ldots, n\}$ such that $C = X_i$.

Proof. The fact that the sets X_i are cliques follows immediately from the definition of a simplicial elimination ordering and the construction of the sets X_i . Now, let C be a maximal clique of G. Let $i \in \{1, \ldots, n\}$ be minimal with $v_i \in C$.

^aHowever, not all X_i 's need be maximal cliques.

 X_1, \ldots, X_n are all cliques of G. Furthermore, for every maximal clique C of G, there exists some $i \in \{1, \ldots, n\}$ such that $C = X_i$.

Proof. The fact that the sets X_i are cliques follows immediately from the definition of a simplicial elimination ordering and the construction of the sets X_i . Now, let C be a maximal clique of C. Let C be minimal with C be a maximal clique of C. Since C is a maximal clique, and C is a clique, it follows that $C = X_i$.

^aHowever, not all X_i 's need be maximal cliques.

 X_1, \ldots, X_n are all cliques of G. Furthermore, for every maximal clique C of G, there exists some $i \in \{1, \ldots, n\}$ such that $C = X_i$.

Proof. The fact that the sets X_i are cliques follows immediately from the definition of a simplicial elimination ordering and the construction of the sets X_i . Now, let C be a maximal clique of G. Let $i \in \{1, \ldots, n\}$ be minimal with $v_i \in C$. Then clearly, $C \subseteq X_i$. Since C is a maximal clique, and X_i is a clique, it follows that $C = X_i$.

Theorem 3.7 [Fulkerson and Gross, 1965]

G has at most n maximal cliques. Furthermore, equality holds if and only if G is edgeless.

Proof. This follows from Lemma 3.6 (Details: Lecture Notes.)

^aHowever, not all X_i 's need be maximal cliques.

Definition

A *clique cover* of a graph H is a partition of V(H) into cliques. The *clique cover number* of H, denoted by $\overline{\chi}(H)$, is the smallest size of a clique cover of H; a *minimum clique cover* of H is a clique cover of size precisely $\overline{\chi}(H)$.

Definition

A *clique cover* of a graph H is a partition of V(H) into cliques. The *clique cover number* of H, denoted by $\overline{\chi}(H)$, is the smallest size of a clique cover of H; a *minimum clique cover* of H is a clique cover of size precisely $\overline{\chi}(H)$.

• Since proper colorings correspond to partitions of the vertex set into stable sets (color classes), it is clear that every graph H satisfies $\overline{\chi}(H) = \chi(\overline{H})$ and $\alpha(H) \leq \overline{\chi}(H)$.

• We define a (finite) sequence i_1,\ldots,i_t as follows.

- We define a (finite) sequence i_1, \ldots, i_t as follows.
- First, let $i_1 := 1$.

- We define a (finite) sequence i_1, \ldots, i_t as follows.
- First, let $i_1 := 1$.
- Once i_1, \ldots, i_{j-1} have been defined, we either terminate or extend the sequence, as follows.

- We define a (finite) sequence i_1, \ldots, i_t as follows.
- First, let $i_1 := 1$.
- Once i_1, \ldots, i_{j-1} have been defined, we either terminate or extend the sequence, as follows.
- If $V(G) = X_{i_1} \cup \cdots \cup X_{i_{j-1}}$, then we set t = j-1, and we terminate the sequence; otherwise, we let $i_j \in \{1, \ldots, n\}$ be the smallest index such that $v_{i_j} \notin X_{i_1} \cup \cdots \cup X_{i_{j-1}}$.

- We define a (finite) sequence i_1, \ldots, i_t as follows.
- First, let $i_1 := 1$. • Once i_1, \ldots, i_{i-1} have been defined, we either terminate or
- extend the sequence, as follows. • If $V(G) = X_{i_1} \cup \cdots \cup X_{i_{i-1}}$, then we set t = j - 1, and we
- terminate the sequence; otherwise, we let $i_i \in \{1, ..., n\}$ be

the smallest index such that $v_{i_i} \notin X_{i_1} \cup \cdots \cup X_{i_{i-1}}$.

• Set $Y_1 := X_{i_1}$, and for all $j \in \{2, \ldots, t\}$, set

 $Y_i := X_{i_i} \setminus (Y_1 \cup \cdots \cup Y_{i-1}).$

- We define a (finite) sequence i_1, \ldots, i_t as follows.
- First, let $i_1 := 1$.
- Once i_1, \ldots, i_{j-1} have been defined, we either terminate or extend the sequence, as follows.
- If $V(G) = X_{i_1} \cup \cdots \cup X_{i_{j-1}}$, then we set t = j-1, and we terminate the sequence; otherwise, we let $i_j \in \{1, \ldots, n\}$ be the smallest index such that $v_{i_j} \notin X_{i_1} \cup \cdots \cup X_{i_{j-1}}$.
- Set $Y_1 := X_{i_1}$, and for all $j \in \{2, \ldots, t\}$, set $Y_j := X_{i_j} \setminus (Y_1 \cup \cdots \cup Y_{j-1})$.

Theorem 3.8 [Gavril, 1972]

The set $\{v_{i_1}, \ldots, v_{i_t}\}$ is a maximum stable set of G, and (Y_1, \ldots, Y_t) is a minimum clique cover of G.

Proof (outline).

- We define a (finite) sequence i_1, \ldots, i_t as follows.
- First, let $i_1 := 1$.
- Once i_1, \ldots, i_{j-1} have been defined, we either terminate or extend the sequence, as follows.
- If $V(G) = X_{i_1} \cup \cdots \cup X_{i_{j-1}}$, then we set t = j-1, and we terminate the sequence; otherwise, we let $i_j \in \{1, \ldots, n\}$ be the smallest index such that $v_{i_j} \notin X_{i_1} \cup \cdots \cup X_{i_{j-1}}$.
- Set $Y_1 := X_{i_1}$, and for all $j \in \{2, \ldots, t\}$, set $Y_j := X_{i_j} \setminus (Y_1 \cup \cdots \cup Y_{j-1})$.

Theorem 3.8 [Gavril, 1972]

The set $\{v_{i_1}, \ldots, v_{i_t}\}$ is a maximum stable set of G, and (Y_1, \ldots, Y_t) is a minimum clique cover of G.

Proof (outline). The fact that $\{v_{i_1}, \ldots, v_{i_t}\}$ is a stable set and (Y_1, \ldots, Y_t) is a clique-cover of G follows from the construction.

- We define a (finite) sequence i_1, \ldots, i_t as follows.
- First, let $i_1 := 1$.
- Once i_1, \ldots, i_{j-1} have been defined, we either terminate or extend the sequence, as follows.
- If $V(G) = X_{i_1} \cup \cdots \cup X_{i_{j-1}}$, then we set t = j-1, and we terminate the sequence; otherwise, we let $i_j \in \{1, \ldots, n\}$ be the smallest index such that $v_{i_j} \notin X_{i_1} \cup \cdots \cup X_{i_{j-1}}$.
- Set $Y_1:=X_{i_1}$, and for all $j\in\{2,\ldots,t\}$, set $Y_j:=X_{i_j}\setminus (Y_1\cup\cdots\cup Y_{j-1}).$

Theorem 3.8 [Gavril, 1972]

The set $\{v_{i_1}, \ldots, v_{i_t}\}$ is a maximum stable set of G, and (Y_1, \ldots, Y_t) is a minimum clique cover of G.

Proof (outline). The fact that $\{v_{i_1},\ldots,v_{i_t}\}$ is a stable set and (Y_1,\ldots,Y_t) is a clique-cover of G follows from the construction. But now $t\leq \alpha(G)\leq \overline{\chi}(G)\leq t$, and so $\alpha(G)=\overline{\chi}(G)=t$. So, our stable set is maximum, and our clique cover is minimum.

G can be optimally colored (i.e. properly colored using precisely $\chi(G)$ colors) by applying the greedy coloring algorithm to G with the ordering v_0, \ldots, v_1 .

 $\ensuremath{^{a}\text{So}}$, we are using the reverse of our simplicial elimination ordering.

Proof.

G can be optimally colored (i.e. properly colored using precisely $\chi(G)$ colors) by applying the greedy coloring algorithm to G with the ordering v_0, \ldots, v_1 .

^aSo, we are using the reverse of our simplicial elimination ordering.

Proof. Clearly, the greedy coloring produces a proper coloring of G.

G can be optimally colored (i.e. properly colored using precisely $\chi(G)$ colors) by applying the greedy coloring algorithm to G with the ordering v_n, \ldots, v_1 .^a

^aSo, we are using the reverse of our simplicial elimination ordering.

Proof. Clearly, the greedy coloring produces a proper coloring of G. If we apply the greedy coloring algorithm to G with the ordering v_n, \ldots, v_1 , then when we reach a vertex v_i , the neighbors of v_i that have already been colored are precisely those from the clique $X_i \setminus \{v_i\}$,

G can be optimally colored (i.e. properly colored using precisely $\chi(G)$ colors) by applying the greedy coloring algorithm to G with the ordering v_n, \ldots, v_1 .^a

^aSo, we are using the reverse of our simplicial elimination ordering.

Proof. Clearly, the greedy coloring produces a proper coloring of G. If we apply the greedy coloring algorithm to G with the ordering v_n,\ldots,v_1 , then when we reach a vertex v_i , the neighbors of v_i that have already been colored are precisely those from the clique $X_i\setminus\{v_i\}$, and consequently, at most $\omega(G)-1$ neighbors of v_i have already been colored. Thus, the greedy algorithm applied to G with this ordering uses no more than $\omega(G)$ colors.

G can be optimally colored (i.e. properly colored using precisely $\chi(G)$ colors) by applying the greedy coloring algorithm to G with the ordering v_n, \ldots, v_1 .

^aSo, we are using the reverse of our simplicial elimination ordering.

Proof. Clearly, the greedy coloring produces a proper coloring of G. If we apply the greedy coloring algorithm to G with the ordering v_n,\ldots,v_1 , then when we reach a vertex v_i , the neighbors of v_i that have already been colored are precisely those from the clique $X_i\setminus\{v_i\}$, and consequently, at most $\omega(G)-1$ neighbors of v_i have already been colored. Thus, the greedy algorithm applied to G with this ordering uses no more than $\omega(G)$ colors. Since every graph H satisfies $\chi(H)\geq \omega(H)$, it follows that the greedy coloring algorithm used precisely $\omega(G)$ colors, and that the coloring that it produced is optimal.

 X_1, \ldots, X_n are all cliques of G. Furthermore, for every maximal clique C of G, there exists some $i \in \{1, \ldots, n\}$ such that $C = X_i$.

Theorem 3.8 [Gavril, 1972]

The set $\{v_{i_1}, \ldots, v_{i_t}\}$ is a maximum stable set of G, and (Y_1, \ldots, Y_t) is a minimum clique cover of G.

Lemma 3.9

G can be optimally colored (i.e. properly colored using precisely $\chi(G)$ colors) by applying the greedy coloring algorithm to G with the ordering v_n, \ldots, v_1 .

 X_1, \ldots, X_n are all cliques of G. Furthermore, for every maximal clique C of G, there exists some $i \in \{1, \ldots, n\}$ such that $C = X_i$.

Theorem 3.8 [Gavril, 1972]

The set $\{v_{i_1}, \ldots, v_{i_t}\}$ is a maximum stable set of G, and (Y_1, \ldots, Y_t) is a minimum clique cover of G.

Lemma 3.9

G can be optimally colored (i.e. properly colored using precisely $\chi(G)$ colors) by applying the greedy coloring algorithm to G with the ordering v_n, \ldots, v_1 .

 Clearly, Lemma 3.6, Theorem 3.8, and Lemma 3.9 yield polynomial time algorithms for finding a maximum clique, a maximum stable set, a minimum clique-cover, and an optimal coloring of a chordal graph.