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Lecture #6

Chordal graphs

Irena Penev

1 Triangle-free graphs of arbitrarily large chromatic
number

Clearly, every graph G satisfies ω(G) ≤ χ(G).1 So, the simplest way to
construct a graph of high chromatic number is to construct a graph that has
a large clique number. However, as we shall see, it is possible to construct
graphs of small clique number and large chromatic number.

A triangle in a graph G is a clique of size three. A graph is triangle-free
if it contains no triangles. So, a graph is triangle-free if and only if its clique
number is at most two. Our goal in this section is to construct a family of
triangle-free graphs of arbitrarily large chromatic number. There are several
known constructions; here, we give the one due to Mycielski (1955).

The Mycielski graphs {Mk}∞k=2 are defined recursively, as follows. First,
let M2 = K2. Next, fix an integer k, and suppose Mk has been constructed.
We construct Mk+1 as follows. Let V = {v1, . . . , vn} be the vertex set of Mk.
Let U = {u1, . . . , un} (where the ui’s are “new” vertices; we think of ui as a
“duplicate” of vi), and let w be another “new” vertex. Let Mk+1 have vertex
set V ∪ U ∪ {w} and adjacency as follows:

• adjacency between the vi’s is inherited from Mk, that is, Mk+1[V ] =
Mk;

• for all i ∈ {1, . . . , n}, ui is non-adjacent to vi;

• for all distinct i, j ∈ {1, . . . , n}, ui is adjacent to vj in Mk+1 if and only
if vi is adjacent to vj in Mk;

• U is a stable set in Mk+1;

1As usual, ω(G) is the clique number of G, i.e. the maximum size of a clique in G.
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• w is adjacent to all vertices in U and non-adjacent to all vertices in V .

The first three Mycielski graphs are represented below.

M2 M3 M4

v1 v2

u1 u2

w

v1 v2

v3v5

v4

u1 u2

u3
u4

u5

w

Lemma 1.1. For all integers k ≥ 2, Mk satisfies ω(Mk) = 2 and χ(Mk) = k.

Proof. We proceed by induction on k. Clearly, ω(M2) = 2 and χ(M2) = 2.
Next, fix an integer k ≥ 2, and assume inductively that ω(Mk) = 2 and
χ(Mk) = k. We must show that ω(Mk+1) = 2 and χ(Mk+1) = k + 1. Let
V = {v1, . . . , vn}, U = {u1, . . . , un}, and w be as in the definition of Mk+1.

We first show that ω(Mk+1) = 2. Since ω(Mk) = 2, and Mk is a subgraph
of Mk+1, it is clear that ω(Mk+1) ≥ 2. It remains to show that Mk+1 is
triangle-free. Suppose otherwise, and let T be a triangle in Mk+1. Since
U is a stable set of G, we see that |T ∩ U | ≤ 1. Since NMk+1

(w) = U ,
and since U is a stable set, we further see that w /∈ T . Finally, since
Mk+1[V ] = Mk, and since Mk is triangle-free (by the induction hypothesis),
we see that T 6⊆ V . It now follows that |T ∩ U | = 1 and |T ∩ V | = 2.
Let p, q, r ∈ {1, . . . , k} (with q 6= r) be such that T = {up, vq, vr}. By the
construction of Mk+1, upvp /∈ E(Mk+1); since T is a triangle, it follows
that p /∈ {q, r}. Since upvq ∈ E(Mk+1), it follows from the construction of
Mk+1 that vpvq ∈ E(Mk); similarly, vpvr ∈ E(Mk). But now {vp, vq, vr} is
a triangle in Mk, a contradiction. So, Mk+1 is triangle-free, and we deduce
that ω(Mk+1) = 2.

We now show that χ(Mk+1) = k + 1. Let us first show that χ(Mk+1) ≤
k + 1. First, we properly color Mk with colors 1, . . . , k (this is possible
because χ(Mk) = k). Next, for each i ∈ {1, . . . , n}, we assign to ui the same
color as to vi. Finally, we assign color k + 1 to w. Clearly, this is a proper
coloring of Mk+1, and it follows that χ(Mk+1) ≤ k + 1.

Finally, we show that χ(Mk+1) ≥ k + 1. Suppose otherwise, that is,
suppose that χ(Mk+1) ≤ k. Fix a proper coloring c : V (Mk+1)→ {1, . . . , k}
of Mk+1. We will use the coloring c of Mk+1 to construct a proper (k − 1)-
coloring of Mk, which will contradict the fact that χ(Mk) = k. By symmetry,
we may assume that c(w) = k. Since w is adjacent to every vertex in U , it
follows that c does not assign color k to any vertex in U . Now, let Vk be the
set of all vertices in V to which c assigns color k. Since c is a proper coloring
of Mk+1, we know that Vk is a stable set in Mk+1 (and therefore, in Mk as
well). Now, define c′ : V → {1, . . . , k − 1} as follows:
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• c′ � (V \ Vk) = c � (V \ Vk);2

• for all vi ∈ Vk+1, set c′(vi) = c(ui).

Let us check that c′ is a proper coloring of Mk. Fix distinct i, j ∈ {1, . . . , n},
and suppose that vi is adjacent to vj in Mk. We must show that c′(vi) 6= c′(vj).
Since Vk is a stable set, we know that at most one of vi, vj belongs to Vk.
If vi, vj ∈ V \ Vk, then it follows from the construction of c′, and from the
fact that c is a proper coloring of Mk+1 that c′(vi) = c(vi) 6= c(vj) = c′(vj).
It remains to consider the case when exactly one of vi, vj belongs to Vk; by
symmetry, we may assume that vi ∈ Vk and vj ∈ V \Vk. By the construction
of Mk+1, ui is adjacent to vj in Mk+1, and so c(ui) 6= c(vj). But now by the
construction of c′, we have that c′(vi) = c(ui) 6= c(vj) = c′(vj), which is what
we needed. Thus, c′ is a proper (k − 1)-coloring of Mk, contrary to the fact
that χ(Mk) = k.

As an immediate corollary of Lemma 1.1, we get the following.

Theorem 1.2. There exist triangle-free graphs of arbitrarily large chromatic
number. More precisely, for every positive integer k, there exists a graph G
such that ω(G) = 2 and χ(G) ≥ k.

Proof. This follows from Lemma 1.1.

We remark that Erdős (1961) applied the probabilistic method to demon-
strate the existence of graphs with arbitrarily high girth and chromatic
number (the girth of a graph G that has at least one cycle is the length of
the shortest cycle in G). Graphs of high girth are triangle-free, and so this
result of Erdős is stronger than Theorem 1.2.

2 Perfect graphs

In the previous section, we saw that there exist graphs of small clique number,
but large chromatic number. At the other extreme, we might consider graphs
for which χ = ω. This, however, turns out not to be a very interesting
question. Indeed, suppose H is any graph at all, and let G be the disjoint
union of H and Kχ(H); then χ(G) = ω(G), but we can say very little about
the structure of G (since G was built starting from an arbitrary graph H).

Here is a more interesting definition. A graph is perfect if all its induced
subgraphs H satisfy χ(H) = ω(H).3

Since every graph is an induced subgraph of itself, we see that every
perfect graph G satisfies χ(G) = ω(G). Importantly, though, in a perfect
graph, χ = ω should hold not only for the graph itself, but also for all its
induced subgraphs.

2This means that c′(vi) = c(vi) for all vi ∈ V \ Vk.
3A graph H is an induced subgraph of a graph G if V (H) ⊆ V (G), and for all distinct

u, v ∈ V (H), we have that uv ∈ E(H) if and only if uv ∈ E(G).
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3 Chordal graphs

In this section, we consider a particular subclass of perfect graphs, called
“chordal” graphs. A graph is chordal (or triangulated) if every cycle of length
strictly greater than three has a chord (a chord of a cycle is an edge joining
two nonconsecutive vertices of the cycle). In other words, a graph is chordal
if it contains no induced cycles of length at least four. For example, in the
picture below, the graph on the left is not chordal (because it contains an
induced cycle of length four, in red), whereas the one on the right is chordal
(this graph contains a cycle of length four, but the cycle is not induced).

not chordal chordal

Note that all induced subgraphs of a chordal graph are chordal.
Chordal graphs were one of the first classes of graphs to be recognized

as perfect; the study of chordal graphs can be seen as the beginning of the
theory of perfect graphs. As we shall see, there are efficient algorithms for
recognizing chordal graphs and for solving the vertex coloring and related
optimization problems on chordal graphs. In many applications of vertex-
coloring, the graphs actually are chordal.

In this section, a cutset of a graph is a set of vertices whose deletion yields
a disconnected graph. More precisely, a cutset of a graph G is a (possibly
empty) set S $ V (G) such that G \ S is disconnected.4 A clique-cutset is
a cutset that is a clique, that is, a clique-cutset of a graph G is a clique
C $ V (G) of G such that G \ C is disconnected.5

3.1 Characterizing chordal graphs

Lemma 3.1. Let G be a chordal graph that is not complete, let x and y be
non-adjacent vertices of G, and let S be a minimal cutset of G separating x
and y.6 Then S is a clique of G.

4Sometimes, a cutset is defined to be a set of vertices whose deletion increases the
number of components, but that definition is inconvenient in this context.

5In particular, if G is disconnected, then ∅ is a clique-cutset of G.
6This means that S ⊆ V (G) \ {x, y}, x and y are in distinct components of G \ S, and

for all S′ $ S, x and y are in the same component of G \ S′.
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Proof. Suppose that S is not a clique, and let u and v be two nonadjacent
vertices of S. Let Cx be the component of G \ S that contains x, and let Cy
be the component of G \ S that contains y. By the minimality of S, every
vertex of S has a neighbor both in Cx and in Cy. Now, suppose that S is
not a clique, and fix distinct, non-adjacent vertices u, v ∈ S. Let Px be a
minimum-length path between u and v in G[V (Cx) ∪ {u, v}], and let Py be
a minimum-length path between u and v in G[V (Cy) ∪ {u, v}].7

u

v

SCx Cy

Px

Py

By the minimality of Px and Py, we see that both Px and Py are induced
paths of G, and since u and v are non-adjacent, we see that each of them has
at least two edges. Since the interior of Px belongs to Cx, and the interior
of Py belongs to Cy, we see that there are no edges between the interiors of
Px and Py. Thus, Px ∪ Py is an induced cycle of length at least four in G, a
contradiction.

Theorem 3.2. If G is a chordal graph, then either G is a complete graph
or G admits a clique-cutset.

Proof. Let G be a chordal graph that is not complete. Let x and y be
non-adjacent vertices of G, and let S be a minimal cutset of G separating x
from y.8 By Lemma 3.1, S is a clique. It follows that S is a clique-cutset of
G.

Corollary 3.3. Chordal graphs are perfect.

Proof. Since every induced subgraph of a chordal graph is chordal, it is
enough to show that every chordal graph G satisfies χ(G) = ω(G).9 So,
fix a chordal graph G, and assume inductively that all chordal graphs G′

on fewer than |V (G)| vertices satisfy χ(G′) = ω(G′). We must show that
χ(G) = ω(G). If G is a complete graph, then it is clear that χ(G) = ω(G).

7G[V (Cx) ∪ {u, v}] is connected because Cx is connected, and both u and v have a
neighbor in Cx. Similarly, G[V (Cy) ∪ {u, v}] is connected. So, Px and Py exist.

8To see that S exists, we first observe that V (G) \ {x, y} is a cutset of G separating
x from y. Of all subsets of V (G) \ {x, y} separating x from y, let S be one that has a
minimum number of vertices.

9Indeed, suppose we have shown that all chordal graphs G satisfy χ(G) = ω(G). Now,
fix a chordal graph G, and let H be an induced subgraph of G. Then H is chordal, and so
χ(H) = ω(H). So, G is perfect.
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So, assume that G is not complete. Then by Theorem 3.2, G admits a
clique-cutset, call it C. Let A1, . . . , At (t ≥ 2) be the vertex sets of the
components of G \ C.

C

A1

At

...

For all i ∈ {1, . . . , t}, let Gi := G[Ai ∪ C]. Note that every clique of
G is in fact a clique of one of G1, . . . , Gt,

10 and it follows that ω(G) =
max{ω(G1), . . . , ω(Gt)}. On the other hand, by Lemma 2.1 from Lecture
Notes 4, we have that χ(G) = max{χ(G1), . . . , χ(Gt)}. Finally, for all
i ∈ {1, . . . , t}, the induction hypothesis guarantees that χ(Gi) = ω(Gi). So,

χ(G) = max{χ(G1), . . . , χ(Gt)}

= max{ω(G1), . . . , ω(Gt)}

= ω(G),

which is what we needed.

3.2 Simplicial vertices

A vertex x of a graph G is simplicial if NG(x) is a clique of G.

Theorem 3.4 (Dirac, 1961). Every chordal graph has a simplicial vertex.
Moreover, every chordal graph that is not complete has (at least) two non-
adjacent simplicial vertices.

Proof. We proceed by induction on the number of vertices. Let G be a
chordal graph, and assume inductively that the claim holds for chordal
graphs on fewer than |V (G)| vertices.11 We must show that the claim holds
for G. If G is a complete graph, then clearly, any vertex of G is simplicial.
So assume that G is not complete (and in particular, |V (G)| ≥ 2). By
Theorem 3.2, G contains a clique-cutset, call it C. Let A and B be the
vertex-sets of two distinct components of G, and set GA = G[A ∪ C] and
GB = G[B ∪ C].

10This is because there are no edges between any two of the sets A1, . . . , At, and so no
clique of G intersects more than one of A1, . . . , At.

11More precisely, we assume inductively that for every chordal graph G′ such that
|V (G′)| < |V (G)|, G′ has a simplicial vertex, and furthermore, if G′ is not a complete
graph, then G′ has two non-adjacent simplicial vertices.
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Claim. A contains a vertex that is simplicial in GA, and B
contains a vertex that is simplicial in GB.

Proof of the Claim. By symmetry, it suffices to show this for A. If GA is
complete, then any vertex in A is simplicial in GA. Otherwise, by the induc-
tion hypothesis, GA contains two non-adjacent simplicial vertices; since C is
a clique, C may contain at most one of these two vertices, and consequently,
A contains the other (possibly, A contains both of them). This proves the
Claim. �

Now, using the Claim, we let a ∈ A be a simplicial vertex of GA, and we
let b ∈ B be a simplicial vertex of GB. Clearly, a and b are non-adjacent.
Furthermore, we have that NG(a) = NGA

(a) and NG(b) = NGB
(b), and we

deduce that a and b are simplicial vertices of G.

A simplicial elimination ordering (sometimes also called a perfect elimi-
nation ordering) of a graph G is an ordering v1, . . . , vn of its vertices such
that for all i ∈ {1, . . . , n}, vi is simplicial in the graph G[vi, . . . , vn]. For
instance, v1, . . . , v6 is a simplicial elimination ordering of the graph G in the
picture below.

v1

v2

v3

v4

v5

v6
G

Indeed, consider the picture below. Clearly, for each i ∈ {1, . . . , 6}, vi is
simplicial in G[vi, . . . , v6].

v1

v2

v3

v4

v5

v6 v2

v3

v4

v5

v6

v3

v4

v5

v6 v4

v5

v6

v5

v6 v6

G[v1, v2, v3, v4, v5, v6] G[v2, v3, v4, v5, v6]

G[v3, v4, v5, v6] G[v4, v5, v6] G[v5, v6] G[v6]
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Theorem 3.5 (Fulkerson and Gross, 1965). For a graph G, the following
statements are equivalent:

(i) G is chordal;

(ii) G has a simplicial elimination ordering;

(iii) for all non-adjacent vertices x and y of G, every minimal cutset of G
separating x from y is a clique.

Proof. (i) ⇒ (iii): This follows from Lemma 3.1.
(iii) ⇒ (i): We prove the contrapositive: if (i) if false, then (iii) is

false. So assume that (i) is false, that is, that G is not chordal. Let C be
an induced cycle of length at least four in G, let x and y be non-adjacent
vertices of C, and let P1 and P2 be the two paths between x and y in C;
clearly, each of P1, P2 has at least two edges, and in particular, V (P1)\{x, y}
and V (P2)\{x, y} are non-empty. Let S be a minimal cutset of G separating
x from y. Clearly, S must intersect both V (P1) \ {x, y} and V (P2) \ {x, y}.
But since C is a chordless cycle, we know that there are no edges between
V (P1) \ {x, y} and V (P2) \ {x, y}, and it follows that S is not a clique. Thus,
(iii) is false.

(i) ⇒ (ii): We proceed by induction on the number of vertices. Clearly,
the claim holds for one-vertex graphs. Now, fix a positive integer n, and
assume that the claim holds for all chordal graphs on n vertices. Let H
be a chordal graph on n+ 1 vertices. By Theorem 3.4, H has at least one
simplicial vertex, call it x0. Then H \x0 is a chordal graph on n vertices, and
so by the induction hypothesis, H \ x0 has a simplicial elimination ordering,
say x1, . . . , xn. But now x0, x1, . . . , xn is a simplicial elimination ordering of
H.

(ii) ⇒ (i): Suppose that v1, . . . , vn is a simplicial elimination ordering
of G; we claim that G is chordal. Let C be an induced cycle of G; we must
show that C is a triangle. Let x = vi be the lowest-indexed vertex from our
simplicial elimination ordering that belongs to the cycle C, and let y, z be the
two neighbors of x in C. Since x = vi is simplicial in G[vi, vi+1, . . . , vn], since
y, z are distinct neighbors of x, and since (by the minimality of i) we have
that y, z ∈ {vi+1, . . . , vn}, we see that yz ∈ E(G). Since C is an induced
cycle, it follows that C is a triangle. This proves that G is chordal.

Note that Theorem 3.5 gives an O(n4) time recognition algorithm for
chordal graphs (we repeatedly search for simplicial vertices). In fact, chordal
graphs can be recognized in O(n+m) time using the so called Lexicographic
breadth-first-search (LexBFS) due to Rose, Tarjan, and Lueker (1976), but
we omit the details.
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3.3 Efficient algorithms for chordal graphs

In this subsection, G is a chordal graph on n vertices, and v1, . . . , vn is a
simplicial elimination ordering on G.12 For each i ∈ {1, . . . , n}, set Xi :=
NG[vi] ∩ {vi, . . . , vn};13 so, Xi is the closed neighborhood of vi in the graph
G[vi, . . . , vn].

Lemma 3.6. X1, . . . , Xn are all cliques of G. Furthermore, for every maxi-
mal clique C of G, there exists some i ∈ {1, . . . , n} such that C = Xi.

14

Proof. The fact that the sets Xi are cliques follows immediately from the
definition of a simplicial elimination ordering and the construction of the
sets Xi. Now, let C be a maximal clique of G. Let i ∈ {1, . . . , n} be minimal
with vi ∈ C. Then clearly, C ⊆ Xi. Since C is a maximal clique, and Xi is a
clique, it follows that C = Xi.

Lemma 3.7 (Fulkerson and Gross, 1965). G has at most n maximal cliques.
Furthermore, equality holds if and only if G is edgeless.

Proof. The fact that G has at most n maximal cliques follows immediately
from Lemma 3.6. Clearly, if G is edgeless, then G has precisely n maximal
cliques (indeed, each one-vertex subset of V (G) is a maximal clique of G).
Suppose now that G has at least one edge; let i ∈ {1, . . . , n} be the largest
index such that vi has a neighbor in G. Let vj be a neighbor of vi in G; by
the maximality of i, we have that j < i. Then Xi = {vi} and {vj , vi} ⊆ Xj ,
and so Xi $ Xj . By Lemma 3.6, both Xi and Xj are cliques. So, Xi is not
a maximal clique of G, and Lemma 3.6 implies that G has fewer than n
maximal cliques.

A clique cover of a graph H is a partition of V (H) into cliques. The clique
cover number of H, denoted by χ(H), is the smallest size of a clique cover
of H; a minimum clique cover of H is a clique cover of size precisely χ(H).
Since proper colorings correspond to partitions of the vertex set into stable
sets (color classes), it is clear that every graph H satisfies χ(H) = χ(H) and
α(H) ≤ χ(H).

We define a (finite) sequence i1, . . . , it as follows. First, let i1 := 1. Once
i1, . . . , ij−1 have been defined, we either terminate or extend the sequence, as
follows. If V (G) = Xi1 ∪ · · · ∪Xij−1 , then we set t = j − 1, and we terminate
the sequence; otherwise, we let ij ∈ {1, . . . , n} be the smallest index such
that vij /∈ Xi1 ∪ · · · ∪ Xij−1 . Set Y1 := Xi1 , and for all j ∈ {2, . . . , t}, set
Yj := Xij \ (Y1 ∪ · · · ∪ Yj−1).

12By Theorem 3.5, every chordal graph has a simplicial elimination ordering, and clearly,
we can find such an ordering in polynomial time.

13As usual, for a graph G and a vertex x ∈ V (G), we denote by NG(x) the set of all
neighbors of x in G, and we set NG[x] = {x}∪NG(x). So, NG(x) is the open neighborhood
(or simply neighborhood) of x in G, and NG[x] is the closed neighborhood of x in G.

14However, not all Xi’s need be maximal cliques.
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Theorem 3.8 (Gavril, 1972). The set {vi1 , . . . , vit} is a maximum stable
set of G, and (Y1, . . . , Yt) is a minimum clique cover of G.

Proof. First of all, note that i1 < · · · < it. Suppose that vpvq ∈ E(G) for
some p, q ∈ {i1, . . . , ij}, with p < q; then vq ∈ Xp, contrary to the choice of
q. Thus, {vi1 , . . . , vit} is a stable set of size t, and we deduce that t ≤ α(G).

Further, it is clear that Y1, . . . , Yt are pairwise disjoint cliques.15 It is
also clear that V (G) = Y1 ∪ · · · ∪ Yt, for otherwise, we could extend the
sequence i1, . . . , it.

16 Thus, (Y1, . . . , Yt) is a clique cover of G, and it follows
that χ(G) ≤ t.

We now have that t ≤ α(G) ≤ χ(G) ≤ t, and it follows that α(G) =
χ(G) = t. Thus, {y1, . . . , yt} is a maximum stable set of G, and (Y1, . . . , Yt)
is a minimum clique cover of G.

Lemma 3.9. G can be optimally colored (i.e. properly colored using precisely
χ(G) colors) by applying the greedy coloring algorithm to G with the ordering
vn, . . . , v1.17

Proof. Clearly, the greedy coloring produces a proper coloring of G. If we
apply the greedy coloring algorithm to G with the ordering vn, . . . , v1, then
when we reach a vertex vi, the neighbors of vi that have already been colored
are precisely those from the clique Xi \ {vi}, and consequently, at most
ω(G) − 1 neighbors of vi have already been colored.18 Thus, the greedy
algorithm applied to G with this ordering uses no more than ω(G) colors.
Since every graph H satisfies χ(H) ≥ ω(H), it follows that the greedy
coloring algorithm used precisely ω(G) colors, and that the coloring that it
produced is optimal.

Clearly, Lemma 3.6, Theorem 3.8, and Lemma 3.9 yield polynomial time
algorithms for finding a maximum clique, a maximum stable set, a minimum
clique-cover, and an optimal coloring of a chordal graph.

15Indeed, for all j ∈ {1, . . . , t}, we have that Yj ⊆ Xij , and by Lemma 3.6, Xij is a clique.
The fact that Y1, . . . , Yt are pairwise disjoint follows from the construction of Y1, . . . , Yt.

16We are using the fact that Y1 ∪ · · · ∪ Yt = Xi1 ∪ · · · ∪Xit .
17So, we are using the reverse of our simplicial elimination ordering.
18Indeed, Xi is a clique, and the size of this clique is at most ω(G). So, |Xi \ {vi}| ≤

ω(G)− 1.
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