NDMI012: Combinatorics and Graph Theory 2

Lecture #5

Vertex and edge coloring: Brooks' theorem and Vizing's theorem

Irena Penev

March 31, 2021

- A greedy coloring of a graph G with vertex ordering
 V(G) = {v₁,..., v_n} is a coloring of G obtained as follows:
 for each i ∈ {1,..., n}, we assign to v_i the smallest positive integer that was not used on any smaller-indexed neighbor of v_i.
- For example, the greedy coloring applied to the graph below, with the ordering v_1, v_2, v_3, v_4 , yields the coloring $c(v_1) = 1$, $c(v_2) = 1$, $c(v_3) = 2$, and $c(v_4) = 3$.

- A greedy coloring of a graph G with vertex ordering
 V(G) = {v₁,..., v_n} is a coloring of G obtained as follows:
 for each i ∈ {1,..., n}, we assign to v_i the smallest positive integer that was not used on any smaller-indexed neighbor of v_i.
- For example, the greedy coloring applied to the graph below, with the ordering v_1, v_2, v_3, v_4 , yields the coloring $c(v_1) = 1$, $c(v_2) = 1$, $c(v_3) = 2$, and $c(v_4) = 3$.

 The greedy coloring of a graph G always produces a proper coloring of G, but the coloring need not be optimal, i.e. it may use more than χ(G) colors.

Every graph G satisfies $\chi(G) \leq \Delta(G) + 1$.

Proof. A greedy coloring of a graph *G* (using any ordering of V(G)) produces a proper coloring of *G* that uses at most $\Delta(G) + 1$ colors; so, $\chi(G) \leq \Delta(G) + 1$.

Proof. A greedy coloring of a graph *G* (using any ordering of V(G)) produces a proper coloring of *G* that uses at most $\Delta(G) + 1$ colors; so, $\chi(G) \leq \Delta(G) + 1$.

 If G is a complete graph or an odd cycle, then it is easy to see that χ(G) = Δ(G) + 1.

Proof. A greedy coloring of a graph *G* (using any ordering of V(G)) produces a proper coloring of *G* that uses at most $\Delta(G) + 1$ colors; so, $\chi(G) \leq \Delta(G) + 1$.

- If G is a complete graph or an odd cycle, then it is easy to see that χ(G) = Δ(G) + 1.
- However, if G is a connected graph other than a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Proof. A greedy coloring of a graph *G* (using any ordering of V(G)) produces a proper coloring of *G* that uses at most $\Delta(G) + 1$ colors; so, $\chi(G) \leq \Delta(G) + 1$.

- If G is a complete graph or an odd cycle, then it is easy to see that χ(G) = Δ(G) + 1.
- However, if G is a connected graph other than a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Brooks' theorem

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof. A greedy coloring of a graph *G* (using any ordering of V(G)) produces a proper coloring of *G* that uses at most $\Delta(G) + 1$ colors; so, $\chi(G) \leq \Delta(G) + 1$.

- If G is a complete graph or an odd cycle, then it is easy to see that χ(G) = Δ(G) + 1.
- However, if G is a connected graph other than a complete graph or odd cycle, then $\chi(G) \leq \Delta(G)$.

Brooks' theorem

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

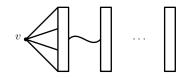
• First, we prove a technical lemma.

If G is connected and not regular, then $\chi(G) \leq \Delta(G)$.

Proof (outline).

If G is connected and not regular, then $\chi(G) \leq \Delta(G)$.

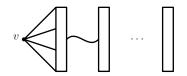
Proof (outline). Let G be a connected graph that is not regular, and fix a vertex $v \in V(G)$ such that $d_G(v) \leq \Delta(G) - 1$. We order V(G) according to the distance from v, that is, we list v first, then we list all vertices at distance one from v (in any order), then we list all vertices at distance two from v (in any order), etc. Let v_1, \ldots, v_n be the resulting ordering of G.



 $d_G(v) \le \Delta(G) - 1$

If G is connected and not regular, then $\chi(G) \leq \Delta(G)$.

Proof (outline). Let G be a connected graph that is not regular, and fix a vertex $v \in V(G)$ such that $d_G(v) \leq \Delta(G) - 1$. We order V(G) according to the distance from v, that is, we list v first, then we list all vertices at distance one from v (in any order), then we list all vertices at distance two from v (in any order), etc. Let v_1, \ldots, v_n be the resulting ordering of G.



$$d_G(v) \le \Delta(G) - 1$$

We now color G greedily using the ordering v_n, \ldots, v_1 , and we obtain a proper coloring of G that uses at most $\Delta(G)$ colors.

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline).

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). To simplify notation, we set $\Delta := \Delta(G)$. WTS $\chi(G) \leq \Delta$.

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). To simplify notation, we set $\Delta := \Delta(G)$. WTS $\chi(G) \leq \Delta$.

Since G is connected and not complete, we see that $\Delta \ge 2$. Next, suppose that $\Delta = 2$. Since G is connected, it follows that G is either a path on at least two edges or a cycle. But by hypothesis, G is not an odd cycle, and so G is either a path on at least two edges or an even cycle. It is now obvious that $\chi(G) \le \Delta$.

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). To simplify notation, we set $\Delta := \Delta(G)$. WTS $\chi(G) \leq \Delta$.

Since G is connected and not complete, we see that $\Delta \ge 2$. Next, suppose that $\Delta = 2$. Since G is connected, it follows that G is either a path on at least two edges or a cycle. But by hypothesis, G is not an odd cycle, and so G is either a path on at least two edges or an even cycle. It is now obvious that $\chi(G) \le \Delta$.

From now on, we assume that $\Delta \ge 3$. Note that this implies that $|V(G)| \ge 4$. We may further assume that G is regular, for otherwise, we are done by Lemma 1.2.

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

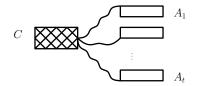
Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 1. If G has a clique-cutset, then $\chi(G) \leq \Delta$.

Proof of Claim 1 (outline). Suppose that G has a clique-cutset, and let C be a minimal clique-cutset of G. Let A_1, \ldots, A_t ($t \ge 2$) be the vertex sets of the components of $G \setminus C$. For all $i \in \{1, \ldots, t\}$, let $G_i := G[A_i \cup C]$.

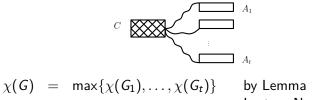


Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 1. If G has a clique-cutset, then $\chi(G) \leq \Delta$.

Proof of Claim 1 (outline, continued).



by Lemma 2.1 from Lecture Notes 4

 $\leq \Delta(G)$ by Lemma 1.2

This proves Claim 1.

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 2. If G is not 3-connected, then $\chi(G) \leq \Delta$.

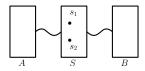
Proof of Claim 2 (outline).

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 2. If G is not 3-connected, then $\chi(G) \leq \Delta$.

Proof of Claim 2 (outline). Assume that G is not 3-connected.

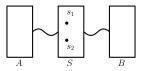


Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 2. If G is not 3-connected, then $\chi(G) \leq \Delta$.

Proof of Claim 2 (outline). Assume that G is not 3-connected.



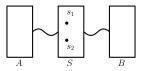
 s_1 has a neighbor in both A and B, and it has at least two neighbors in at least one of them. (Same for s_2 .)

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 2. If G is not 3-connected, then $\chi(G) \leq \Delta$.

Proof of Claim 2 (outline). Assume that G is not 3-connected.



 s_1 has a neighbor in both A and B, and it has at least two neighbors in at least one of them. (Same for s_2 .) WMA either

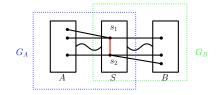
- s₁ has at least two neighbors in *A*, and s₂ has at least two neighbors in *B*, or
- *s*₁, *s*₂ each have exactly one neighbor in *A*, and at least two neighbors in *B*.

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 2. If G is not 3-connected, then $\chi(G) \leq \Delta$.

Proof of Claim 2 (outline, continued). Suppose s_1 has at least two neighbors in A, and s_2 has at least two neighbors in B.

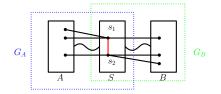


Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 2. If G is not 3-connected, then $\chi(G) \leq \Delta$.

Proof of Claim 2 (outline, continued). Suppose s_1 has at least two neighbors in A, and s_2 has at least two neighbors in B.



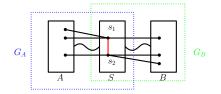
Then $\chi(G) \leq \chi(G + s_1 s_2) = \max{\chi(G_A), \chi(G_B)} \leq \Delta(G).$

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 2. If G is not 3-connected, then $\chi(G) \leq \Delta$.

Proof of Claim 2 (outline, continued). Suppose s_1 has at least two neighbors in A, and s_2 has at least two neighbors in B.



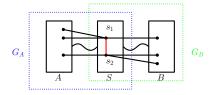
Then $\chi(G) \leq \chi(G + s_1 s_2) = \max{\chi(G_A), \chi(G_B)} \leq \Delta(G).$

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

Claim 2. If G is not 3-connected, then $\chi(G) \leq \Delta$.

Proof of Claim 2 (outline, continued). Suppose s_1 has at least two neighbors in A, and s_2 has at least two neighbors in B.



Then $\chi(G) \leq \chi(G + s_1 s_2) = \max{\chi(G_A), \chi(G_B)} \leq \Delta(G)$. The other case can be reduced to this one (details: Lecture Notes). This proves Claim 2.

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

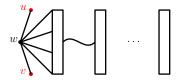
Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \ge 3$. In view of Claim 2, we may now assume that G is 3-connected.

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \geq 3$.

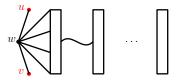
In view of Claim 2, we may now assume that G is 3-connected. Since G is connected and not complete, G has two vertices, call them u and v, at distance two from each other; let w be a common neighbor of u and v.



Since G is 3-connected, $G' := G \setminus \{u, v\}$ is connected. We now order V(G') according to the distance from w (starting with w), and we add u, v at the end of our list. This produces an ordering v_1, \ldots, v_n of V(G) (with $v_1 = w$, $v_{n-1} = u$, and $v_n = v$).

Let G be a connected graph that is neither a complete graph nor an odd cycle. Then $\chi(G) \leq \Delta(G)$.

Proof (outline). Reminder: G is Δ -regular, $\Delta \ge 3$, G is 3-connected.



We now color G greedily using the ordering v_n, \ldots, v_1 . This produces a proper coloring of G that uses at most Δ colors.

An *Euler circuit* (or *Eulerian circuit*) is a walk in the graph that passes through every edge exactly once and comes back to the origin vertex. A graph is *Eulerian* if it has an Eulerian circuit.

An *Euler circuit* (or *Eulerian circuit*) is a walk in the graph that passes through every edge exactly once and comes back to the origin vertex. A graph is *Eulerian* if it has an Eulerian circuit.

Theorem 2.1

A connected graph is Eulerian if and only if it has no vertices of odd degree.

Proof. Discrete Math.

A *k*-edge-coloring of a graph *G* is a mapping $c : E(G) \to C$, with |C| = k. Elements of *C* are called *colors*. An edge-coloring is proper if for any two distinct edges *e* and *f* that share an endpoint, we have that $c(e) \neq c(f)$.

A *k*-edge-coloring of a graph *G* is a mapping $c : E(G) \to C$, with |C| = k. Elements of *C* are called *colors*. An edge-coloring is proper if for any two distinct edges *e* and *f* that share an endpoint, we have that $c(e) \neq c(f)$.

Definition

A graph G is *k*-edge-colorable if it has a proper *k*-edge-coloring.

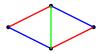
A *k*-edge-coloring of a graph *G* is a mapping $c : E(G) \to C$, with |C| = k. Elements of *C* are called *colors*. An edge-coloring is proper if for any two distinct edges *e* and *f* that share an endpoint, we have that $c(e) \neq c(f)$.

Definition

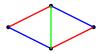
A graph G is k-edge-colorable if it has a proper k-edge-coloring.

Definition

The edge chromatic number (or chromatic index) of a graph G, denoted by $\chi'(G)$, is the minimum k such that G is k-edge-colorable.



- Clearly, in any proper edge-coloring of a graph *G*, all edges incident with the same vertex must receive a different color.
 - Consequently, $\chi'(G) \ge \Delta(G)$.



- Clearly, in any proper edge-coloring of a graph *G*, all edges incident with the same vertex must receive a different color.
 - Consequently, $\chi'(G) \ge \Delta(G)$.
- Note that any k-edge-coloring (not necessarily proper) can be represented by a partition $C = (E_1, \ldots, E_k)$ of E(G), where E_i denotes the subset of E(G) assigned color *i*.
 - Sets E_1, \ldots, E_k are called *color classes*.
 - A proper k-edge-coloring is one where each E_i is a matching.



- Clearly, in any proper edge-coloring of a graph *G*, all edges incident with the same vertex must receive a different color.
 - Consequently, $\chi'(G) \ge \Delta(G)$.
- Note that any k-edge-coloring (not necessarily proper) can be represented by a partition $C = (E_1, \ldots, E_k)$ of E(G), where E_i denotes the subset of E(G) assigned color *i*.
 - Sets E_1, \ldots, E_k are called *color classes*.
 - A proper k-edge-coloring is one where each E_i is a matching.

Every graph G satisfied $\chi'(G)\nu(G) \ge |E(G)|$. Consequently, if G has at least one edge, then $\chi'(G) \ge \left\lceil \frac{|E(G)|}{\nu(G)} \right\rceil$.

Proof. Lecture Notes.

• Our goal is to prove the following two theorems.

Theorem 3.4 If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Vizing's theorem

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

• Our goal is to prove the following two theorems.

Theorem 3.4 If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Vizing's theorem

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

• First, we need some definitions and technical lemmas.

• Given a (not necessarily proper) edge-coloring of a graph G, we say that color *i* is *represented* at a vertex *v* of G if some edge incident with *v* has color *i*.

• Given a (not necessarily proper) edge-coloring of a graph G, we say that color *i* is *represented* at a vertex *v* of G if some edge incident with *v* has color *i*.



Lemma 3.2

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline).

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline). We may assume that $\Delta(G) \ge 2$, for otherwise there is nothing to show. By hypothesis, G is connected and not an odd cycle; consequently, if G is 2-regular, then G is an even cycle.

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline). We may assume that $\Delta(G) \ge 2$, for otherwise there is nothing to show. By hypothesis, *G* is connected and not an odd cycle; consequently, if *G* is 2-regular, then *G* is an even cycle. Suppose first that *G* is Eulerian.

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline). We may assume that $\Delta(G) \ge 2$, for otherwise there is nothing to show. By hypothesis, *G* is connected and not an odd cycle; consequently, if *G* is 2-regular, then *G* is an even cycle. Suppose first that *G* is Eulerian. Let $v_0, e_1, v_1, e_2, v_2, \ldots, v_0$ be an Euler circuit of *G*, with v_0 chosen so that $d_G(v_0) \ge 4$ if possible, and chosen arbitrarily otherwise.

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline). We may assume that $\Delta(G) \ge 2$, for otherwise there is nothing to show. By hypothesis, G is connected and not an odd cycle; consequently, if G is 2-regular, then G is an even cycle. Suppose first that G is Eulerian. Let $v_0, e_1, v_1, e_2, v_2, \ldots, v_0$ be an Euler circuit of G, with v_0 chosen so that $d_G(v_0) \ge 4$ if possible, and chosen arbitrarily otherwise. Let E_1 be the set of odd indexed edges, and let E_2 the set of even indexed edges.

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline). We may assume that $\Delta(G) \ge 2$, for otherwise there is nothing to show. By hypothesis, G is connected and not an odd cycle; consequently, if G is 2-regular, then G is an even cycle. Suppose first that G is Eulerian. Let $v_0, e_1, v_1, e_2, v_2, \ldots, v_0$ be an Euler circuit of G, with v_0 chosen so that $d_G(v_0) \ge 4$ if possible, and chosen arbitrarily otherwise. Let E_1 be the set of odd indexed edges, and let E_2 the set of even indexed edges. Then (E_1, E_2) satisfies the lemma.

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline, continued).

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline, continued). So we may assume that G is not Eulerian.

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline, continued). So we may assume that G is not Eulerian. Construct G^* by adding a new vertex v^* and joining it to each vertex of odd degree in G.

Then by G^* is Eulerian.

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline, continued). So we may assume that G is not Eulerian. Construct G^* by adding a new vertex v^* and joining it to each vertex of odd degree in G.

Then by G^* is Eulerian. Now, let $v_0, e_1, v_1, e_2, v_2, \ldots, v_0$, with $v_0 = v^*$, be an Euler circuit of G^* .

Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

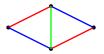
Proof (outline, continued). So we may assume that G is not Eulerian. Construct G^* by adding a new vertex v^* and joining it to each vertex of odd degree in G.

Then by G^* is Eulerian. Now, let $v_0, e_1, v_1, e_2, v_2, \ldots, v_0$, with $v_0 = v^*$, be an Euler circuit of G^* . Let E_1 be the set of odd indexed edges, and let E_2 the set of even indexed edges.

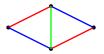
Let G be a connected graph that is not an odd cycle. Then G has a (not necessarily proper) 2-edge-coloring in which both colors are represented at each vertex of degree at least 2.

Proof (outline, continued). So we may assume that G is not Eulerian. Construct G^* by adding a new vertex v^* and joining it to each vertex of odd degree in G.

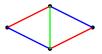
Then by G^* is Eulerian. Now, let $v_0, e_1, v_1, e_2, v_2, \ldots, v_0$, with $v_0 = v^*$, be an Euler circuit of G^* . Let E_1 be the set of odd indexed edges, and let E_2 the set of even indexed edges. Then the edge-coloring $(E_1 \cap E(G), E_2 \cap E(G))$ of G has the desired property.



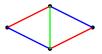
Given a (not necessarily proper) k-edge-coloring C and a vertex v of G, we denote by c_C(v) the number of distinct colors represented at v.



- Given a (not necessarily proper) k-edge-coloring C and a vertex v of G, we denote by c_C(v) the number of distinct colors represented at v.
- Note that $c_{\mathcal{C}}(v) \leq d_{\mathcal{G}}(v)$ for all $v \in V(\mathcal{G})$.

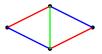


- Given a (not necessarily proper) k-edge-coloring C and a vertex v of G, we denote by c_C(v) the number of distinct colors represented at v.
- Note that $c_{\mathcal{C}}(v) \leq d_G(v)$ for all $v \in V(G)$.
- Furthermore, C is a proper k-edge-coloring if and only if $c_{\mathcal{C}}(v) = d_{\mathcal{G}}(v)$ for every vertex $v \in V(\mathcal{G})$.



- Given a (not necessarily proper) k-edge-coloring C and a vertex v of G, we denote by c_C(v) the number of distinct colors represented at v.
- Note that $c_{\mathcal{C}}(v) \leq d_{\mathcal{G}}(v)$ for all $v \in V(\mathcal{G})$.
- Furthermore, C is a proper k-edge-coloring if and only if $c_{\mathcal{C}}(v) = d_{\mathcal{G}}(v)$ for every vertex $v \in V(\mathcal{G})$.
- A k-edge-coloring \mathcal{C}' of G is an *improvement* of \mathcal{C} if

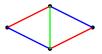
$$\sum_{v\in V(G)} c_{\mathcal{C}'}(v) > \sum_{v\in V(G)} c_{\mathcal{C}}(v).$$



- Given a (not necessarily proper) k-edge-coloring C and a vertex v of G, we denote by c_C(v) the number of distinct colors represented at v.
- Note that $c_{\mathcal{C}}(v) \leq d_{\mathcal{G}}(v)$ for all $v \in V(\mathcal{G})$.
- Furthermore, C is a proper k-edge-coloring if and only if $c_{\mathcal{C}}(v) = d_{\mathcal{G}}(v)$ for every vertex $v \in V(\mathcal{G})$.
- A k-edge-coloring \mathcal{C}' of G is an *improvement* of \mathcal{C} if

$$\sum_{v\in V(G)} c_{\mathcal{C}'}(v) > \sum_{v\in V(G)} c_{\mathcal{C}}(v).$$

• An *unimprovable k*-edge-coloring is one that cannot be improved.



- Given a (not necessarily proper) k-edge-coloring C and a vertex v of G, we denote by c_C(v) the number of distinct colors represented at v.
- Note that $c_{\mathcal{C}}(v) \leq d_{\mathcal{G}}(v)$ for all $v \in V(\mathcal{G})$.
- Furthermore, C is a proper k-edge-coloring if and only if $c_{\mathcal{C}}(v) = d_{\mathcal{G}}(v)$ for every vertex $v \in V(\mathcal{G})$.
- A k-edge-coloring \mathcal{C}' of G is an *improvement* of \mathcal{C} if

$$\sum_{\nu \in V(G)} c_{\mathcal{C}'}(\nu) > \sum_{\nu \in V(G)} c_{\mathcal{C}}(\nu).$$

- An *unimprovable k*-edge-coloring is one that cannot be improved.
- Note that any proper edge-coloring of a graph G is unimprovable. However, the converse does not hold in general.

Let $C = (E_1, \ldots, E_k)$ be an unimprovable k-edge-coloring of a graph G. If there is a vertex u of G and colors i and j such that i is not represented at u and j is represented at least twice at u, then the component of $G[E_i \cup E_j]$ that contains u is an odd cycle.

Proof (outline).

Let $C = (E_1, \ldots, E_k)$ be an unimprovable k-edge-coloring of a graph G. If there is a vertex u of G and colors i and j such that i is not represented at u and j is represented at least twice at u, then the component of $G[E_i \cup E_j]$ that contains u is an odd cycle.

Proof (outline). Let *H* be the component of $G[E_i \cup E_j]$ that contains *u*. Suppose that *H* is not an odd cycle. Then by Lemma 3.2, *H* has a 2-edge-coloring in which both colors are represented at every vertex of degree at least 2 in *H*.

Let $C = (E_1, \ldots, E_k)$ be an unimprovable k-edge-coloring of a graph G. If there is a vertex u of G and colors i and j such that i is not represented at u and j is represented at least twice at u, then the component of $G[E_i \cup E_j]$ that contains u is an odd cycle.

Proof (outline). Let *H* be the component of $G[E_i \cup E_j]$ that contains *u*. Suppose that *H* is not an odd cycle. Then by Lemma 3.2, *H* has a 2-edge-coloring in which both colors are represented at every vertex of degree at least 2 in *H*.

Recolor the edges of H with colors i and j in this way to get a new k-edge-coloring $C' = (E'_1, \ldots, E'_k)$ of G.

Let $C = (E_1, \ldots, E_k)$ be an unimprovable k-edge-coloring of a graph G. If there is a vertex u of G and colors i and j such that i is not represented at u and j is represented at least twice at u, then the component of $G[E_i \cup E_j]$ that contains u is an odd cycle.

Proof (outline). Let *H* be the component of $G[E_i \cup E_j]$ that contains *u*. Suppose that *H* is not an odd cycle. Then by Lemma 3.2, *H* has a 2-edge-coloring in which both colors are represented at every vertex of degree at least 2 in *H*.

Recolor the edges of H with colors i and j in this way to get a new k-edge-coloring $C' = (E'_1, \ldots, E'_k)$ of G. Then the resulting coloring is an improvement of C, a contradiction.

If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof.

If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof. Let G be a bipartite graph, and let $\Delta = \Delta(G)$.

If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof. Let G be a bipartite graph, and let $\Delta = \Delta(G)$. Clearly, $\chi'(G) \ge \Delta$, and we need only show that $\chi'(G) \le \Delta$.

If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof. Let G be a bipartite graph, and let $\Delta = \Delta(G)$. Clearly, $\chi'(G) \ge \Delta$, and we need only show that $\chi'(G) \le \Delta$. Let $\mathcal{C} = (E_1, \ldots, E_{\Delta})$ be an unimprovable Δ -edge-coloring of G.

If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof. Let G be a bipartite graph, and let $\Delta = \Delta(G)$. Clearly, $\chi'(G) \ge \Delta$, and we need only show that $\chi'(G) \le \Delta$. Let $\mathcal{C} = (E_1, \ldots, E_{\Delta})$ be an unimprovable Δ -edge-coloring of G. Suppose that \mathcal{C} is not a proper edge-coloring of G.

If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof. Let *G* be a bipartite graph, and let $\Delta = \Delta(G)$. Clearly, $\chi'(G) \ge \Delta$, and we need only show that $\chi'(G) \le \Delta$. Let $\mathcal{C} = (E_1, \ldots, E_{\Delta})$ be an unimprovable Δ -edge-coloring of *G*. Suppose that \mathcal{C} is not a proper edge-coloring of *G*. Then there exists a vertex $u \in V(G)$ such that some color *j* is represented at least twice at *u*, and (consequently) some color *i* is not represented at *u*.

If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof. Let *G* be a bipartite graph, and let $\Delta = \Delta(G)$. Clearly, $\chi'(G) \ge \Delta$, and we need only show that $\chi'(G) \le \Delta$. Let $\mathcal{C} = (E_1, \ldots, E_{\Delta})$ be an unimprovable Δ -edge-coloring of *G*. Suppose that \mathcal{C} is not a proper edge-coloring of *G*. Then there exists a vertex $u \in V(G)$ such that some color *j* is represented at least twice at *u*, and (consequently) some color *i* is not represented at *u*. But now by Lemma 3.3, the component of $G[E_i \cup E_j]$ that contains *u* is an odd cycle, contrary to the fact that bipartite graphs contain no odd cycles.

If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Proof. Let *G* be a bipartite graph, and let $\Delta = \Delta(G)$. Clearly, $\chi'(G) \geq \Delta$, and we need only show that $\chi'(G) \leq \Delta$. Let $\mathcal{C} = (E_1, \ldots, E_{\Delta})$ be an unimprovable Δ -edge-coloring of *G*. Suppose that \mathcal{C} is not a proper edge-coloring of *G*. Then there exists a vertex $u \in V(G)$ such that some color *j* is represented at least twice at *u*, and (consequently) some color *i* is not represented at *u*. But now by Lemma 3.3, the component of $G[E_i \cup E_j]$ that contains *u* is an odd cycle, contrary to the fact that bipartite graphs contain no odd cycles. So, \mathcal{C} is a proper Δ -edge-coloring of *G*, and it follows that $\chi'(G) \leq \Delta$.

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Proof (outline).

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Proof (outline). Let $\Delta = \Delta(G)$, and suppose that $\chi'(G) > \Delta + 1$.

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Proof (outline). Let $\Delta = \Delta(G)$, and suppose that $\chi'(G) > \Delta + 1$. Let $C = (E_1, \dots, E_{\Delta+1})$ be an unimprovable $(\Delta + 1)$ -edge-coloring.

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Proof (outline). Let $\Delta = \Delta(G)$, and suppose that $\chi'(G) > \Delta + 1$. Let $\mathcal{C} = (E_1, \ldots, E_{\Delta+1})$ be an unimprovable $(\Delta + 1)$ -edge-coloring. Since no vertex of G has degree greater than Δ , and since we have $\Delta + 1$ colors, we know that for each vertex of G, at least one of our $\Delta + 1$ colors is not represented at that vertex.

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Proof (outline). Let $\Delta = \Delta(G)$, and suppose that $\chi'(G) > \Delta + 1$. Let $\mathcal{C} = (E_1, \ldots, E_{\Delta+1})$ be an unimprovable $(\Delta + 1)$ -edge-coloring. Since no vertex of G has degree greater than Δ , and since we have $\Delta + 1$ colors, we know that for each vertex of G, at least one of our $\Delta + 1$ colors is not represented at that vertex. On the other hand, since $\chi'(G) > \Delta + 1$, we know that \mathcal{C} is not a proper edge-coloring of G, and consequently, at some vertex of G, some color is represented at least twice.

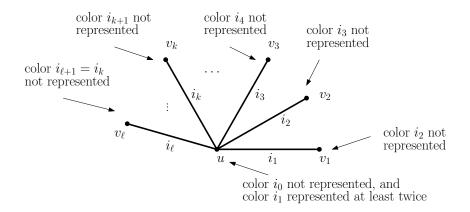
Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Proof (outline). Let $\Delta = \Delta(G)$, and suppose that $\chi'(G) > \Delta + 1$. Let $\mathcal{C} = (E_1, \ldots, E_{\Delta+1})$ be an unimprovable $(\Delta + 1)$ -edge-coloring. Since no vertex of G has degree greater than Δ , and since we have $\Delta + 1$ colors, we know that for each vertex of G, at least one of our $\Delta + 1$ colors is not represented at that vertex. On the other hand, since $\chi'(G) > \Delta + 1$, we know that \mathcal{C} is not a proper edge-coloring of G, and consequently, at some vertex of G, some color is represented at least twice.

Let vertex $u \in V(G)$ and colors $i_0, i_1 \in \{1, ..., \Delta + 1\}$ be such that i_0 is not represented at u, and i_1 is represented at least twice at u.

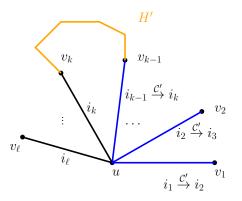
Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Proof (outline, continued).



Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

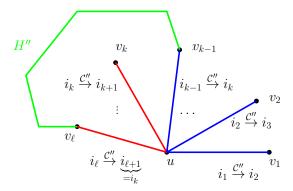
Proof (outline, continued).



Let H' be the component of $G[E'_{i_0} \cup E'_{i_k}]$ that contains u. By Lemma 3.3, H' is an odd cycle.

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

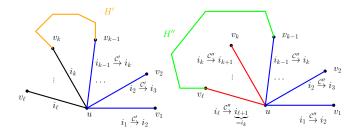
Proof (outline, continued).



Let H'' be the component of $G[E'_{i_0} \cup E'_{i_k}]$ that contains u. By Lemma 3.3, H'' is an odd cycle.

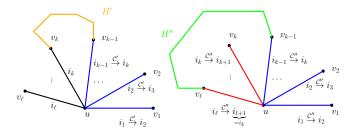
Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Proof (outline, continued).



Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Proof (outline, continued).



But H' and H'' are the same, except for one edge! This is impossible because they are both odd cycles.

Theorem 3.4

If G is a bipartite graph, then $\chi'(G) = \Delta(G)$.

Vizing's theorem

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

Theorem 3.4

If G is a bipartite graph, then
$$\chi'(G) = \Delta(G)$$
.

Vizing's theorem

Every graph G satisfies $\chi'(G) \leq \Delta(G) + 1$.

• It is NP-complete to decide whether $\chi' = \Delta$ (even when $\Delta = 3$). We omit the details.

Definition

Given a graph G, the line graph of G, denoted by L(G), is the graph with vertex set E(G), in which distinct $e, f \in E(G)$ are adjacent if and only if they share an endpoint in G.

Definition

Given a graph G, the line graph of G, denoted by L(G), is the graph with vertex set E(G), in which distinct $e, f \in E(G)$ are adjacent if and only if they share an endpoint in G.

• Obviously, $\chi(L(G)) = \chi'(G)$.

Lemma 3.6

Every graph G satisfies $\chi(L(G)) \leq \omega(L(G)) + 1$.

Proof.

Lemma 3.6

Every graph G satisfies $\chi(L(G)) \le \omega(L(G)) + 1$.

Proof. Let G be a graph. Then clearly, $\chi(L(G)) = \chi'(G)$. Furthermore, for any vertex v, the set of all edges incident with v in G is a clique of size $d_G(v)$ in L(G); consequently, $\omega(L(G)) \ge \Delta(G)$. But now

$$\chi(L(G)) = \chi'(G)$$

 $\leq \Delta(G) + 1$ by Vizing's theorem
 $\leq \omega(L(G)) + 1$