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A greedy coloring of a graph G with vertex ordering
V (G) = {v1, . . . , vn} is a coloring of G obtained as follows:
for each i ∈ {1, . . . , n}, we assign to vi the smallest positive
integer that was not used on any smaller-indexed neighbor of
vi .
For example, the greedy coloring applied to the graph below,
with the ordering v1, v2, v3, v4, yields the coloring c(v1) = 1,
c(v2) = 1, c(v3) = 2, and c(v4) = 3.
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The greedy coloring of a graph G always produces a proper
coloring of G , but the coloring need not be optimal, i.e. it
may use more than χ(G) colors.
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Lemma 1.1
Every graph G satisfies χ(G) ≤ ∆(G) + 1.

Proof. A greedy coloring of a graph G (using any ordering of
V (G)) produces a proper coloring of G that uses at most
∆(G) + 1 colors; so, χ(G) ≤ ∆(G) + 1.

If G is a complete graph or an odd cycle, then it is easy to see
that χ(G) = ∆(G) + 1.
However, if G is a connected graph other than a complete
graph or odd cycle, then χ(G) ≤ ∆(G).

Brooks’ theorem
Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then χ(G) ≤ ∆(G).

First, we prove a technical lemma.
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Lemma 1.2
If G is connected and not regular, then χ(G) ≤ ∆(G).

Proof (outline).

Let G be a connected graph that is not regular,
and fix a vertex v ∈ V (G) such that dG(v) ≤ ∆(G)− 1. We order
V (G) according to the distance from v , that is, we list v first, then
we list all vertices at distance one from v (in any order), then we
list all vertices at distance two from v (in any order), etc. Let
v1, . . . , vn be the resulting ordering of G .

. . .v
dG(v) ≤ ∆(G) − 1

We now color G greedily using the ordering vn, . . . , v1, and we
obtain a proper coloring of G that uses at most ∆(G) colors.
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Brooks’ theorem
Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then χ(G) ≤ ∆(G).

Proof (outline).

To simplify notation, we set ∆ := ∆(G). WTS
χ(G) ≤ ∆.
Since G is connected and not complete, we see that ∆ ≥ 2. Next,
suppose that ∆ = 2. Since G is connected, it follows that G is
either a path on at least two edges or a cycle. But by hypothesis,
G is not an odd cycle, and so G is either a path on at least two
edges or an even cycle. It is now obvious that χ(G) ≤ ∆.
From now on, we assume that ∆ ≥ 3. Note that this implies that
|V (G)| ≥ 4. We may further assume that G is regular, for
otherwise, we are done by Lemma 1.2.
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Brooks’ theorem
Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then χ(G) ≤ ∆(G).

Proof (outline). Reminder: G is ∆-regular, ∆ ≥ 3.

Claim 1. If G has a clique-cutset, then χ(G) ≤ ∆.

Proof of Claim 1 (outline). Suppose that G has a clique-cutset,
and let C be a minimal clique-cutset of G . Let A1, . . . ,At (t ≥ 2)
be the vertex sets of the components of G \ C . For all
i ∈ {1, . . . , t}, let Gi := G [Ai ∪ C ].
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Brooks’ theorem
Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then χ(G) ≤ ∆(G).

Proof (outline). Reminder: G is ∆-regular, ∆ ≥ 3.
Claim 1. If G has a clique-cutset, then χ(G) ≤ ∆.

Proof of Claim 1 (outline, continued).
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χ(G) = max{χ(G1), . . . , χ(Gt)} by Lemma 2.1 from
Lecture Notes 4

≤ ∆(G) by Lemma 1.2

This proves Claim 1.



Brooks’ theorem
Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then χ(G) ≤ ∆(G).

Proof (outline). Reminder: G is ∆-regular, ∆ ≥ 3.
Claim 2. If G is not 3-connected, then χ(G) ≤ ∆.

Proof of Claim 2 (outline).

Assume that G is not 3-connected.
s1

s2

A BS

s1 has a neighbor in both A and B, and it has at least two
neighbors in at least one of them. (Same for s2.) WMA either

s1 has at least two neighbors in A, and s2 has at least two
neighbors in B, or
s1, s2 each have exactly one neighbor in A, and at least two
neighbors in B.
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Proof of Claim 2 (outline, continued). Suppose s1 has at least two
neighbors in A, and s2 has at least two neighbors in B.
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GA GB

Then χ(G) ≤ χ(G + s1s2) = max{χ(GA), χ(GB)} ≤ ∆(G).
The other case can be reduced to this one (details: Lecture
Notes). This proves Claim 2.
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Brooks’ theorem
Let G be a connected graph that is neither a complete graph nor
an odd cycle. Then χ(G) ≤ ∆(G).

Proof (outline). Reminder: G is ∆-regular, ∆ ≥ 3.

In view of Claim 2, we may now assume that G is 3-connected.
Since G is connected and not complete, G has two vertices, call
them u and v , at distance two from each other; let w be a
common neighbor of u and v .

. . .

v

u

w

Since G is 3-connected, G ′ := G \ {u, v} is connected. We now
order V (G ′) according to the distance from w (starting with w),
and we add u, v at the end of our list. This produces an ordering
v1, . . . , vn of V (G) (with v1 = w , vn−1 = u, and vn = v).
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We now color G greedily using the ordering vn, . . . , v1. This
produces a proper coloring of G that uses at most ∆ colors.



Definition
An Euler circuit (or Eulerian circuit) is a walk in the graph that
passes through every edge exactly once and comes back to the
origin vertex. A graph is Eulerian if it has an Eulerian circuit.

Theorem 2.1
A connected graph is Eulerian if and only if it has no vertices of
odd degree.

Proof. Discrete Math.
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Definition
A k-edge-coloring of a graph G is a mapping c : E (G)→ C , with
|C | = k. Elements of C are called colors. An edge-coloring is
proper if for any two distinct edges e and f that share an endpoint,
we have that c(e) 6= c(f ).

Definition
A graph G is k-edge-colorable if it has a proper k-edge-coloring.

Definition
The edge chromatic number (or chromatic index) of a graph G ,
denoted by χ′(G), is the minimum k such that G is
k-edge-colorable.
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Clearly, in any proper edge-coloring of a graph G , all edges
incident with the same vertex must receive a different color.

Consequently, χ′(G) ≥ ∆(G).

Note that any k-edge-coloring (not necessarily proper) can be
represented by a partition C = (E1, . . . ,Ek) of E (G), where Ei
denotes the subset of E (G) assigned color i .

Sets E1, . . . ,Ek are called color classes.
A proper k-edge-coloring is one where each Ei is a matching.

Lemma 3.1
Every graph G satisfied χ′(G)ν(G) ≥ |E (G)|. Consequently, if G
has at least one edge, then χ′(G) ≥

⌈
|E(G)|
ν(G)

⌉
.

Proof. Lecture Notes.
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Our goal is to prove the following two theorems.

Theorem 3.4
If G is a bipartite graph, then χ′(G) = ∆(G).

Vizing’s theorem
Every graph G satisfies χ′(G) ≤ ∆(G) + 1.

First, we need some definitions and technical lemmas.
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Given a (not necessarily proper) edge-coloring of a graph G ,
we say that color i is represented at a vertex v of G if some
edge incident with v has color i .

Lemma 3.2
Let G be a connected graph that is not an odd cycle. Then G has
a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.
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Let G be a connected graph that is not an odd cycle. Then G has
a (not necessarily proper) 2-edge-coloring in which both colors are
represented at each vertex of degree at least 2.

Proof (outline).

We may assume that ∆(G) ≥ 2, for otherwise
there is nothing to show. By hypothesis, G is connected and not an
odd cycle; consequently, if G is 2-regular, then G is an even cycle.
Suppose first that G is Eulerian. Let v0, e1, v1, e2, v2, . . . , v0 be an
Euler circuit of G , with v0 chosen so that dG(v0) ≥ 4 if possible,
and chosen arbitrarily otherwise. Let E1 be the set of odd indexed
edges, and let E2 the set of even indexed edges. Then (E1,E2)
satisfies the lemma.
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Given a (not necessarily proper) k-edge-coloring C and a
vertex v of G , we denote by cC(v) the number of distinct
colors represented at v .

Note that cC(v) ≤ dG(v) for all v ∈ V (G).
Furthermore, C is a proper k-edge-coloring if and only if
cC(v) = dG(v) for every vertex v ∈ V (G).
A k-edge-coloring C′ of G is an improvement of C if∑

v∈V (G)
cC′(v) >

∑
v∈V (G)

cC(v).

An unimprovable k-edge-coloring is one that cannot be
improved.
Note that any proper edge-coloring of a graph G is
unimprovable. However, the converse does not hold in general.
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Lemma 3.3
Let C = (E1, . . . ,Ek) be an unimprovable k-edge-coloring of a
graph G . If there is a vertex u of G and colors i and j such that i
is not represented at u and j is represented at least twice at u,
then the component of G [Ei ∪ Ej ] that contains u is an odd cycle.

Proof (outline).

Let H be the component of G [Ei ∪ Ej ] that
contains u. Suppose that H is not an odd cycle. Then by
Lemma 3.2, H has a 2-edge-coloring in which both colors are
represented at every vertex of degree at least 2 in H.
Recolor the edges of H with colors i and j in this way to get a new
k-edge-coloring C′ = (E ′1, . . . ,E ′k) of G . Then the resulting
coloring is an improvement of C, a contradiction.
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Theorem 3.4
If G is a bipartite graph, then χ′(G) = ∆(G).

Proof.

Let G be a bipartite graph, and let ∆ = ∆(G). Clearly,
χ′(G) ≥ ∆, and we need only show that χ′(G) ≤ ∆. Let
C = (E1, . . . ,E∆) be an unimprovable ∆-edge-coloring of G .
Suppose that C is not a proper edge-coloring of G . Then there
exists a vertex u ∈ V (G) such that some color j is represented at
least twice at u, and (consequently) some color i is not represented
at u. But now by Lemma 3.3, the component of G [Ei ∪ Ej ] that
contains u is an odd cycle, contrary to the fact that bipartite
graphs contain no odd cycles. So, C is a proper ∆-edge-coloring of
G , and it follows that χ′(G) ≤ ∆.
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Vizing’s theorem
Every graph G satisfies χ′(G) ≤ ∆(G) + 1.

Proof (outline).

Let ∆ = ∆(G), and suppose that χ′(G) > ∆ + 1.
Let C = (E1, . . . ,E∆+1) be an unimprovable (∆ + 1)-edge-coloring.
Since no vertex of G has degree greater than ∆, and since we have
∆ + 1 colors, we know that for each vertex of G , at least one of
our ∆ + 1 colors is not represented at that vertex. On the other
hand, since χ′(G) > ∆ + 1, we know that C is not a proper
edge-coloring of G , and consequently, at some vertex of G , some
color is represented at least twice.

Let vertex u ∈ V (G) and colors i0, i1 ∈ {1, . . . ,∆ + 1} be such that
i0 is not represented at u, and i1 is represented at least twice at u.
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Every graph G satisfies χ′(G) ≤ ∆(G) + 1.

Proof (outline, continued).
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Lemma 3.3, H ′ is an odd cycle.
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Proof (outline, continued).
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But H ′ and H ′′ are the same, except for one edge! This is
impossible because they are both odd cycles.
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Theorem 3.4
If G is a bipartite graph, then χ′(G) = ∆(G).

Vizing’s theorem
Every graph G satisfies χ′(G) ≤ ∆(G) + 1.

It is NP-complete to decide whether χ′ = ∆ (even when
∆ = 3). We omit the details.
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Definition
Given a graph G , the line graph of G , denoted by L(G), is the
graph with vertex set E (G), in which distinct e, f ∈ E (G) are
adjacent if and only if they share an endpoint in G .
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Obviously, χ(L(G)) = χ′(G).
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Lemma 3.6
Every graph G satisfies χ(L(G)) ≤ ω(L(G)) + 1.

Proof.

Let G be a graph. Then clearly, χ(L(G)) = χ′(G).
Furthermore, for any vertex v , the set of all edges incident with v
in G is a clique of size dG(v) in L(G); consequently,
ω(L(G)) ≥ ∆(G). But now

χ(L(G)) = χ′(G)

≤ ∆(G) + 1 by Vizing’s theorem

≤ ω(L(G)) + 1.
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