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Definition
A graph H is a topological minor of a graph G , and we write
H �t G , if G contains some subdivision of H as a subgraph. The
vertices of this subdivision that correspond to the vertices of H are
called branch vertices.

The graph below contains K2,4 as a topological minor.



Definition
A graph H is a minor of a graph G , and we write H �m G , if there
exists a family {Xv}v∈V (H) of pairwise disjoint, non-empty subsets
of V (G), called branch sets, such that

G [Xv ] is connected for all v ∈ V (H), and
for all uv ∈ E (H), there is an edge between Xu and Xv in G .

For example, the graph below (on the right) contains K2,4 as
a minor.
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Kuratowski’s theorem [Kuratowski, 1930; Wagner, 1937]
Let G be a graph. Then the following are equivalent:
(a) G is planar;
(b) G contains neither K5 nor K3,3 as a minor;
(c) G contains neither K5 nor K3,3 as a topological minor.

K5 K3,3

We proved “(a) =⇒ (b)” and “(b) ⇐⇒ (c)” in the previous
lecture.
In this lecture, we prove “(b) =⇒ (a).”
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A path addition (sometimes called ear addition) to a graph H
is the addition to H of a path between two distinct vertices of
H in such a way that no internal vertex and no edge of the
path belongs to H.

The Ear Lemma
A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

Proof. Combinatorics & Graph Theory 1.
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The Ear Lemma
A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

Lemma 1.2
For any plane drawing of a planar 2-connected graph G , the
boundary of each face is a cycle of G .

Proof. Lecture Notes (using the Ear Lemma).
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Lemma 1.3
Let G be a 3-connected graph that contains neither K5 nor K3,3 as
a minor. Then G is planar.

Proof (outline).

We may assume inductively that the lemma is true
for graphs on fewer than |V (G)| vertices, that is, that for all
3-connected graphs H with |V (H)| < |V (G)| and K5,K3,3 6�m H,
we have that H is planar.
Since G is 3-connected, we know that either G ∼= K4 or
|V (G)| > 4. If G ∼= K4, then it is clear that G is planar, and we
are done. So assume that |V (G)| > 4. Then Lemma 1.2 from
Lecture Notes 3 guarantees that G has an edge xy such that
H := G/xy is 3-connected. Then H �m G , and so K5,K3,3 6�m H.
Now H is a 3-connected graph on |V (G)| − 1 vetrices, with
K5,K3,3 6�m H; so, by the induction hypothesis, H is planar.
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Lemma 1.3
Let G be a 3-connected graph that contains neither K5 nor K3,3 as
a minor. Then G is planar.

Proof (outline, continued). Fix a plane drawing of H. If we erase
vxy and all the edges incident in it, we obtain a plane drawing of
H \ vxy . Now, let f be the face of this drawing of H \ vxy such that
vxy is in the interior of f . Since H is 3-connected, H \ vxy is
2-connected; so, by Lemma 1.3, the boundary of f is a cycle of
H \ vxy , say C . (Note that C is also a cycle of H and of G .)
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Lemma 1.3
Let G be a 3-connected graph that contains neither K5 nor K3,3 as
a minor. Then G is planar.

Proof (outline, continued).

vxy

C

Then NH(vxy ) ⊆ V (C), and consequently, NG(x) ⊆ {y} ∪ V (C)
and NG(y) ⊆ {x} ∪ V (C). Since G is 3-connected, we know that
δ(G) ≥ 3, and in particular, dG(x) ≥ 3; so, since
NG(x) ⊆ {y} ∪ V (C), x has at least two neighbors in V (C).
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Lemma 1.3
Let G be a 3-connected graph that contains neither K5 nor K3,3 as
a minor. Then G is planar.

Proof (outline, continued). Let x1, . . . , xk be the neighbors of x in
V (C), listed in cyclical order (along the cycle C). For each
i ∈ {1, . . . , k}, let Pi be the path from xi to xi+1 (we consider
xk+1 = x1) along C .
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If for some i ∈ {1, . . . , k}, we have that NG(y) ⊆ {x} ∪ V (Pi ),
then G is planar (details: Lecture Notes).
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Lemma 1.3
Let G be a 3-connected graph that contains neither K5 nor K3,3 as
a minor. Then G is planar.

Proof (outline, continued). So, suppose that for all i ∈ {1, . . . , k},
we have that NG(y) 6⊆ {x} ∪ V (Pi ). Then either x and y have
three common neighbors in V (C), or y has two neighbors
a, b ∈ V (C) that are separated in C by two neighbors of x , say xi
and xj .
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But then G contains K5 or K3,3 as a topological minor, a
contradiction.
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Lemma 1.3
Let G be a 3-connected graph that contains neither K5 nor K3,3 as
a minor. Then G is planar.

Lemma 1.4
Let G be a graph that contains neither K5 nor K3,3 as a minor.
Then G is planar.

Proof (outline). We may assume inductively that for all graphs H
on fewer than |V (G)| vertices, if K5,K3,3 6�m H, then H is planar.
If |V (G)| ≤ 3, then it is clear that G is planar. From now on, we
assume that |V (G)| ≥ 4.
Suppose first that G is disconnected, and let G1, . . . ,Gt be the
components of G . Then by the induction hypothesis, G1, . . . ,Gt
are all planar. We obtain a plane drawing of G by drawing
G1, . . . ,Gt in the plane side by side.
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Lemma 1.4
Let G be a graph that contains neither K5 nor K3,3 as a minor.
Then G is planar.

Proof (outline, continued). Next, suppose that G is connected, but
not 2-connected.

Then there exists a vertex v ∈ V (G) such that
G \ v is disconnected. Let A be the vertex set of one component of
G \ v , and let B := V (G) \ (A ∪ {v}). Set GA := G [A ∪ {v}] and
GB := G [B ∪ {v}].

vA
B

By the induction hypothesis, GA and GB are both planar.
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Lemma 1.4
Let G be a graph that contains neither K5 nor K3,3 as a minor.
Then G is planar.

Proof (outline, continued). We draw GA in the plane without any
edge crossings, and we let f be some face of this drawing such
that v lies on the boundary of f . We then draw GB inside f , with
v coinciding in the drawing of GA and GB.
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GB



Lemma 1.4
Let G be a graph that contains neither K5 nor K3,3 as a minor.
Then G is planar.

Proof (outline, continued).

If G is 2-connected, but not
3-connected: Lecture Notes. If G is 3-connected, then we are done
by Lemma 1.3.

This completes the proof of Kuratowski’s theorem.

Kuratowski’s theorem [Kuratowski, 1930; Wagner, 1937]
Let G be a graph. Then the following are equivalent:
(a) G is planar;
(b) G contains neither K5 nor K3,3 as a minor;
(c) G contains neither K5 nor K3,3 as a topological minor.
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Hajós’ Conjecture
For every positive integer k, every graph of chromatic number at
least k contains Kk as a topological minor.

Hajós’ Conjecture is obviously true for k = 1 and k = 2.
For k = 3, we observe that if a graph G satisfies χ(G) ≥ 3,
then G is not a forest, and in particular, G contains a cycle.
Every cycle is a subdivision of K3, i.e. every cycle contains K3
as a topological minor. So, if χ(G) ≥ 3, then K3 �t G .
Hajós’ Conjecture is also true for k = 4, as we now show.

But first, we need a definition and a lemma.
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Definition
A clique-cutset of a graph G is a clique C $ V (G) of G such that
G \ C is disconnected.a

aIn particular, if G is disconnected, then ∅ is a clique-cutset of G .

A 6= ∅ C B 6= ∅

G

clique cutset



Lemma 2.1
Let G be a graph, and let C be a clique-cutset of G . Let
A1, . . . ,At be the vertex sets of the components of G \ C . Then
χ(G) = max{χ(G [A1 ∪ C ]), . . . , χ(G [At ∪ C ])}.

Proof (outline).

For all i ∈ {1, . . . , t}, set Gi := G [Ai ∪ C ] and
χi := χ(Gi ). WTS χ(G) = max{χ1, . . . , χt}.

C

A1

At

...

Obviously, max{χ1, . . . , χt} ≤ χ(G). For the reverse inequality, fix
optimal colorings of G1, . . . ,Gt using the color set
{1, . . . ,max{χ1, . . . , χt}}. WMA these colorings agree on the
clique C (details: Lecture Notes). Now the union of these colorings
is a proper coloring of G that uses at most max{χ1, . . . , χt} colors.
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Theorem 2.2 [Dirac, 1952]
Every graph of chromatic number at least 4 contains K4 as a
topological minor.

Proof (outline).

Fix a graph G , and assume inductively that for all
graphs G ′ with |V (G ′)| < |V (G)|, if χ(G ′) ≥ 4, then K4 �t G ′.
We assume that χ(G) ≥ 4, and we show that K4 �t G . We may
assume that all proper induced subgraphs of G are 3-colorable, for
otherwise, the result follows from the induction hypothesis. In
particular, this means that χ(G) = 4.
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Suppose first that for all i ∈ {1, . . . , t}, there exists a 3-coloring ci
of Gi that assigns distinct colors to x and y . After possibly
permuting colors, we may assume that for all i ∈ {1, . . . , t}, we
have that ci : Ai ∪ S → {1, 2, 3}, ci (x) = 1, and ci (y) = 2. But
now the union of c1, . . . , ct is a proper coloring of G that uses at
most three colors, contrary to the fact that χ(G) = 4.
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the same color to x and y . But then χ(G1 + xy) = 4. So, by the
induction hypothesis, we have that K4 �t G1 + xy .
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Now, since G is 2-connected, we see that there exists an induced
path P in G2 between x and y .

But now G [A1 ∪ V (P)] is a
subdivision of G1 + xy , and so G1 + xy �t G . Since
K4 �t G1 + xy , we have that K4 �t G . This proves Claim 2.
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Every graph of chromatic number at least 4 contains K4 as a
topological minor.

Proof (outline, continued). In view of Claim 2, we may now
assume that G is 3-connected.

Claim 3. Either G contains a cycle of length at least
four, or K4 �t G.

Proof of Claim 3. Since G is 3-connected, we have that δ(G) ≥ 3.
Now, fix any vertex u of G ; then dG(u) ≥ δ(G) ≥ 3. If NG(u) is a
clique, then G contains a K4 as a subgraph, and therefore as a
topological minor, and we are done.
So, we may assume that some two neighbors (call them u1 and u2)
of u are non-adjacent.
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Proof (outline, continued).
Claim 3. Either G contains a cycle of length at least
four, or K4 �t G.

Proof of Claim 3. Since G is 3-connected, we know that G \ u is
connected, and consequently, G \ u contains a path P between u1
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u
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P
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This proves Claim 3.
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P and Q either do or do not intersect.
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above.
Hajós’ Conjecture is open for k = 5 and k = 6.
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Four Color Theorem.

The Four Color Theorem [Appel and Haken, 1976]
Every planar graph is 4-colorable.

in 1993, Robertson, Seymour, and Thomas proved that
Hadwiger’s Conjecture is true for k = 6.
For k ≥ 7, the conjecture remains open.
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