NDMI012: Combinatorics and Graph Theory 2

Lecture #4

Minors and planar graphs (part II)

Irena Penev

March 24, 2021

Definition

A graph *H* is a *topological minor* of a graph *G*, and we write $H \leq_t G$, if *G* contains some subdivision of *H* as a subgraph. The vertices of this subdivision that correspond to the vertices of *H* are called *branch vertices*.

• The graph below contains $K_{2,4}$ as a topological minor.

Definition

A graph *H* is a *minor* of a graph *G*, and we write $H \leq_m G$, if there exists a family $\{X_v\}_{v \in V(H)}$ of pairwise disjoint, non-empty subsets of V(G), called *branch sets*, such that

- $G[X_v]$ is connected for all $v \in V(H)$, and
- for all $uv \in E(H)$, there is an edge between X_u and X_v in G.
- For example, the graph below (on the right) contains $K_{2,4}$ as a minor.

Kuratowski's theorem [Kuratowski, 1930; Wagner, 1937]

Let G be a graph. Then the following are equivalent:

- (a) G is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.

Kuratowski's theorem [Kuratowski, 1930; Wagner, 1937]

Let G be a graph. Then the following are equivalent:

- (a) G is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.

• We proved "(a) \implies (b)" and "(b) \iff (c)" in the previous lecture.

Kuratowski's theorem [Kuratowski, 1930; Wagner, 1937]

Let G be a graph. Then the following are equivalent:

- (a) G is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.

- We proved "(a) \implies (b)" and "(b) \iff (c)" in the previous lecture.
- In this lecture, we prove "(b) \Longrightarrow (a)."

• A path addition (sometimes called *ear addition*) to a graph H is the addition to H of a path between two distinct vertices of H in such a way that no internal vertex and no edge of the path belongs to H.

• A path addition (sometimes called *ear addition*) to a graph H is the addition to H of a path between two distinct vertices of H in such a way that no internal vertex and no edge of the path belongs to H.

Proof. Combinatorics & Graph Theory 1.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be obtained from a cycle by repeated ear addition.

Lemma 1.2

For any plane drawing of a planar 2-connected graph G, the boundary of each face is a cycle of G.

Proof. Lecture Notes (using the Ear Lemma).

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline).

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline). We may assume inductively that the lemma is true for graphs on fewer than |V(G)| vertices, that is, that for all 3-connected graphs H with |V(H)| < |V(G)| and $K_5, K_{3,3} \not\preceq_m H$, we have that H is planar.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline). We may assume inductively that the lemma is true for graphs on fewer than |V(G)| vertices, that is, that for all 3-connected graphs H with |V(H)| < |V(G)| and $K_5, K_{3,3} \not\leq_m H$, we have that H is planar.

Since G is 3-connected, we know that either $G \cong K_4$ or |V(G)| > 4.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline). We may assume inductively that the lemma is true for graphs on fewer than |V(G)| vertices, that is, that for all 3-connected graphs H with |V(H)| < |V(G)| and $K_5, K_{3,3} \not \preceq_m H$, we have that H is planar.

Since G is 3-connected, we know that either $G \cong K_4$ or |V(G)| > 4. If $G \cong K_4$, then it is clear that G is planar, and we are done. So assume that |V(G)| > 4.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline). We may assume inductively that the lemma is true for graphs on fewer than |V(G)| vertices, that is, that for all 3-connected graphs H with |V(H)| < |V(G)| and $K_5, K_{3,3} \not\preceq_m H$, we have that H is planar.

Since *G* is 3-connected, we know that either $G \cong K_4$ or |V(G)| > 4. If $G \cong K_4$, then it is clear that *G* is planar, and we are done. So assume that |V(G)| > 4. Then Lemma 1.2 from Lecture Notes 3 guarantees that *G* has an edge *xy* such that H := G/xy is 3-connected.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline). We may assume inductively that the lemma is true for graphs on fewer than |V(G)| vertices, that is, that for all 3-connected graphs H with |V(H)| < |V(G)| and $K_5, K_{3,3} \not \preceq_m H$, we have that H is planar.

Since *G* is 3-connected, we know that either $G \cong K_4$ or |V(G)| > 4. If $G \cong K_4$, then it is clear that *G* is planar, and we are done. So assume that |V(G)| > 4. Then Lemma 1.2 from Lecture Notes 3 guarantees that *G* has an edge *xy* such that H := G/xy is 3-connected. Then $H \preceq_m G$, and so $K_5, K_{3,3} \not\preceq_m H$.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline). We may assume inductively that the lemma is true for graphs on fewer than |V(G)| vertices, that is, that for all 3-connected graphs H with |V(H)| < |V(G)| and $K_5, K_{3,3} \not\preceq_m H$, we have that H is planar.

Since *G* is 3-connected, we know that either $G \cong K_4$ or |V(G)| > 4. If $G \cong K_4$, then it is clear that *G* is planar, and we are done. So assume that |V(G)| > 4. Then Lemma 1.2 from Lecture Notes 3 guarantees that *G* has an edge *xy* such that H := G/xy is 3-connected. Then $H \preceq_m G$, and so $K_5, K_{3,3} \not\preceq_m H$. Now *H* is a 3-connected graph on |V(G)| - 1 vetrices, with $K_5, K_{3,3} \not\preceq_m H$; so, by the induction hypothesis, *H* is planar.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). Fix a plane drawing of H. If we erase v_{xy} and all the edges incident in it, we obtain a plane drawing of $H \setminus v_{xy}$. Now, let f be the face of this drawing of $H \setminus v_{xy}$ such that v_{xy} is in the interior of f. Since H is 3-connected, $H \setminus v_{xy}$ is 2-connected; so, by Lemma 1.3, the boundary of f is a cycle of $H \setminus v_{xy}$, say C. (Note that C is also a cycle of H and of G.)

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued).

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued).

Then $N_H(v_{xy}) \subseteq V(C)$, and consequently, $N_G(x) \subseteq \{y\} \cup V(C)$ and $N_G(y) \subseteq \{x\} \cup V(C)$.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued).

Then $N_H(v_{xy}) \subseteq V(C)$, and consequently, $N_G(x) \subseteq \{y\} \cup V(C)$ and $N_G(y) \subseteq \{x\} \cup V(C)$. Since G is 3-connected, we know that $\delta(G) \ge 3$, and in particular, $d_G(x) \ge 3$; so, since $N_G(x) \subseteq \{y\} \cup V(C)$, x has at least two neighbors in V(C).

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). Let x_1, \ldots, x_k be the neighbors of x in V(C), listed in cyclical order (along the cycle C). For each $i \in \{1, \ldots, k\}$, let P_i be the path from x_i to x_{i+1} (we consider $x_{k+1} = x_1$) along C.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). Let x_1, \ldots, x_k be the neighbors of x in V(C), listed in cyclical order (along the cycle C). For each $i \in \{1, \ldots, k\}$, let P_i be the path from x_i to x_{i+1} (we consider $x_{k+1} = x_1$) along C.

If for some $i \in \{1, ..., k\}$, we have that $N_G(y) \subseteq \{x\} \cup V(P_i)$, then G is planar (details: Lecture Notes).

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). So, suppose that for all $i \in \{1, ..., k\}$, we have that $N_G(y) \not\subseteq \{x\} \cup V(P_i)$. Then either x and y have three common neighbors in V(C), or y has two neighbors $a, b \in V(C)$ that are separated in C by two neighbors of x, say x_i and x_j .

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). So, suppose that for all $i \in \{1, ..., k\}$, we have that $N_G(y) \not\subseteq \{x\} \cup V(P_i)$. Then either x and y have three common neighbors in V(C), or y has two neighbors $a, b \in V(C)$ that are separated in C by two neighbors of x, say x_i and x_j .

But then G contains K_5 or $K_{3,3}$ as a topological minor, a contradiction.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Lemma 1.4

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline). We may assume inductively that for all graphs H on fewer than |V(G)| vertices, if $K_5, K_{3,3} \not\preceq_m H$, then H is planar.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Lemma 1.4

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline). We may assume inductively that for all graphs H on fewer than |V(G)| vertices, if $K_5, K_{3,3} \not\preceq_m H$, then H is planar. If $|V(G)| \leq 3$, then it is clear that G is planar. From now on, we assume that $|V(G)| \geq 4$.

Let G be a 3-connected graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Lemma 1.4

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline). We may assume inductively that for all graphs H on fewer than |V(G)| vertices, if $K_5, K_{3,3} \not\preceq_m H$, then H is planar. If $|V(G)| \leq 3$, then it is clear that G is planar. From now on, we assume that $|V(G)| \geq 4$.

Suppose first that G is disconnected, and let G_1, \ldots, G_t be the components of G. Then by the induction hypothesis, G_1, \ldots, G_t are all planar. We obtain a plane drawing of G by drawing G_1, \ldots, G_t in the plane side by side.

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). Next, suppose that G is connected, but not 2-connected.

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). Next, suppose that *G* is connected, but not 2-connected. Then there exists a vertex $v \in V(G)$ such that $G \setminus v$ is disconnected.

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). Next, suppose that *G* is connected, but not 2-connected. Then there exists a vertex $v \in V(G)$ such that $G \setminus v$ is disconnected. Let *A* be the vertex set of one component of $G \setminus v$, and let $B := V(G) \setminus (A \cup \{v\})$. Set $G_A := G[A \cup \{v\}]$ and $G_B := G[B \cup \{v\}]$.

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). Next, suppose that *G* is connected, but not 2-connected. Then there exists a vertex $v \in V(G)$ such that $G \setminus v$ is disconnected. Let *A* be the vertex set of one component of $G \setminus v$, and let $B := V(G) \setminus (A \cup \{v\})$. Set $G_A := G[A \cup \{v\}]$ and $G_B := G[B \cup \{v\}]$.

By the induction hypothesis, G_A and G_B are both planar.

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). We draw G_A in the plane without any edge crossings, and we let f be some face of this drawing such that v lies on the boundary of f. We then draw G_B inside f, with v coinciding in the drawing of G_A and G_B .

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued).

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). If *G* is 2-connected, but not 3-connected: Lecture Notes.
Lemma 1.4

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). If G is 2-connected, but not 3-connected: Lecture Notes. If G is 3-connected, then we are done by Lemma 1.3.

Lemma 1.4

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). If G is 2-connected, but not 3-connected: Lecture Notes. If G is 3-connected, then we are done by Lemma 1.3.

• This completes the proof of Kuratowski's theorem.

Lemma 1.4

Let G be a graph that contains neither K_5 nor $K_{3,3}$ as a minor. Then G is planar.

Proof (outline, continued). If G is 2-connected, but not 3-connected: Lecture Notes. If G is 3-connected, then we are done by Lemma 1.3.

• This completes the proof of Kuratowski's theorem.

Kuratowski's theorem [Kuratowski, 1930; Wagner, 1937]

Let G be a graph. Then the following are equivalent:

- (a) G is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.

For every positive integer k, every graph of chromatic number at least k contains K_k as a topological minor.

• Hajós' Conjecture is obviously true for k = 1 and k = 2.

- Hajós' Conjecture is obviously true for k = 1 and k = 2.
- For k = 3, we observe that if a graph G satisfies χ(G) ≥ 3, then G is not a forest, and in particular, G contains a cycle. Every cycle is a subdivision of K₃, i.e. every cycle contains K₃ as a topological minor. So, if χ(G) ≥ 3, then K₃ ≤_t G.

- Hajós' Conjecture is obviously true for k = 1 and k = 2.
- For k = 3, we observe that if a graph G satisfies χ(G) ≥ 3, then G is not a forest, and in particular, G contains a cycle. Every cycle is a subdivision of K₃, i.e. every cycle contains K₃ as a topological minor. So, if χ(G) ≥ 3, then K₃ ≤_t G.
- Hajós' Conjecture is also true for k = 4, as we now show.

- Hajós' Conjecture is obviously true for k = 1 and k = 2.
- For k = 3, we observe that if a graph G satisfies χ(G) ≥ 3, then G is not a forest, and in particular, G contains a cycle. Every cycle is a subdivision of K₃, i.e. every cycle contains K₃ as a topological minor. So, if χ(G) ≥ 3, then K₃ ≤_t G.
- Hajós' Conjecture is also true for k = 4, as we now show.
 - But first, we need a definition and a lemma.

Definition

A *clique-cutset* of a graph G is a clique $C \subsetneq V(G)$ of G such that $G \setminus C$ is disconnected.^a

^aIn particular, if G is disconnected, then \emptyset is a clique-cutset of G.

Let *G* be a graph, and let *C* be a clique-cutset of *G*. Let A_1, \ldots, A_t be the vertex sets of the components of $G \setminus C$. Then $\chi(G) = \max\{\chi(G[A_1 \cup C]), \ldots, \chi(G[A_t \cup C])\}.$

Proof (outline).

Let *G* be a graph, and let *C* be a clique-cutset of *G*. Let A_1, \ldots, A_t be the vertex sets of the components of $G \setminus C$. Then $\chi(G) = \max\{\chi(G[A_1 \cup C]), \ldots, \chi(G[A_t \cup C])\}.$

Proof (outline). For all $i \in \{1, \ldots, t\}$, set $G_i := G[A_i \cup C]$ and $\chi_i := \chi(G_i)$. WTS $\chi(G) = \max\{\chi_1, \ldots, \chi_t\}$.

Obviously, $\max{\chi_1, \ldots, \chi_t} \leq \chi(G)$.

Let *G* be a graph, and let *C* be a clique-cutset of *G*. Let A_1, \ldots, A_t be the vertex sets of the components of $G \setminus C$. Then $\chi(G) = \max\{\chi(G[A_1 \cup C]), \ldots, \chi(G[A_t \cup C])\}.$

Proof (outline). For all $i \in \{1, \ldots, t\}$, set $G_i := G[A_i \cup C]$ and $\chi_i := \chi(G_i)$. WTS $\chi(G) = \max\{\chi_1, \ldots, \chi_t\}$.

Obviously, $\max{\chi_1, \ldots, \chi_t} \le \chi(G)$. For the reverse inequality, fix optimal colorings of G_1, \ldots, G_t using the color set $\{1, \ldots, \max{\chi_1, \ldots, \chi_t}\}$.

Let *G* be a graph, and let *C* be a clique-cutset of *G*. Let A_1, \ldots, A_t be the vertex sets of the components of $G \setminus C$. Then $\chi(G) = \max\{\chi(G[A_1 \cup C]), \ldots, \chi(G[A_t \cup C])\}.$

Proof (outline). For all $i \in \{1, \ldots, t\}$, set $G_i := G[A_i \cup C]$ and $\chi_i := \chi(G_i)$. WTS $\chi(G) = \max\{\chi_1, \ldots, \chi_t\}$.

Obviously, $\max{\chi_1, \ldots, \chi_t} \le \chi(G)$. For the reverse inequality, fix optimal colorings of G_1, \ldots, G_t using the color set $\{1, \ldots, \max{\chi_1, \ldots, \chi_t}\}$. WMA these colorings agree on the clique *C* (details: Lecture Notes).

Let *G* be a graph, and let *C* be a clique-cutset of *G*. Let A_1, \ldots, A_t be the vertex sets of the components of $G \setminus C$. Then $\chi(G) = \max\{\chi(G[A_1 \cup C]), \ldots, \chi(G[A_t \cup C])\}.$

Proof (outline). For all $i \in \{1, \ldots, t\}$, set $G_i := G[A_i \cup C]$ and $\chi_i := \chi(G_i)$. WTS $\chi(G) = \max\{\chi_1, \ldots, \chi_t\}$.

Obviously, $\max{\chi_1, \ldots, \chi_t} \le \chi(G)$. For the reverse inequality, fix optimal colorings of G_1, \ldots, G_t using the color set $\{1, \ldots, \max{\chi_1, \ldots, \chi_t}\}$. WMA these colorings agree on the clique *C* (details: Lecture Notes). Now the union of these colorings is a proper coloring of *G* that uses at most $\max{\chi_1, \ldots, \chi_t}$ colors.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline).

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline). Fix a graph G, and assume inductively that for all graphs G' with |V(G')| < |V(G)|, if $\chi(G') \ge 4$, then $K_4 \preceq_t G'$.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline). Fix a graph G, and assume inductively that for all graphs G' with |V(G')| < |V(G)|, if $\chi(G') \ge 4$, then $K_4 \preceq_t G'$. We assume that $\chi(G) \ge 4$, and we show that $K_4 \preceq_t G$.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline). Fix a graph *G*, and assume inductively that for all graphs *G'* with |V(G')| < |V(G)|, if $\chi(G') \ge 4$, then $K_4 \preceq_t G'$. We assume that $\chi(G) \ge 4$, and we show that $K_4 \preceq_t G$. We may assume that all proper induced subgraphs of *G* are 3-colorable, for otherwise, the result follows from the induction hypothesis.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline). Fix a graph *G*, and assume inductively that for all graphs *G'* with |V(G')| < |V(G)|, if $\chi(G') \ge 4$, then $K_4 \preceq_t G'$. We assume that $\chi(G) \ge 4$, and we show that $K_4 \preceq_t G$. We may assume that all proper induced subgraphs of *G* are 3-colorable, for otherwise, the result follows from the induction hypothesis. In particular, this means that $\chi(G) = 4$.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 1. G does not admit a clique-cutset. Furthermore, G is 2-connected.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 1. G does not admit a clique-cutset. Furthermore, G is 2-connected.

Proof of Claim 1 (outline). This follows from Lemma 2.1.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline).

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline). Suppose that *G* is not 3-connected.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline). Suppose that G is not 3-connected. Clearly, $|V(G)| \ge \chi(G) = 4$, and so (since G is not 3-connected) there exists a set $S \subseteq V(G)$ such that $|S| \le 2$ and $G \setminus S$ is disconnected.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline). Suppose that G is not 3-connected. Clearly, $|V(G)| \ge \chi(G) = 4$, and so (since G is not 3-connected) there exists a set $S \subseteq V(G)$ such that $|S| \le 2$ and $G \setminus S$ is disconnected. By Claim 1, we have that |S| = 2 (say, $S = \{x, y\}$), and that the two vertices of S are non-adjacent.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued).

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued).

Suppose first that for all $i \in \{1, ..., t\}$, there exists a 3-coloring c_i of G_i that assigns distinct colors to x and y.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued).

Suppose first that for all $i \in \{1, ..., t\}$, there exists a 3-coloring c_i of G_i that assigns distinct colors to x and y. After possibly permuting colors, we may assume that for all $i \in \{1, ..., t\}$, we have that $c_i : A_i \cup S \rightarrow \{1, 2, 3\}$, $c_i(x) = 1$, and $c_i(y) = 2$.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued).

Suppose first that for all $i \in \{1, ..., t\}$, there exists a 3-coloring c_i of G_i that assigns distinct colors to x and y. After possibly permuting colors, we may assume that for all $i \in \{1, ..., t\}$, we have that $c_i : A_i \cup S \rightarrow \{1, 2, 3\}$, $c_i(x) = 1$, and $c_i(y) = 2$. But now the union of $c_1, ..., c_t$ is a proper coloring of G that uses at most three colors, contrary to the fact that $\chi(G) = 4$.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued).

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued).

By symmetry, we may now assume that all 3-colorings of G_1 assign the same color to x and y.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued).

By symmetry, we may now assume that all 3-colorings of G_1 assign the same color to x and y. But then $\chi(G_1 + xy) = 4$.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued).

By symmetry, we may now assume that all 3-colorings of G_1 assign the same color to x and y. But then $\chi(G_1 + xy) = 4$. So, by the induction hypothesis, we have that $K_4 \leq_t G_1 + xy$.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued). Reminder: $K_4 \leq_t G_1 + xy$.

Now, since G is 2-connected, we see that there exists an induced path P in G_2 between x and y.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued). Reminder: $K_4 \leq_t G_1 + xy$.

Now, since G is 2-connected, we see that there exists an induced path P in G_2 between x and y. But now $G[A_1 \cup V(P)]$ is a subdivision of $G_1 + xy$, and so $G_1 + xy \preceq_t G$.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then $K_4 \leq_t G$.

Proof of Claim 2 (outline, continued). Reminder: $K_4 \leq_t G_1 + xy$.

Now, since G is 2-connected, we see that there exists an induced path P in G_2 between x and y. But now $G[A_1 \cup V(P)]$ is a subdivision of $G_1 + xy$, and so $G_1 + xy \preceq_t G$. Since $K_4 \preceq_t G_1 + xy$, we have that $K_4 \preceq_t G$. This proves Claim 2.
Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued). In view of Claim 2, we may now assume that G is 3-connected.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued). In view of Claim 2, we may now assume that G is 3-connected.

Claim 3. Either G contains a cycle of length at least four, or $K_4 \leq_t G$.

Proof of Claim 3.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued). In view of Claim 2, we may now assume that G is 3-connected.

Claim 3. Either G contains a cycle of length at least four, or $K_4 \leq_t G$.

Proof of Claim 3. Since G is 3-connected, we have that $\delta(G) \ge 3$. Now, fix any vertex u of G; then $d_G(u) \ge \delta(G) \ge 3$. If $N_G(u)$ is a clique, then G contains a K_4 as a subgraph, and therefore as a topological minor, and we are done.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued). In view of Claim 2, we may now assume that G is 3-connected.

Claim 3. Either G contains a cycle of length at least four, or $K_4 \preceq_t G$.

Proof of Claim 3. Since G is 3-connected, we have that $\delta(G) \ge 3$. Now, fix any vertex u of G; then $d_G(u) \ge \delta(G) \ge 3$. If $N_G(u)$ is a clique, then G contains a K_4 as a subgraph, and therefore as a topological minor, and we are done.

So, we may assume that some two neighbors (call them u_1 and u_2) of u are non-adjacent.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued).

Claim 3. Either G contains a cycle of length at least four, or $K_4 \leq_t G$.

Proof of Claim 3. Since G is 3-connected, we know that $G \setminus u$ is connected, and consequently, $G \setminus u$ contains a path P between u_1 and u_2 . But now $u - u_1 - P - u_2 - u$ is a cycle of length at least four in G.

 $N_G(u)$

This proves Claim 3.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued). Reminder: G is 3-connected.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued). Reminder: G is 3-connected. In view of Claim 3, we may assume that G contains a cycle C of length at least four.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued). Reminder: *G* is 3-connected.

In view of Claim 3, we may assume that G contains a cycle C of length at least four. Let u and v be some non-consecutive vertices of C.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued). Reminder: *G* is 3-connected.

In view of Claim 3, we may assume that G contains a cycle C of length at least four. Let u and v be some non-consecutive vertices of C.

P and Q either do or do not intersect.

Every graph of chromatic number at least 4 contains K_4 as a topological minor.

Proof (outline, continued). In either case, G contains K_4 as a topological minor.

For every positive integer k, every graph of chromatic number at least k contains K_k as a topological minor.

• We now know that Hajós' Conjecture is true for $k \leq 4$.

- We now know that Hajós' Conjecture is true for $k \leq 4$.
- But for k = 7, it is false!

For every positive integer k, every graph of chromatic number at least k contains K_k as a topological minor.

• The graph above has chromatic number 7, and yet it does not contain K_7 as a topological minor.

- The graph above has chromatic number 7, and yet it does not contain K_7 as a topological minor.
- For k ≥ 8, we can obtain a counterexample to Hajós' Conjecture by adding k − 7 universal vertices to the graph above.

- The graph above has chromatic number 7, and yet it does not contain *K*₇ as a topological minor.
- For k ≥ 8, we can obtain a counterexample to Hajós' Conjecture by adding k − 7 universal vertices to the graph above.
- Hajós' Conjecture is open for k = 5 and k = 6.

For every positive integer k, every graph of chromatic number at least k contains K_k as a topological minor.

Hadwiger's Conjecture

For every positive integer k, every graph of chromatic number at least k contains K_k as a topological minor.

Hadwiger's Conjecture

For every positive integer k, every graph of chromatic number at least k contains K_k as a minor.

 Since a topological minor is a special case of a minor, Hadwiger's Conjecture is weaker than Hajós' Conjecture. Thus, since Hajós' Conjecture is true for k ≤ 4, Hadwiger's conjecture is also true for k ≤ 4.

For every positive integer k, every graph of chromatic number at least k contains K_k as a minor.

• Hadwiger's Conjecture for k = 5 is equivalent to the famous Four Color Theorem.

The Four Color Theorem [Appel and Haken, 1976]

Every planar graph is 4-colorable.

For every positive integer k, every graph of chromatic number at least k contains K_k as a minor.

• Hadwiger's Conjecture for k = 5 is equivalent to the famous Four Color Theorem.

The Four Color Theorem [Appel and Haken, 1976]

Every planar graph is 4-colorable.

 in 1993, Robertson, Seymour, and Thomas proved that Hadwiger's Conjecture is true for k = 6.

For every positive integer k, every graph of chromatic number at least k contains K_k as a minor.

• Hadwiger's Conjecture for k = 5 is equivalent to the famous Four Color Theorem.

The Four Color Theorem [Appel and Haken, 1976]

Every planar graph is 4-colorable.

- in 1993, Robertson, Seymour, and Thomas proved that Hadwiger's Conjecture is true for k = 6.
- For $k \ge 7$, the conjecture remains open.