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Definition

A graph H is a topological minor of a graph G, and we write

H <: G, if G contains some subdivision of H as a subgraph. The
vertices of this subdivision that correspond to the vertices of H are
called branch vertices.

@ The graph below contains K34 as a topological minor.




Definition
A graph H is a minor of a graph G, and we write H <, G, if there
exists a family {X, },ev(n) of pairwise disjoint, non-empty subsets
of V(G), called branch sets, such that

e G[X,] is connected for all v € V(H), and

o for all uv € E(H), there is an edge between X, and X, in G.

@ For example, the graph below (on the right) contains K 4 as
a minor.

u




Kuratowski's theorem [Kuratowski, 1930; Wagner, 1937]

Let G be a graph. Then the following are equivalent:
(a) G is planar;
(b) G contains neither K5 nor K33 as a minor;

(c) G contains neither Ks nor K33 as a topological minor.

Ks K33
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Kuratowski's theorem [Kuratowski, 1930; Wagner, 1937]

Let G be a graph. Then the following are equivalent:
(a) G is planar;
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@ In this lecture, we prove “(b) = (a)”



e A path addition (sometimes called ear addition) to a graph H
is the addition to H of a path between two distinct vertices of
H in such a way that no internal vertex and no edge of the
path belongs to H.




e A path addition (sometimes called ear addition) to a graph H
is the addition to H of a path between two distinct vertices of
H in such a way that no internal vertex and no edge of the
path belongs to H.

The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

Proof. Combinatorics & Graph Theory 1.
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A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.




The Ear Lemma

A graph is 2-connected if and only if it is a cycle or can be
obtained from a cycle by repeated ear addition.

For any plane drawing of a planar 2-connected graph G, the
boundary of each face is a cycle of G.

Proof. Lecture Notes (using the Ear Lemma).




Let G be a 3-connected graph that contains neither K5 nor K33 as
a minor. Then G is planar.

Proof (outline).
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Proof (outline). We may assume inductively that the lemma is true
for graphs on fewer than |V/(G)| vertices, that is, that for all
3-connected graphs H with |V(H)| < |V(G)| and K5, K33 ZAm H,
we have that H is planar.
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[V(G)| > 4. If G = Ka, then it is clear that G is planar, and we
are done. So assume that |V/(G)| > 4. Then Lemma 1.2 from
Lecture Notes 3 guarantees that G has an edge xy such that

H := G/xy is 3-connected.
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a minor. Then G is planar.

Proof (outline). We may assume inductively that the lemma is true
for graphs on fewer than |V/(G)| vertices, that is, that for all
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we have that H is planar.
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Let G be a 3-connected graph that contains neither K5 nor K33 as
a minor. Then G is planar.

Proof (outline). We may assume inductively that the lemma is true
for graphs on fewer than |V/(G)| vertices, that is, that for all
3-connected graphs H with |V(H)| < |V(G)| and K5, K33 ZAm H,
we have that H is planar.

Since G is 3-connected, we know that either G = Ky or

[V(G)| > 4. If G = Ka, then it is clear that G is planar, and we
are done. So assume that |V/(G)| > 4. Then Lemma 1.2 from
Lecture Notes 3 guarantees that G has an edge xy such that

H := G/xy is 3-connected. Then H <, G, and so K5, K33 Zm H.
Now H is a 3-connected graph on |V/(G)| — 1 vetrices, with

Ks, K33 Zm H; so, by the induction hypothesis, H is planar.



Let G be a 3-connected graph that contains neither K5 nor K33 as
a minor. Then G is planar.

Proof (outline, continued). Fix a plane drawing of H. If we erase
Vxy and all the edges incident in it, we obtain a plane drawing of
H\ vyy. Now, let f be the face of this drawing of H\ v,, such that
Vyy is in the interior of f. Since H is 3-connected, H \ vy, is
2-connected; so, by Lemma 1.3, the boundary of f is a cycle of
H\ vy, say C. (Note that C is also a cycle of H and of G.)

VAV



Let G be a 3-connected graph that contains neither K5 nor K33 as
a minor. Then G is planar.

Proof (outline, continued).
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Let G be a 3-connected graph that contains neither K5 nor K33 as
a minor. Then G is planar.

Proof (outline, continued).
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Then Ny(vyy) € V(C), and consequently, Ng(x) € {y} U V(C)
and Ng(y) € {x}u V(C).



Let G be a 3-connected graph that contains neither K5 nor K33 as
a minor. Then G is planar.

Proof (outline, continued).

v
SO\

Then Ny(vyy) € V(C), and consequently, Ng(x) € {y} U V(C)
and Ng(y) € {x} U V(C). Since G is 3-connected, we know that
d(G) > 3, and in particular, dg(x) > 3; so, since

Ng(x) € {y} U V(C), x has at least two neighbors in V(C).



Let G be a 3-connected graph that contains neither Ks nor K33 as
a minor. Then G is planar.

Proof (outline, continued). Let x1,...,xx be the neighbors of x in
V(C), listed in cyclical order (along the cycle C). For each
i€{l,...,k}, let P; be the path from x; to x;+1 (we consider
Xk+1 = x1) along C.



Let G be a 3-connected graph that contains neither Ks nor K33 as
a minor. Then G is planar.

Proof (outline, continued). Let x1,...,xx be the neighbors of x in
V(C), listed in cyclical order (along the cycle C). For each
i€{l,...,k}, let P; be the path from x; to x;+1 (we consider
Xk+1 = x1) along C.

z9 P w3

If for some i € {1,..., k}, we have that Ng(y) C {x} U V(P}),
then G is planar (details: Lecture Notes).



Let G be a 3-connected graph that contains neither Ks nor K33 as
a minor. Then G is planar.

Proof (outline, continued). So, suppose that for all i € {1,..., k},
we have that Ng(y) € {x} U V(P;). Then either x and y have
three common neighbors in V/(C), or y has two neighbors

a,b € V(C) that are separated in C by two neighbors of x, say x;
and Xx;.




Let G be a 3-connected graph that contains neither Ks nor K33 as
a minor. Then G is planar.

Proof (outline, continued). So, suppose that for all i € {1,..., k},
we have that Ng(y) € {x} U V(P;). Then either x and y have
three common neighbors in V/(C), or y has two neighbors

a,b € V(C) that are separated in C by two neighbors of x, say x;
and Xx;.

But then G contains Ks or K33 as a topological minor, a
contradiction.
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Lemma 1.4
Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline). We may assume inductively that for all graphs H
on fewer than |V(G)| vertices, if Ks, K33 Zm H, then H is planar.
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Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline). We may assume inductively that for all graphs H
on fewer than |V(G)| vertices, if Ks, K33 Zm H, then H is planar.

If [V(G)| <3, then it is clear that G is planar. From now on, we
assume that |V(G)| > 4.



Let G be a 3-connected graph that contains neither K5 nor K33 as
a minor. Then G is planar.

Lemma 1.4

Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline). We may assume inductively that for all graphs H
on fewer than |V(G)| vertices, if Ks, K33 Zm H, then H is planar.

If [V(G)| <3, then it is clear that G is planar. From now on, we
assume that |V(G)| > 4.

Suppose first that G is disconnected, and let Gi, ..., G; be the
components of G. Then by the induction hypothesis, Gy, ..., G;
are all planar. We obtain a plane drawing of G by drawing

Gi, ..., G in the plane side by side.



Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline, continued). Next, suppose that G is connected, but
not 2-connected.



Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline, continued). Next, suppose that G is connected, but
not 2-connected. Then there exists a vertex v € V/(G) such that
G\ v is disconnected.



Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline, continued). Next, suppose that G is connected, but
not 2-connected. Then there exists a vertex v € V/(G) such that
G\ v is disconnected. Let A be the vertex set of one component of
G\ v, and let B:= V(G)\ (AU{v}). Set Ga := G[AU{v}] and
Gg := G[BU{v}].




Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline, continued). Next, suppose that G is connected, but
not 2-connected. Then there exists a vertex v € V/(G) such that
G\ v is disconnected. Let A be the vertex set of one component of
G\ v, and let B:= V(G)\ (AU{v}). Set Ga := G[AU{v}] and
Gg := G[BU{v}].

By the induction hypothesis, G4 and Gg are both planar.



Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline, continued). We draw G, in the plane without any
edge crossings, and we let f be some face of this drawing such
that v lies on the boundary of f. We then draw Gg inside f, with
v coinciding in the drawing of G4 and Gg.




Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline, continued).



Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline, continued). If G is 2-connected, but not
3-connected: Lecture Notes.
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Then G is planar.

Proof (outline, continued). If G is 2-connected, but not
3-connected: Lecture Notes. If G is 3-connected, then we are done
by Lemma 1.3.



Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline, continued). If G is 2-connected, but not
3-connected: Lecture Notes. If G is 3-connected, then we are done
by Lemma 1.3.

@ This completes the proof of Kuratowski's theorem.



Let G be a graph that contains neither K5 nor K33 as a minor.
Then G is planar.

Proof (outline, continued). If G is 2-connected, but not
3-connected: Lecture Notes. If G is 3-connected, then we are done
by Lemma 1.3.

@ This completes the proof of Kuratowski's theorem.

Kuratowski's theorem [Kuratowski, 1930; Wagner, 1937]

Let G be a graph. Then the following are equivalent:
(a) G is planar;
(b) G contains neither K5 nor K33 as a minor;

(c) G contains neither Ks nor K33 as a topological minor.
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least k contains K| as a topological minor.
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@ For k = 3, we observe that if a graph G satisfies x(G) > 3,
then G is not a forest, and in particular, G contains a cycle.
Every cycle is a subdivision of K3, i.e. every cycle contains K3
as a topological minor. So, if x(G) > 3, then K3 <; G.
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Hajos' Conjecture

For every positive integer k, every graph of chromatic number at
least k contains K| as a topological minor.

@ Hajos' Conjecture is obviously true for k =1 and k = 2.

@ For k = 3, we observe that if a graph G satisfies x(G) > 3,
then G is not a forest, and in particular, G contains a cycle.
Every cycle is a subdivision of K3, i.e. every cycle contains K3
as a topological minor. So, if x(G) > 3, then K3 <; G.

@ Hajés' Conjecture is also true for k = 4, as we now show.

o But first, we need a definition and a lemma.



Definition

A clique-cutset of a graph G is a clique C & V/(G) of G such that
G\ C is disconnected.?

?In particular, if G is disconnected, then () is a clique-cutset of G.

clique cutset



Let G be a graph, and let C be a clique-cutset of G. Let
A1, ..., At be the vertex sets of the components of G\ C. Then

X(G) = max{x(G[A, U C]),..., x(G[A: U C])}.

Proof (outline).
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A1, ..., At be the vertex sets of the components of G\ C. Then
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Proof (outline). For all i € {1,...,t}, set G; :== G[A; U C] and
Xi = x(Gi). WTS x(G) = max{x1,..., Xt}
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Obviously, max{x1,...,xt} < x(G).
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Obviously, max{x1,..., Xt} < x(G). For the reverse inequality, fix
optimal colorings of Gy, ..., G; using the color set

{1,...,max{x1,..., Xt} }-
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Obviously, max{x1,..., Xt} < x(G). For the reverse inequality, fix
optimal colorings of Gy, ..., G; using the color set
{1,...,max{x1,..., Xt} }. WMA these colorings agree on the
clique C (details: Lecture Notes).



Let G be a graph, and let C be a clique-cutset of G. Let
A1, ..., At be the vertex sets of the components of G\ C. Then
X(G) = max{x(G[A1 U C)]),...,x(G[A: U C])}.

Proof (outline). For all i € {1,...,t}, set G; :== G[A; U C] and
Xi = x(Gi). WTS x(G) = max{x1,..., Xt}

A

Ay

Obviously, max{x1,..., Xt} < x(G). For the reverse inequality, fix
optimal colorings of Gy, ..., G; using the color set
{1,...,max{x1,..., Xt} }. WMA these colorings agree on the
clique C (details: Lecture Notes). Now the union of these colorings
is a proper coloring of G that uses at most max{xi,..., xt} colors.
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Every graph of chromatic number at least 4 contains Ky as a
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Proof (outline). Fix a graph G, and assume inductively that for all
graphs G" with |V (G')| < |V(G)|, if x(G’) > 4, then K4 <; G'.
We assume that x(G) > 4, and we show that K4 <; G. We may
assume that all proper induced subgraphs of G are 3-colorable, for
otherwise, the result follows from the induction hypothesis.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline). Fix a graph G, and assume inductively that for all
graphs G" with |V (G')| < |V(G)|, if x(G’) > 4, then K4 <; G'.
We assume that x(G) > 4, and we show that K4 <; G. We may
assume that all proper induced subgraphs of G are 3-colorable, for
otherwise, the result follows from the induction hypothesis. In
particular, this means that x(G) = 4.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains K as a
topological minor.

Proof (outline, continued).

Claim 1. G does not admit a clique-cutset. Furthermore,
G is 2-connected.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains K as a
topological minor.

Proof (outline, continued).

Claim 1. G does not admit a clique-cutset. Furthermore,
G is 2-connected.

Proof of Claim 1 (outline). This follows from Lemma 2.1.

A
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Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains K4 as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then Ky <; G.

Proof of Claim 2 (outline).



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains K4 as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then Ky <; G.

Proof of Claim 2 (outline). Suppose that G is not 3-connected.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains K4 as a
topological minor.

Proof (outline, continued).
Claim 2. If G is not 3-connected, then Ky <; G.

Proof of Claim 2 (outline). Suppose that G is not 3-connected.
Clearly, |V(G)| > x(G) =4, and so (since G is not 3-connected)
there exists a set S C V(G) such that [S| <2 and G\ S'is
disconnected.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains K4 as a
topological minor.

Proof (outline, continued).
Claim 2. If G is not 3-connected, then Ky <; G.

Proof of Claim 2 (outline). Suppose that G is not 3-connected.
Clearly, |V(G)| > x(G) =4, and so (since G is not 3-connected)
there exists a set S C V(G) such that [S| <2 and G\ S'is
disconnected. By Claim 1, we have that |S| =2 (say, S = {x, y}),
and that the two vertices of S are non-adjacent.

Ay
T o
S \
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Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then K4 <; G.

Proof of Claim 2 (outline, continued).
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Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a

topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then K4 <; G.

Proof of Claim 2 (outline, continued).
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Suppose first that for all i € {1,...,t}, there exists a 3-coloring ¢;
of G; that assigns distinct colors to x and y.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then K4 <; G.

Proof of Claim 2 (outline, continued).
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Suppose first that for all i € {1,...,t}, there exists a 3-coloring ¢;
of G; that assigns distinct colors to x and y. After possibly
permuting colors, we may assume that for all i € {1,... t}, we
have that ¢; : A;US — {1,2,3}, ci(x) =1, and ¢i(y) = 2.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then K4 <; G.

Proof of Claim 2 (outline, continued).
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Suppose first that for all i € {1,...,t}, there exists a 3-coloring ¢;
of G; that assigns distinct colors to x and y. After possibly

permuting colors, we may assume that for all i € {1,... t}, we
have that ¢; : A;US — {1,2,3}, ¢i(x) =1, and ¢i(y) = 2. But
now the union of c1,..., ¢ is a proper coloring of G that uses at

most three colors, contrary to the fact that x(G) = 4.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Kj as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then K4 <: G.
Proof of Claim 2 (outline, continued).
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Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Kj as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then K4 <: G.
Proof of Claim 2 (outline, continued).
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By symmetry, we may now assume that all 3-colorings of Gy assign
the same color to x and y.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Kj as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then K4 <: G.
Proof of Claim 2 (outline, continued).
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By symmetry, we may now assume that all 3-colorings of Gy assign
the same color to x and y. But then x(G; + xy) = 4.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Kj as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then K4 <: G.
Proof of Claim 2 (outline, continued).

Ay

T
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By symmetry, we may now assume that all 3-colorings of Gy assign
the same color to x and y. But then x(G; + xy) = 4. So, by the
induction hypothesis, we have that K4 < G; + xy.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued).
Claim 2. If G is not 3-connected, then K4 <; G.

Proof of Claim 2 (outline, continued). Reminder: K4 <; G; + xy.
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G

Now, since G is 2-connected, we see that there exists an induced
path P in G, between x and y.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued).
Claim 2. If G is not 3-connected, then K4 <; G.

Proof of Claim 2 (outline, continued). Reminder: K4 <; G; + xy.
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Now, since G is 2-connected, we see that there exists an induced
path P in G, between x and y. But now G[A; U V(P)] is a
subdivision of G; + xy, and so G + xy =; G.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued).

Claim 2. If G is not 3-connected, then K4 <; G.

Proof of Claim 2 (outline, continued). Reminder: K4 <; G; + xy.
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Now, since G is 2-connected, we see that there exists an induced
path P in G, between x and y. But now G[A; U V(P)] is a
subdivision of G; + xy, and so G; + xy < G. Since
Ky =¢ G1 + xy, we have that K4 <; G. This proves Claim 2.
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Proof (outline, continued). In view of Claim 2, we may now
assume that G is 3-connected.
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Proof (outline, continued). In view of Claim 2, we may now
assume that G is 3-connected.

Claim 3. Either G contains a cycle of length at least
four, or K4 <+ G.

Proof of Claim 3.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued). In view of Claim 2, we may now
assume that G is 3-connected.
Claim 3. Either G contains a cycle of length at least
four, or K4 <+ G.

Proof of Claim 3. Since G is 3-connected, we have that 6(G) > 3.
Now, fix any vertex u of G; then dg(u) > 6(G) > 3. If Ng(u) is a
clique, then G contains a K, as a subgraph, and therefore as a
topological minor, and we are done.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued). In view of Claim 2, we may now
assume that G is 3-connected.
Claim 3. Either G contains a cycle of length at least
four, or K4 <+ G.

Proof of Claim 3. Since G is 3-connected, we have that 6(G) > 3.
Now, fix any vertex u of G; then dg(u) > 6(G) > 3. If Ng(u) is a
clique, then G contains a K, as a subgraph, and therefore as a
topological minor, and we are done.

So, we may assume that some two neighbors (call them v and wy)
of u are non-adjacent.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains K, as a
topological minor.

Proof (outline, continued).

Claim 3. Either G contains a cycle of length at least
four, or K4 <+ G.

Proof of Claim 3. Since G is 3-connected, we know that G\ u is

connected, and consequently, G \ u contains a path P between u;
and up. But now u — u; — P — up — u is a cycle of length at least
four in G.

L~ wy P

Uy

Ne(u)

This proves Claim 3.
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Proof (outline, continued). Reminder: G is 3-connected.
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Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued). Reminder: G is 3-connected.

In view of Claim 3, we may assume that G contains a cycle C of
length at least four.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued). Reminder: G is 3-connected.

In view of Claim 3, we may assume that G contains a cycle C of

length at least four. Let u and v be some non-consecutive vertices
of C.




Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains Ky as a
topological minor.

Proof (outline, continued). Reminder: G is 3-connected.

In view of Claim 3, we may assume that G contains a cycle C of

length at least four. Let u and v be some non-consecutive vertices
of C.

P and Q either do or do not intersect.



Theorem 2.2 [Dirac, 1952]

Every graph of chromatic number at least 4 contains K, as a
topological minor.

Proof (outline, continued). In either case, G contains K, as a
topological minor.
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Hajos' Conjecture

For every positive integer k, every graph of chromatic number at
least k contains K as a topological minor.
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For every positive integer k, every graph of chromatic number at
least k contains K as a topological minor.

@ We now know that Hajés' Conjecture is true for k < 4.
@ But for k =7, it is false!
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Conjecture by adding k — 7 universal vertices to the graph
above.




Hajés' Conjecture

For every positive integer k, every graph of chromatic number at
least k contains K as a topological minor.

@ The graph above has chromatic number 7, and yet it does not
contain K7 as a topological minor.

@ For k > 8, we can obtain a counterexample to Hajés'
Conjecture by adding k — 7 universal vertices to the graph
above.

@ Hajés' Conjecture is open for k =5 and k = 6.




Hajés' Conjecture

For every positive integer k, every graph of chromatic number at
least k contains K as a topological minor.




Hajés' Conjecture
For every positive integer k, every graph of chromatic number at
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Hajés' Conjecture
For every positive integer k, every graph of chromatic number at
least k contains K as a topological minor.

Hadwiger's Conjecture

For every positive integer k, every graph of chromatic number at
least k contains Ky as a minor.

@ Since a topological minor is a special case of a minor,
Hadwiger's Conjecture is weaker than Hajés' Conjecture.
Thus, since Hajés' Conjecture is true for kK < 4, Hadwiger's
conjecture is also true for k < 4.
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Four Color Theorem.

The Four Color Theorem [Appel and Haken, 1976]
Every planar graph is 4-colorable.
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Hadwiger's Conjecture

For every positive integer k, every graph of chromatic number at
least k contains Ky as a minor.

o Hadwiger's Conjecture for k = 5 is equivalent to the famous
Four Color Theorem.

The Four Color Theorem [Appel and Haken, 1976]
Every planar graph is 4-colorable.

@ in 1993, Robertson, Seymour, and Thomas proved that
Hadwiger's Conjecture is true for k = 6.

@ For k > 7, the conjecture remains open.



