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Lecture #4

Minors and planar graphs (part II)

Irena Penev

1 Kuratowski’s theorem

We stated the following theorem (usually referred to as “Kuratowski’s the-
orem,” or sometimes as the “Kuratowski-Wagner theorem”) in Lecture
Notes 3.

Theorem 1.1 (Kuratowski, 1930; Wagner, 1937). Let G be a graph. Then
the following are equivalent:

(a) G is planar;

(b) G contains neither K5 nor K3,3 as a minor;

(c) G contains neither K5 nor K3,3 as a topological minor.

We have already proven the “easy” part of Kuratowski’s theorem: (a)
implies (b) by Lemma 3.2 from Lecture Notes 3, and (b) is equivalent to (c)
by Lemma 2.5 from Lecture Notes 3. It remains to prove the “hard” part:
(b) implies (a).

A path addition (sometimes called ear addition) to a graph H is the
addition to H of a path between two distinct vertices of H in such a way
that no internal vertex and no edge of the path belongs to H. In the picture
below, we show how the cube graph can be constructed by starting with a
cycle of length four and then repeatedly adding ears (the path/ear added at
each step is in red).

The following was proven in Combinatorics and Graph Theory 1.
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The Ear lemma. A graph is 2-connected if and only if it is a cycle or can
be obtained from a cycle by repeated ear addition.

A plane drawing of a planar graph is a drawing of that graph in the plane
without any edge crossings.

Lemma 1.2. For any plane drawing of a planar 2-connected graph G, the
boundary of each face is a cycle of G.

Proof. We proceed by induction on the number of edges. Let G be a planar
2-connected graph, and assume inductively that for all planar 2-connected
graphs H such that |E(H)| < |E(G)|, in any plane drawing of H, the
boundary of each face is a cycle of H.

Now, fix a plane drawing of G. If G is a cycle, then the drawing has
two faces, and they are both bounded by the cycle G.1 Suppose now that
G is not a cycle. Then the Ear Lemma guarantees that G can be obtained
from a 2-connected graph H by adding an ear/path P . If we erase all the
edges and all the internal vertices of P from our drawing of G, we obtain a
plane drawing of H; by the induction hypothesis, each face of this drawing
is bounded by a cycle of H.

C

P

We now put P back into our drawing. The path P must pass through one
face of our drawing of H, and it splits this face up into two, each bounded by
a cycle of G, and the other faces have unchanged boundaries. This completes
the proof.

We now prove the “(b) =⇒ (a)” part of Kuratowski’s theorem for the
case when G is 3-connected.

Lemma 1.3. Let G be a 3-connected graph that contains neither K5 nor
K3,3 as a minor. Then G is planar.

Proof. We may assume inductively that the lemma is true for graphs on
fewer than |V (G)| vertices, that is, that for all 3-connected graphs H with
|V (H)| < |V (G)| and K5,K3,3 6�m H, we have that H is planar.

1Actually, this is somewhat informal. The formal proof requires a theorem from topology
called the Jordan Curve Theorem. We omit the details.
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Since G is 3-connected, we know that either G ∼= K4 or |V (G)| > 4.2 If
G ∼= K4, then it is clear that G is planar, and we are done. So assume that
|V (G)| > 4. Then Lemma 1.2 from Lecture Notes 3 guarantees that G has an
edge xy such that H := G/xy is 3-connected. By Lemma 2.1 from Lecture
Notes 3, we know that H �m G; since K5,K3,3 6�m G, Lemma 2.2 from
Lecture Notes 3 guarantees that K5,K3,3 6�m H. Now H is a 3-connected
graph on |V (G)| − 1 vetrices, with K5,K3,3 6�m H; so, by the induction
hypothesis, H is planar.

Fix a plane drawing of H. If we erase vxy and all the edges incident in it,
we obtain a plane drawing of H \ vxy. Now, let f be the face of this drawing
of H \vxy such that vxy is in the interior of f . Since H is 3-connected, H \vxy
is 2-connected; so, by Lemma 1.2, the boundary of f is a cycle of H \ vxy,
say C. (Note that C is also a cycle of H and of G.)

vxy

C

Then NH(vxy) ⊆ V (C), and consequently, NG(x) ⊆ {y}∪V (C) and NG(y) ⊆
{x}∪V (C). Since G is 3-connected, we know that δ(G) ≥ 3, and in particular,
dG(x) ≥ 3; so, since NG(x) ⊆ {y} ∪ V (C), x has at least two neighbors in
V (C). Let x1, . . . , xk be the neighbors of x in V (C), listed in cyclical order
(along the cycle C). For each i ∈ {1, . . . , k}, let Pi be the path from xi to
xi+1 (we consider xk+1 = x1) along C, as in the picture below.

x1

P1
x2 P2 x3

xk

Pk

xi

xi+1

f1
f2

fk

fi

Pi

x

We now draw G \ y in the plane without any edge crossings, as follows.
We begin with our drawing of H = G/xy, we relabel vxy as x, and we
erase the edges between x and V (C) that do not belong to E(G). For each
i ∈ {1, . . . , k}, let fi be the face whose boundary is x, xi − Pi − xi+1, x and
that lies inside f . Our goal is to show that this drawing can be extended to
G. If for some i ∈ {1, . . . , k}, we have that NG(y) ⊆ {x} ∪ V (Pi), then we

2Indeed, since G is 3-connected, we know that |V (G)| ≥ 4, and clearly, K4 is (up to
isomorphism) the only 3-connected graph on four vertices.
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simply place the vertex y inside the face fi, and we draw the edge xy as well
as the edges between y and its neighbors in V (Pi), and we obtain a plane
drawing of G.

So, suppose that for all i ∈ {1, . . . , k}, we have that NG(y) 6⊆ {x}∪V (Pi).
Then either x and y have three common neighbors in V (C) (see the picture
below, on the left), or y has two neighbors a, b ∈ V (C) that are separated in
C by two neighbors of x, say xi and xj (see the picture below, on the right).

x

y

x

y
xi xj

a

b

In the former case, G contains K5 as a topological minor (with x, y, and
their three common neighbors in C as branch vertices), contrary to the fact
that K5 6�m G.3 In the latter case, G[{x, y} ∪ V (C)] contains K3,3 as a
topological minor, with x, y, a, b, xi, xj as the branch vertices,4 contrary to
the fact that K3,3 6�m G.5

Lemma 1.4. Let G be a graph that contains neither K5 nor K3,3 as a minor.
Then G is planar.

Proof. We may assume inductively that for all graphs H on fewer than
|V (G)| vertices, if K5,K3,3 6�m H, then H is planar.

If |V (G)| ≤ 3, then it is clear that G is planar. From now on, we assume
that |V (G)| ≥ 4.

Suppose first thatG is disconnected, and letG1, . . . , Gt be the components
of G. Then by the induction hypothesis, G1, . . . , Gt are all planar. We obtain
a plane drawing of G by drawing G1, . . . , Gt in the plane side by side.

Next, suppose that G is connected, but not 2-connected. Then there
exists a vertex v ∈ V (G) such that G \ v is disconnected. Let A be the
vertex set of one component of G \ v, and let B := V (G) \ (A ∪ {v}). Set
GA := G[A ∪ {v}] and GB := G[B ∪ {v}]. By the induction hypothesis,
GA and GB are both planar. We draw GA in the plane without any edge
crossings, and we let f be some face of this drawing such that v lies on the

3We are using the fact that, by Lemma 2.3 from Lecture Notes 3, K5 �t G implies
K5 �m G.

4Here, {x, a, b} and {y, xi, xj} are the two sides of the bipartition of the subdivided
K3,3.

5We are using the fact that, by Lemma 2.3 from Lecture Notes 3, K3,3 �t G implies
K3,3 �m G.
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boundary of f . We then draw GB inside f , with v coinciding in the drawing
of GA and GB.6

GA

v

GB

Suppose now that G is 2-connected, but not 3-connected. Since |V (G)| ≥ 4,
the fact that G is not 3-connected guarantees that there is a set S ⊆ V (G)
such that |S| ≤ 2 and G \ S is disconnected. Since G is 2-connected, we
in fact have that |S| = 2; set S = {x, y}. Let A be the vertex set of some
component of G\S, and let B := V (G)\ (A∪{v}). Let GA := G[A∪S] +xy
and GB := G[B ∪ S] + xy.7 Now, since G is 2-connected, each of G[A ∪ S]
and G[B ∪S] contains a path between x and y;8 call these paths PA and PB,
respectively. Clearly, GA �t G[A∪S ∪V (PB)] and GB �t G[B ∪S ∪V (PA)];
consequently, GA, GB �t G, and therefore (by Lemma 2.3 from Lecture
Notes 3), GA, GB �m G. Since K5,K3,3 6�m G, Lemma 2.2 from Lecture
Notes 3 guarantees that K5,K3,3 6�m GA and K5,K3,3 6�m GB. By the
induction hypothesis, GA and GB are both planar. We now draw GA in the
plane without edge crossings, and we let f be a face of this drawing such
that the edge xy lies on the boundary of f . We now draw GB inside f , with
the edge xy coinciding in the drawing of GA and GB.9 This way, we obtain
a drawing of G + xy in the plane without any edge crossings;10 it follows
that G+ xy is planar, and consequently, G is planar as well.

Finally, if G is 3-connected, then G is planar by Lemma 1.3.

Lemma 1.4 proves the “(b) =⇒ (a)” part of Kuratowski’s theorem. This
completes our proof of Kuratowski’s theorem.

6This is slightly informal. The point is that we can stretch and shrink our drawing of
GB so that it “fits” inside of f .

7So, GA is the graph with vertex set A∪S and edge set E(G[A∪S])∪{xy}; if xy ∈ E(G),
then we simply have GA = G[A ∪ S]. Similar remarks apply to GB .

8This follows from Proposition 1.1 of Lecture Notes 3. (Details?)
9Again, this is slightly informal. The point is that we can stretch and shrink our drawing

of GB so that it “fits” inside of f .
10As usual, G + xy is the graph with vertex set V (G) and edge set E(G) ∪ {xy}. If

xy ∈ E(G), then we simply have that G+ xy = G.
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2 Hajós’ Conjecture

In 1961, Hajós conjectured the following.

Hajós’ Conjecture. For every positive integer k, every graph of chromatic
number at least k contains Kk as a topological minor.

Hajós’ Conjecture is obviously true for k = 1 and k = 2. For k = 3, we
observe that if a graph G satisfies χ(G) ≥ 3, then G is not a forest, and in
particular, G contains a cycle. Every cycle is a subdivision of K3, i.e. every
cycle contains K3 as a topological minor. So, if χ(G) ≥ 3, then K3 �t G.
Hajós’ Conjecture is also true for k = 4, as we now show.

A clique-cutset of a graph G is a clique C $ V (G) of G such that G\C is
disconnected.11 In particular, if G is disconnected, then ∅ is a clique-cutset
of G.

A 6= ∅ C B 6= ∅

G

clique cutset

Lemma 2.1. Let G be a graph, and let C be a clique-cutset of G. Let
A1, . . . , At be the vertex sets of the components of G \ C. Then χ(G) =
max{χ(G[A1 ∪ C]), . . . , χ(G[At ∪ C])}.

Proof. To simplify notation, for all i ∈ {1, . . . , t}, set Gi := G[Ai ∪ C] and
χi := χ(Gi). We must show that χ(G) = max{χ1, . . . , χt}. It is obvious that
max{χ1, . . . , χt} ≤ χ(G). It remains to show that χ(G) ≤ max{χ1, . . . , χt}.

C

A1

At

...

For all i ∈ {1, . . . , t}, let ci : Ai ∪ C → {1, . . . , χi} be a proper coloring of
Gi. Since C is a clique of G, we know that for all i ∈ {1, . . . , t}, the coloring
ci assigns distinct colors to all vertices of C. So, after possibly permuting
colors, we may assume that c1, . . . , ct all agree on C. But now the union of
c1, . . . , ct is a proper coloring of G that uses at most max{χ1, . . . , χt} colors,
and we deduce that χ(G) ≤ max{χ1, . . . , χt}.

11In some texts, a clique-cutset of G is defined to be a clique C $ V (G) of G such that
G \C has more components than G. However, the definition that we gave above (requiring
only that G \ C be disconnected, regardless of the number of components of G) is more
convenient for our purposes.
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Theorem 2.2 (Dirac, 1952). Every graph of chromatic number at least 4
contains K4 as a topological minor.

Proof. Fix a graph G, and assume inductively that for all graphs G′ with
|V (G′)| < |V (G)|, if χ(G′) ≥ 4, then K4 �t G

′. We assume that χ(G) ≥ 4,
and we show that K4 �t G. We may assume that all proper induced
subgraphs of G are 3-colorable,12 for otherwise, the result follows from the
induction hypothesis. In particular, this means that χ(G) = 4.13

Claim 1. G does not admit a clique-cutset. Furthermore, G is
2-connected.

Proof of Claim 1. The fact that G does not admit a clique-cutset readily
follows from Lemma 2.1. Indeed, suppose C were a clique-cutset of G, and
let A1, . . . , At be the vertex sets of G \ C. Then Lemma 2.1 guarantees that
χ(G) = max{χ(G[A1 ∪ C]), . . . , χ(G[At ∪ C])}. Since χ(G) = 4, it follows
that for some i ∈ {1, . . . , t}, we have that χ(G[Ai ∪ C]) = 4, contrary to the
fact that all proper induced subgraphs of G are 3-colorable.

Clearly, |V (G)| ≥ χ(G) = 4. Furthermore, since G does not admit a
clique-cutset, we see that G is connected and has no cut-vertices. So, G is
2-connected. This proves Claim 1. �

Claim 2. If G is not 3-connected, then K4 �t G.

Proof of the Claim. Suppose that G is not 3-connected. Clearly, |V (G)| ≥
χ(G) = 4, and so (since G is not 3-connected) there exists a set S ⊆ V (G)
such that |S| ≤ 2 and G \ S is disconnected. By Claim 1, we have that
|S| = 2 (say, S = {x, y}), and that the two vertices of S are non-adjacent.

A1

At

...

x

y
S

Let A1, . . . , At (t ≥ 2) be the vertex sets of the components of G \ S,
and for each i ∈ {1, . . . , t}, set Gi := G[Ai ∪ S]. Then χ(Gi) ≤ 3 for all
i ∈ {1, . . . , t}.14

Suppose first that for all i ∈ {1, . . . , t}, there exists a 3-coloring ci of Gi

that assigns distinct colors to x and y.15 After possibly permuting colors, we
may assume that for all i ∈ {1, . . . , t}, we have that ci : Ai ∪ S → {1, 2, 3},

12A graph is k-colorable if it can be properly colored with at most k colors.
13Indeed, if χ(G) ≥ 5, then we fix any v ∈ V (G), and we observe that χ(G \ v) ≥

χ(G)− 1 ≥ 4, contrary to the fact that all proper induced subgraphs of G are 3-colorable.
14This is because all proper induced subgraphs of G are 3-colorable.
15A k-coloring of a graph is a proper coloring of that graph that uses at most k colors.
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ci(x) = 1, and ci(y) = 2. But now the union of c1, . . . , ct is a proper coloring
of G that uses at most three colors, contrary to the fact that χ(G) = 4.

By symmetry, we may now assume that all 3-colorings of G1 assign the
same color to x and y. But then χ(G1 + xy) = 4.16 So, by the induction
hypothesis, we have that K4 �t G1 + xy.

A1

At

...

x

y
S

A1
x

y
S

G
G1 + xy

Now, since G is 2-connected, we see that there exists an induced path P in
G2 between x and y. But now G[A1 ∪V (P )] is a subdivision of G1 +xy, and
so G1 + xy �t G. Since K4 �t G1 + xy, we have that K4 �t G. This proves
Claim 2. �

In view of Claim 2, we may now assume that G is 3-connected.

Claim 3. Either G contains a cycle of length at least four, or
K4 �t G.

Proof of Claim 3. Since G is 3-connected, we have that δ(G) ≥ 3. Now, fix
any vertex u of G; then dG(u) ≥ δ(G) ≥ 3. If NG(u) is a clique, then G
contains a K4 as a subgraph,17 and therefore as a topological minor, and we
are done. So, we may assume that some two neighbors (call them u1 and u2)
of u are non-adjacent.

u

u1

u2

P

NG(u)

Since G is 3-connected, we know that G \ u is connected, and consequently,
G \ u contains a path P between u1 and u2. But now u− u1 − P − u2 − u is
a cycle of length at least four in G.18 This proves Claim 3. �

16Indeed, since χ(G1) ≤ 3, it is obvious that χ(G1 + xy) ≤ 4. If χ(G1 + xy) ≤ 3, then
we fix some 3-coloring of G1 + xy, and we observe that this coloring must assign different
colors to x and y (because x and y are adjacent in G1 + xy). But now this coloring is a
3-coloring of G that assigns distinct colors to x and y, a contradiction.

17Indeed, take u and any three of its neighbors.
18We are using the fact that u1u2 /∈ E(G), and so P has at least one internal vertex.
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In view of Claim 3, we may assume that G contains a cycle C of length
at least four. Let u and v be some non-consecutive vertices of C. Since G is
3-connected, we know that G \ {u, v} is connected; let P be a shortest path
in G \ {u, v} between the two components of C \ {u, v}, and let x and y be
the two endpoints of P . (Note that x, y ∈ V (C), and no internal vertex of P
belongs to C. Furthermore, note that x and y are not consecutive vertices
of the cycle C.) Since G is 3-connected, G \ {x, y} is connected; let Q be a
shortest path in G \ {x, y} between the two components of C \ {x, y}, and
let w and z be the two endpoints of Q.

u v
P

x

y

x

y

Q
w

z

Now, if P and Q do not intersect, then C ∪ P ∪Q is a subdivision of K4,
19

and so K4 �t G. It remains to consider the case when P and Q do intersect.
Let Q′ be the subpath of Q from w to the first intersection of P and Q. But
now C ∪ P ∪Q′ is a subdivision of K4, and so K4 �t G.

P

x

y

x

y

w

z

Q

P

Q′

w

z

In 1979 Catlin proved that Hajós’ Conjecture fails for k ≥ 7, as the
example below shows.20

19Here, C ∪ P ∪ Q is the graph whose vertex set is V (C) ∪ V (P ) ∪ V (Q), and whose
edge set is E(C) ∪ E(P ) ∪ E(Q).

20A line between two circles indicates that all vertices inside one of the circles are
adjacent to all vertices inside the other circle.
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Indeed, the graph above has chromatic number 7, and yet it does not contain
K7 as a topological minor.21 For k ≥ 8, we can obtain a counterexample to
Hajós’ Conjecture by adding k − 7 universal vertices (i.e. vertices adjacent
to all other vertices of the graph) to the graph above. Hajós’ Conjecture is
open for k = 5 and k = 6.

3 Hadwiger’s Conjecture

In 1943, Hadwiger conjectured the following.

Hadwiger’s Conjecture. For every positive integer k, every graph of
chromatic number at least k contains Kk as a minor.

Since a topological minor is a special case of a minor (by Lemma 2.3 from
Lecture Notes 3), Hadwiger’s Conjecture is weaker than Hajós’ Conjecture.
Thus, since Hajós’ Conjecture is true for k ≤ 4, Hadwiger’s conjecture is
also true for k ≤ 4. Hadwiger’s Conjecture for k = 5 is equivalent to the
famous Four Color Theorem (proven by Appel and Haken in 1976), which
states that every planar graph is 4-colorable.22 Further, in 1993, Robertson,
Seymour, and Thomas proved that Hadwiger’s Conjecture is true for k = 6.
For k ≥ 7, the conjecture remains open.

21Check this!
22The equivalence of Hadwiger’s Conjecture for k = 5 and the Four Color Theorem is

not entirely obvious, though, and we omit the details.
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