NDMI012: Combinatorics and Graph Theory 2

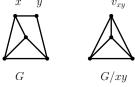
Lecture #3

Minors and planar graphs (part I)

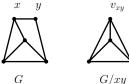
Irena Penev

March 17, 2021

• Given a graph G and an edge $xy \in E(G)$, we denote by G/xy the graph obtained from G by contracting xy to a vertex v_{xy} .



• Given a graph G and an edge $xy \in E(G)$, we denote by G/xy the graph obtained from G by contracting xy to a vertex v_{xy} .

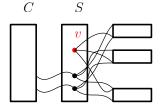


- For a non-negative integer k, a graph G is k-connected if it satisfies the following two conditions:
 - $|V(G)| \ge k + 1$;
 - for all $S \subseteq V(G)$ such that $|S| \le k 1$, the graph $G \setminus S$ is connected.

Let k be a positive integer, let G be a k-connected graph, and let $S \subseteq V(G)$ be such that |S| = k. Then every vertex of S has a neighbor in each component of $G \setminus S$.

Let k be a positive integer, let G be a k-connected graph, and let $S \subseteq V(G)$ be such that |S| = k. Then every vertex of S has a neighbor in each component of $G \setminus S$.

Proof.



Details: Lecture Notes.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

Proof.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

Proof.

Claim. For all $xy \in E(G)$, either G/xy is 3-connected, or there exists a vertex $z \in V(G) \setminus \{x,y\}$ such that $G \setminus \{x,y,z\}$ is disconnected.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

Proof.

Claim. For all $xy \in E(G)$, either G/xy is 3-connected, or there exists a vertex $z \in V(G) \setminus \{x,y\}$ such that $G \setminus \{x,y,z\}$ is disconnected.

Proof of the Claim (outline). Fix $xy \in E(G)$, and suppose that G/xy is not 3-connected. Clearly, G/xy has at least four vertices, and if S is a cutset of G/xy of size at most two, then it must contain v_{xy} , and then $(S \setminus \{v_{xy}\}) \cup \{x,y\}$ is the cutset that we need. This proves the Claim.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

Proof (continued).

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

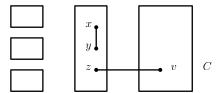
Proof (continued). Since G is 3-connected, it is clear that G has at least one edge.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

Proof (continued). Since G is 3-connected, it is clear that G has at least one edge. Now, suppose that for all $e \in E(G)$, the graph G/e is not 3-connected.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

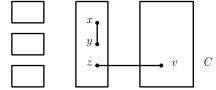
Proof (continued). Since G is 3-connected, it is clear that G has at least one edge. Now, suppose that for all $e \in E(G)$, the graph G/e is not 3-connected. Then using the Claim, we fix an edge $xy \in E(G)$ and a vertex $z \in V(G) \setminus \{x,y\}$ such that $G \setminus \{x,y,z\}$ is disconnected, and we fix a component C of $G \setminus \{x,y,z\}$; we may assume that xy,z,C were chosen so that |V(C)| is minimum.



Using Proposition 1.1, we let $v \in V(C)$ be a neighbor of z.

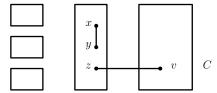
Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

Proof (continued).



Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

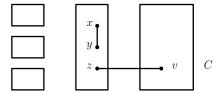
Proof (continued).



By our supposition, G/zv is not 3-connected, and so by the Claim, there exists some $w \in V(G) \setminus \{z, v\}$ such that $G \setminus \{z, v, w\}$ is disconnected.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

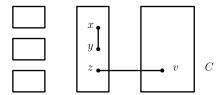
Proof (continued).



By our supposition, G/zv is not 3-connected, and so by the Claim, there exists some $w \in V(G) \setminus \{z, v\}$ such that $G \setminus \{z, v, w\}$ is disconnected. Since $xy \in E(G)$, there exists a component D of $G \setminus \{z, v, w\}$ such that $x, y \notin V(D)$;

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

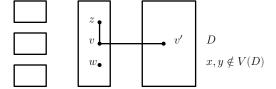
Proof (continued).



By our supposition, G/zv is not 3-connected, and so by the Claim, there exists some $w \in V(G) \setminus \{z, v\}$ such that $G \setminus \{z, v, w\}$ is disconnected. Since $xy \in E(G)$, there exists a component D of $G \setminus \{z, v, w\}$ such that $x, y \notin V(D)$; so, D is in fact a component of $G \setminus \{x, y, z, v, w\}$, and in particular, it is a connected induced subgraph of $G \setminus \{x, y, z\}$.

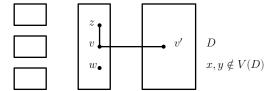
Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

Proof (continued).



Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

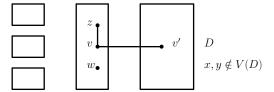
Proof (continued).



Now, let us show that $V(D) \subsetneq V(C)$.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

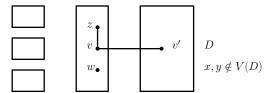
Proof (continued).



Now, let us show that $V(D) \subsetneq V(C)$. By Proposition 1.1 we know that v has a neighbor v' in V(D).

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

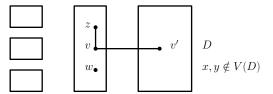
Proof (continued).



Now, let us show that $V(D) \subsetneq V(C)$. By Proposition 1.1 we know that v has a neighbor v' in V(D). But note that all neighbors of v in G belong to $V(C) \cup \{x,y,z\}$, and so since $x,y,z \notin V(D)$, we have that $v' \in V(D) \cap V(C)$.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

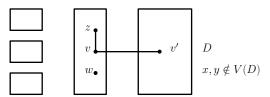
Proof (continued).



Now, let us show that $V(D) \subsetneq V(C)$. By Proposition 1.1 we know that v has a neighbor v' in V(D). But note that all neighbors of v in G belong to $V(C) \cup \{x,y,z\}$, and so since $x,y,z \notin V(D)$, we have that $v' \in V(D) \cap V(C)$. Since C is a component and D a connected induced subgraph of $G \setminus \{x,y,z\}$, we now deduce that $V(D) \subseteq V(C)$.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

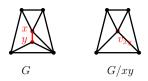
Proof (continued).



Now, let us show that $V(D) \subsetneq V(C)$. By Proposition 1.1 we know that v has a neighbor v' in V(D). But note that all neighbors of v in G belong to $V(C) \cup \{x,y,z\}$, and so since $x,y,z \notin V(D)$, we have that $v' \in V(D) \cap V(C)$. Since C is a component and D a connected induced subgraph of $G \setminus \{x,y,z\}$, we now deduce that $V(D) \subseteq V(C)$. Since $v \in V(C) \setminus V(D)$, it follows that $V(D) \subsetneq V(C)$. But this contradicts the minimality of C.

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.



• The $d_G(x), d_G(y) \ge 3$ condition is necessary because every 3-connected graph G satisfies $\delta(G) \ge 3$.

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

Proof (outline).

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

Proof (outline). Set G':=G/xy, and assume that G' is 3-connected. Then by definition, G' has at least four vertices, and consequently, G has at least five vertices.

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

Proof (outline). Set G' := G/xy, and assume that G' is

3-connected. Then by definition, G' has at least four vertices, and consequently, G has at least five vertices.

Now, fix $S \subseteq V(G)$ such that $|S| \le 2$; we must show that $G \setminus S$ is connected.

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

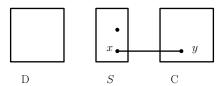
Proof (outline). Set G' := G/xy, and assume that G' is 3-connected. Then by definition, G' has at least four vertices, and consequently, G has at least five vertices.

Now, fix $S \subseteq V(G)$ such that $|S| \le 2$; we must show that $G \setminus S$ is connected. If S contains neither or both of x, y, then it's easy (details: Lecture Notes).

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

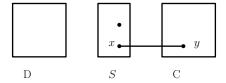
Proof (outline). Set G':=G/xy, and assume that G' is 3-connected. Then by definition, G' has at least four vertices, and consequently, G has at least five vertices.

Now, fix $S \subseteq V(G)$ such that $|S| \le 2$; we must show that $G \setminus S$ is connected. If S contains neither or both of x, y, then it's easy (details: Lecture Notes). So suppose (by symmetry) that $x \in S$ and $y \notin S$.



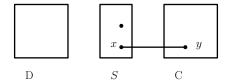
Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

Proof (outline, continued). Reminder: G' := G/xy.



Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

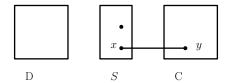
Proof (outline, continued). Reminder: G' := G/xy.



Since $d_G(y) \geq 3$, we have that $V(C) \setminus \{y\} \neq \emptyset$.

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

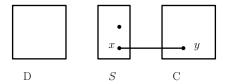
Proof (outline, continued). Reminder: G' := G/xy.



Since $d_G(y) \ge 3$, we have that $V(C) \setminus \{y\} \ne \emptyset$. Set $S' := (S \setminus \{x\}) \cup \{v_{xy}\}$, and note that $G \setminus (S \cup \{y\}) = G' \setminus S'$.

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

Proof (outline, continued). Reminder: G' := G/xy.



Since $d_G(y) \ge 3$, we have that $V(C) \setminus \{y\} \ne \emptyset$. Set $S' := (S \setminus \{x\}) \cup \{v_{xy}\}$, and note that $G \setminus (S \cup \{y\}) = G' \setminus S'$. But now S' separates $V(C) \setminus \{y\} \ne \emptyset$ from V(D) in G', contrary to the fact that G' is 3-connected and $|S'| \le 2$.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

Proposition 1.3

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

Let G be a 3-connected graph on more than four vertices. Then G has an edge e such that G/e is 3-connected.

Proposition 1.3

Let G be a graph, and let $xy \in E(G)$ be such that $d_G(x), d_G(y) \ge 3$. If G/xy is 3-connected, then so is G.

Theorem 1.4 [Tutte, 1961]

A graph G is 3-connected if and only if there exists a sequence G_0, \ldots, G_n of graphs with the following properties:

- (1) $G_0 \cong K_4$ and $G = G_n$;
- (2) for all $i \in \{0, ..., n-1\}$, G_{i+1} has an edge xy with $d_{G_{i+1}}(x), d_{G_{i+1}}(y) \ge 3$ and $G_i = G_{i+1}/xy$.

Proof. This follows from Lemma 1.2 and Proposition 1.3 (details: Lecture Notes).

Theorem 1.4 [Tutte, 1961]

A graph G is 3-connected if and only if there exists a sequence G_0, \ldots, G_n of graphs with the following properties:

- (1) $G_0 \cong K_4$ and $G = G_n$;
- (2) for all $i \in \{0, ..., n-1\}$, G_{i+1} has an edge xy with $d_{G_{i+1}}(x), d_{G_{i+1}}(y) \ge 3$ and $G_i = G_{i+1}/xy$.

Theorem 1.4 [Tutte, 1961]

A graph G is 3-connected if and only if there exists a sequence G_0, \ldots, G_n of graphs with the following properties:

- (1) $G_0 \cong K_4$ and $G = G_n$;
- (2) for all $i \in \{0, ..., n-1\}$, G_{i+1} has an edge xy with $d_{G_{i+1}}(x), d_{G_{i+1}}(y) \ge 3$ and $G_i = G_{i+1}/xy$.
 - Theorem 1.4 guarantees that every 3-connected graph can be obtained from K_4 by repeatedly "decontracting" vertices into edges, making sure that, at each step, both new vertices have degree at least three.

 $G_0 \cong K_4$

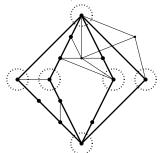
 G_1

 G_2

G

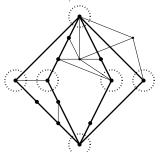
A graph H is a topological minor of a graph G, and we write $H \leq_t G$, if G contains some subdivision of H as a subgraph. The vertices of this subdivision that correspond to the vertices of H are called branch vertices.

• The graph below contains $K_{2,4}$ as a topological minor.



A graph H is a topological minor of a graph G, and we write $H \leq_t G$, if G contains some subdivision of H as a subgraph. The vertices of this subdivision that correspond to the vertices of H are called branch vertices.

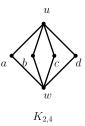
• The graph below contains $K_{2,4}$ as a topological minor.

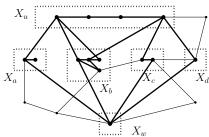


• The topological minor relation is transitive, that is, for all graphs G_1 , G_2 , G_3 , if $G_1 \leq_t G_2$ and $G_2 \leq_t G_3$, then $G_1 \leq_t G_3$.

A graph H is a *minor* of a graph G, and we write $H \leq_m G$, if there exists a family $\{X_v\}_{v \in V(H)}$ of pairwise disjoint, non-empty subsets of V(G), called *branch sets*, such that

- $G[X_v]$ is connected for all $v \in V(H)$, and
- for all $uv \in E(H)$, there is an edge between X_u and X_v in G.
- For example, the graph below (on the right) contains $K_{2,4}$ as a minor.





 Our goal is to prove the following theorem, called "Kuratowski's theorem," or sometimes the "Kuratowski-Wagner theorem."

Theorem 3.3 [Kuratowski, 1930; Wagner, 1937]

Let G be a graph. Then the following are equivalent:

- (a) G is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.

 Our goal is to prove the following theorem, called "Kuratowski's theorem," or sometimes the "Kuratowski-Wagner theorem."

Theorem 3.3 [Kuratowski, 1930; Wagner, 1937]

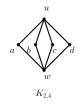
Let G be a graph. Then the following are equivalent:

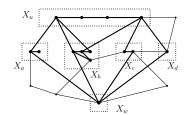
- (a) *G* is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.
 - We will prove some preliminary results that we need for this theorem today. We will complete the proof next time.

For all graphs G and H, the following are equivalent:

- (1) $H \leq_m G$;
- (2) *G* can be transformed into (an isomorphic copy of) *H* by a sequence of vertex deletions, edge deletions, and edge contractions;
- (3) there exists a subgraph G' of G such that G' can be transformed into (an isomorphic copy) of H by a sequence of edge contractions.

Proof. Lecture Notes.





The minor relation is transitive, that is, for all graphs G_1 , G_2 , G_3 , if $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$, then $G_1 \leq_m G_3$.

Proof.

The minor relation is transitive, that is, for all graphs G_1 , G_2 , G_3 , if $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$, then $G_1 \leq_m G_3$.

Proof. Fix graphs G_1 , G_2 , G_3 such that $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$.

The minor relation is transitive, that is, for all graphs G_1 , G_2 , G_3 , if $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$, then $G_1 \leq_m G_3$.

Proof. Fix graphs G_1 , G_2 , G_3 such that $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$. G_1 can be obtained from G_2 by a sequence of vertex deletions, edge deletions, and edge contractions, and G_2 can similarly be obtained from G_1 .

The minor relation is transitive, that is, for all graphs G_1 , G_2 , G_3 , if $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$, then $G_1 \leq_m G_3$.

Proof. Fix graphs G_1 , G_2 , G_3 such that $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$. G_1 can be obtained from G_2 by a sequence of vertex deletions, edge deletions, and edge contractions, and G_2 can similarly be obtained from G_1 . So, G_1 can be obtained from G_3 by a sequence of vertex deletions, edge deletions, and edge contractions.

The minor relation is transitive, that is, for all graphs G_1 , G_2 , G_3 , if $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$, then $G_1 \leq_m G_3$.

Proof. Fix graphs G_1 , G_2 , G_3 such that $G_1 \preceq_m G_2$ and $G_2 \preceq_m G_3$. G_1 can be obtained from G_2 by a sequence of vertex deletions, edge deletions, and edge contractions, and G_2 can similarly be obtained from G_1 . So, G_1 can be obtained from G_3 by a sequence of vertex deletions, edge deletions, and edge contractions. So, by Lemma 2.1, we have that $G_1 \preceq_m G_3$.

The minor relation is transitive, that is, for all graphs G_1 , G_2 , G_3 , if $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$, then $G_1 \leq_m G_3$.

Proof. Fix graphs G_1 , G_2 , G_3 such that $G_1 \leq_m G_2$ and $G_2 \leq_m G_3$. G_1 can be obtained from G_2 by a sequence of vertex deletions, edge deletions, and edge contractions, and G_2 can similarly be obtained from G_1 . So, G_1 can be obtained from G_3 by a sequence of vertex deletions, edge deletions, and edge contractions. So, by Lemma 2.1, we have that $G_1 \leq_m G_3$.

- Lemma 2.2 can also be proven directly, using the definition of a minor.
 - Proof?

For all graphs G and H, if $H \leq_t G$, then $H \leq_m G$.

Proof.

For all graphs G and H, if $H \leq_t G$, then $H \leq_m G$.

Proof. Fix graphs G and H, and assume that $H \leq_t G$. Then G contains a subgraph G' that is isomorphic to a subdivision of H, and clearly, H can be obtained from the subgraph G' by a sequence of edge contractions. Now Lemma 2.1 guarantees that $H \leq_m G$.

For all graphs G and H, if $H \leq_t G$, then $H \leq_m G$.

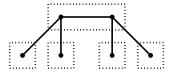
Proof. Fix graphs G and H, and assume that $H \leq_t G$. Then G contains a subgraph G' that is isomorphic to a subdivision of H, and clearly, H can be obtained from the subgraph G' by a sequence of edge contractions. Now Lemma 2.1 guarantees that $H \leq_m G$.

• Note that the converse of Lemma 2.3 is false, i.e. it is possible that $H \leq_m G$, but $H \not \leq_t G$.

For all graphs G and H, if $H \leq_t G$, then $H \leq_m G$.

Proof. Fix graphs G and H, and assume that $H \leq_t G$. Then G contains a subgraph G' that is isomorphic to a subdivision of H, and clearly, H can be obtained from the subgraph G' by a sequence of edge contractions. Now Lemma 2.1 guarantees that $H \leq_m G$.

- Note that the converse of Lemma 2.3 is false, i.e. it is possible that $H \leq_m G$, but $H \not \leq_t G$.
- For example, the graph below contains $K_{1,4}$ as a minor, but not as a topological minor.



Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \leq_t G$.

Proof.

Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \leq_t G$.

Proof. Let G' be a minimal subgraph of G such that $H \leq_m G'$, and let $\{X_v\}_{v \in V(H)}$ be the corresponding branch sets in V(G').

Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \leq_t G$.

Proof. Let G' be a minimal subgraph of G such that $H \leq_m G'$, and let $\{X_v\}_{v \in V(H)}$ be the corresponding branch sets in V(G'). Our goal is to show that G' is itself a subdivision of H.

Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \prec_t G$.

Proof. Let G' be a minimal subgraph of G such that $H \leq_m G'$, and let $\{X_v\}_{v \in V(H)}$ be the corresponding branch sets in V(G'). Our goal is to show that G' is itself a subdivision of H. By the minimality of G', we know that for all distinct $u, v \in V(H)$, we have that

- if $uv \in E(H)$, then there is exactly one edge between X_u and X_v in G',
- if $uv \notin E(H)$, then there are no edges between X_u and X_v .

Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \prec_t G$.

Proof. Let G' be a minimal subgraph of G such that $H \leq_m G'$, and let $\{X_v\}_{v \in V(H)}$ be the corresponding branch sets in V(G'). Our goal is to show that G' is itself a subdivision of H. By the minimality of G', we know that for all distinct $u, v \in V(H)$, we have that

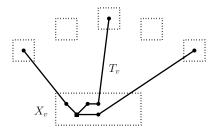
- if $uv \in E(H)$, then there is exactly one edge between X_u and X_v in G',
- if $uv \notin E(H)$, then there are no edges between X_u and X_v . By the minimality of G', $G'[X_v]$ is a tree.

Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \leq_t G$.

Proof (continued).

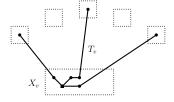
Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \prec_t G$.

Proof (continued). Now, for each $v \in V(H)$, we let T_v be the graph obtained from $G'[X_v]$ by adding to it the edges between X_v and $V(G') \setminus X_v$ (and the endpoints of those edges).



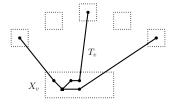
Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \leq_t G$.

Proof (continued).



Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \leq_t G$.

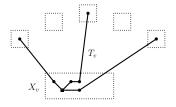
Proof (continued).



Clearly, for each $v \in V(H)$, the graph T_v is a tree, and since $\Delta(H) \leq 3$, we have that $\Delta(T_v) \leq 3$; furthermore, T_v has at most one vertex of degree three, and if this vertex exists, then it belongs to X_v .

Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \leq_t G$.

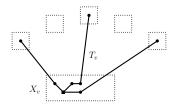
Proof (continued).



Clearly, for each $v \in V(H)$, the graph T_v is a tree, and since $\Delta(H) \leq 3$, we have that $\Delta(T_v) \leq 3$; furthermore, T_v has at most one vertex of degree three, and if this vertex exists, then it belongs to X_v . Now, for all $v \in V(H)$, we let v' be the unique vertex of T_v of degree three if such a vertex exists, and otherwise, we let v' be any vertex in X_v .

Let G and H be graphs such that $H \leq_m G$ and $\Delta(H) \leq 3$. Then $H \leq_t G$.

Proof (continued).



Clearly, for each $v \in V(H)$, the graph T_v is a tree, and since $\Delta(H) \leq 3$, we have that $\Delta(T_v) \leq 3$; furthermore, T_v has at most one vertex of degree three, and if this vertex exists, then it belongs to X_v . Now, for all $v \in V(H)$, we let v' be the unique vertex of T_v of degree three if such a vertex exists, and otherwise, we let v' be any vertex in X_v . It is now clear that G' is a subdivision of H (vertices v' are the branch vertices), and so $H \leq_t G$.

Let G be a graph. Then the following are equivalent:

- (1) G contains at least one $K_5, K_{3,3}$ as a topological minor;
- (2) G contains at least one K_5 , $K_{3,3}$ as a minor.

Proof (outline).

Let G be a graph. Then the following are equivalent:

- (1) ${\it G}$ contains at least one ${\it K}_5, {\it K}_{3,3}$ as a topological minor;
- (2) G contains at least one K_5 , $K_{3,3}$ as a minor.

Proof (outline). In view of Lemma 2.4, it suffices to show that if $K_5 \leq_m G$, then either $K_5 \leq_t G$ or $K_{3,3} \leq_m G$.

Let G be a graph. Then the following are equivalent:

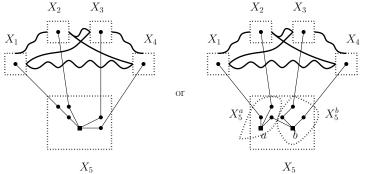
- (1) ${\it G}$ contains at least one ${\it K}_5, {\it K}_{3,3}$ as a topological minor;
- (2) G contains at least one K_5 , $K_{3,3}$ as a minor.

Proof (outline). In view of Lemma 2.4, it suffices to show that if $K_5 \leq_m G$, then either $K_5 \leq_t G$ or $K_{3,3} \leq_m G$. So, assume that $K_5 \leq_m G$.

Let G be a graph. Then the following are equivalent:

- (1) G contains at least one K_5 , $K_{3,3}$ as a topological minor;
- (2) G contains at least one K_5 , $K_{3,3}$ as a minor.

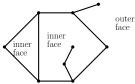
Proof (outline). In view of Lemma 2.4, it suffices to show that if $K_5 \leq_m G$, then either $K_5 \leq_t G$ or $K_{3,3} \leq_m G$. So, assume that $K_5 \leq_m G$. Let G' be a minimal subgraph of G such that $K_5 \leq_m G'$.



- Obviously, a graph can be drawn in the plane without any edge crossings if and only if it can be drawn on a sphere without any edge crossings.
- So, planar graphs are precisely those that can be drawn on a sphere without any edge crossings.

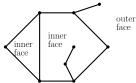
A graph is *planar* if it can be drawn in the plane without any edge crossings.

 When we draw a graph on a plane without edge crossings, we divide the plane into regions, called *faces*; one of the faces, called the *outer face* is unbounded, and the remaining faces (called *inner faces*) are bounded.



A graph is *planar* if it can be drawn in the plane without any edge crossings.

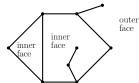
 When we draw a graph on a plane without edge crossings, we divide the plane into regions, called *faces*; one of the faces, called the *outer face* is unbounded, and the remaining faces (called *inner faces*) are bounded.



 We can define faces on a sphere analogously, but in this case, all faces are bounded, and we get no asymmetry between the inner faces and the outer face.

A graph is *planar* if it can be drawn in the plane without any edge crossings.

 When we draw a graph on a plane without edge crossings, we divide the plane into regions, called *faces*; one of the faces, called the *outer face* is unbounded, and the remaining faces (called *inner faces*) are bounded.



- We can define faces on a sphere analogously, but in this case, all faces are bounded, and we get no asymmetry between the inner faces and the outer face.
- For this reason, for proving theorems, it is often more practical to draw on a sphere than on a plane.

If a graph is planar, then so are all its minors.

Proof.

If a graph is planar, then so are all its minors.

Proof. Clearly, any graph obtained from a planar graph by deleting one vertex, deleting one edge, or contracting one edge is planar. So, by Lemma 2.1, all minors of a planar graph are planar.

A homeomorphism of the sphere is a bijection f from the sphere to itself such that both f and f^{-1} are continuous.

A homeomorphism of the sphere is a bijection f from the sphere to itself such that both f and f^{-1} are continuous.

 Informally, a homeomorphism of the sphere is the result of "stretching" the sphere (and possibly also rotating and taking mirror images).

A homeomorphism of the sphere is a bijection f from the sphere to itself such that both f and f^{-1} are continuous.

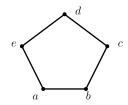
- Informally, a homeomorphism of the sphere is the result of "stretching" the sphere (and possibly also rotating and taking mirror images).
- Two graph drawings on the sphere are equivalent if some sphere homeomorphism transforms one drawing into the other.

Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

Proof.

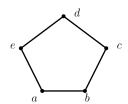
Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

Proof. Suppose that K_5 is planar, so that we can draw it on a sphere without any edge crossings. Let $\{a, b, c, d, e\}$ be the vertex set of the K_5 . We first draw the 5-cycle a, b, c, d, e, a on the sphere.



Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

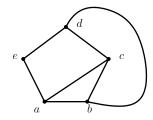
Proof. Suppose that K_5 is planar, so that we can draw it on a sphere without any edge crossings. Let $\{a,b,c,d,e\}$ be the vertex set of the K_5 . We first draw the 5-cycle a,b,c,d,e,a on the sphere.



Since edges ac and bd do not cross, we must draw them through distinct faces created by our 5-cycle a, b, c, d, e, a, and we obtain the following (next slide).

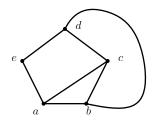
Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

Proof (continued).



Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

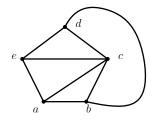
Proof (continued).



There is now only one way to add the edge *ce* to our drawing without creating edge crossings (next slide).

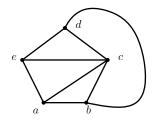
Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

Proof (continued).



Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

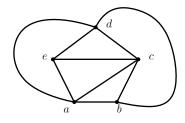
Proof (continued).



Further, there is only one way to add the edge *ad* to our drawing without creating edge crossings (next slide).

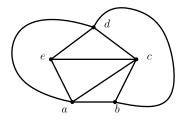
Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

Proof (continued).



Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

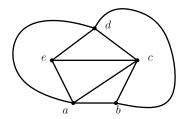
Proof (continued).



But now it is not possible to add the edge *be* to our drawing without creating edge crossings.

Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

Proof (continued).

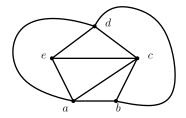


But now it is not possible to add the edge *be* to our drawing without creating edge crossings.

So, K_5 is not planar.

Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

Proof (continued).

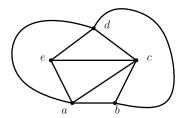


But now it is not possible to add the edge *be* to our drawing without creating edge crossings.

So, \mathcal{K}_5 is not planar. A similar argument shows that $\mathcal{K}_{3,3}$ is not planar.

Graphs K_5 and $K_{3,3}$ are not planar. Consequently, no planar graph contains K_5 or $K_{3,3}$ as a minor.

Proof (continued).



But now it is not possible to add the edge *be* to our drawing without creating edge crossings.

So, K_5 is not planar. A similar argument shows that $K_{3,3}$ is not planar.

Since K_5 and $K_{3,3}$ are not planar, Lemma 3.1 guarantees that no planar graph contains K_5 or $K_{3,3}$ as a minor.

- (a) *G* is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.

- (a) *G* is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.
 - We have already proven the "easy" part of Kuratowski's theorem:

- (a) *G* is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.
 - We have already proven the "easy" part of Kuratowski's theorem:
 - (a) implies (b) by Lemma 3.2;

- (a) *G* is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.
 - We have already proven the "easy" part of Kuratowski's theorem:
 - (a) implies (b) by Lemma 3.2;
 - (b) is equivalent to (c) by Lemma 2.5.

- (a) *G* is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.
 - We have already proven the "easy" part of Kuratowski's theorem:
 - (a) implies (b) by Lemma 3.2;
 - (b) is equivalent to (c) by Lemma 2.5.
 - It remains to prove the "hard" part: (b) implies (a).

- (a) G is planar;
- (b) G contains neither K_5 nor $K_{3,3}$ as a minor;
- (c) G contains neither K_5 nor $K_{3,3}$ as a topological minor.
 - We have already proven the "easy" part of Kuratowski's theorem:
 - (a) implies (b) by Lemma 3.2;
 - (b) is equivalent to (c) by Lemma 2.5.
 - It remains to prove the "hard" part: (b) implies (a).
 - We will do this in the next lecture.