NDMI012: Combinatorics and Graph Theory 2

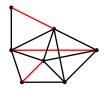
Lecture #1

Matchings in general graphs

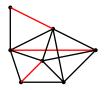
Irena Penev

March 3, 2021

A matching in a graph G is a collection of edges of G, no two of which share an endpoint.



A matching in a graph G is a collection of edges of G, no two of which share an endpoint.



Definition

A maximum matching of G is a matching M of G s.t. for all matchings M' of G, we have that $|M'| \leq |M|$. The matching number of G, denoted by $\nu(G)$, is the size of a maximum matching (i.e. the number of edges in a maximum matching).

A matching in a graph G is a collection of edges of G, no two of which share an endpoint.

Definition

A maximum matching of G is a matching M of G s.t. for all matchings M' of G, we have that $|M'| \leq |M|$. The matching number of G, denoted by $\nu(G)$, is the size of a maximum matching (i.e. the number of edges in a maximum matching).

• Remark: $\nu(G) \leq \left| \frac{|V(G)|}{2} \right|$.

If M is a matching and v is a vertex of a graph G, then we say that v is saturated by M if v is incident with some edge of M. A set $X \subseteq V(G)$ is saturated by M if every vertex in X is saturated by M.

If M is a matching and v is a vertex of a graph G, then we say that v is saturated by M if v is incident with some edge of M. A set $X \subseteq V(G)$ is saturated by M if every vertex in X is saturated by M.

Definition

A matching M of a graph graph G is *perfect* if all vertices of G are saturated by M.

If M is a matching and v is a vertex of a graph G, then we say that v is saturated by M if v is incident with some edge of M. A set $X \subseteq V(G)$ is saturated by M if every vertex in X is saturated by M.

Definition

A matching M of a graph graph G is *perfect* if all vertices of G are saturated by M.

• A graph G has a perfect matching iff $\nu(G) = \frac{|V(G)|}{2}$.

If M is a matching and v is a vertex of a graph G, then we say that v is saturated by M if v is incident with some edge of M. A set $X \subseteq V(G)$ is saturated by M if every vertex in X is saturated by M.

Definition

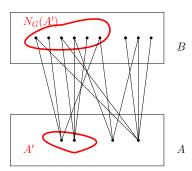
A matching M of a graph graph G is *perfect* if all vertices of G are saturated by M.

- A graph G has a perfect matching iff $\nu(G) = \frac{|V(G)|}{2}$.
- In particular, every graph that has a perfect matching, has an even number of vertices.

Hall's theorem

Let G be a bipartite graph with bipartition (A, B). Then the following are equivalent:

- (a) all sets $A' \subseteq A$ satisfy $|A'| \le |N_G(A')|$;
- (b) G has an A-saturating matching.



An *odd component* of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

An *odd component* of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

An *odd component* of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subset V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

• We first prove Tutte's theorem using the Tutte-Berge formula.

An odd component of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

- We first prove Tutte's theorem using the Tutte-Berge formula.
- Then, we give an application of Tutte's theorem (called Petersen's theorem).

An *odd component* of a graph G is a (connected) component of G that has an odd number of vertices. We denote by odd(G) the number of odd components of G.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

- We first prove Tutte's theorem using the Tutte-Berge formula.
- Then, we give an application of Tutte's theorem (called Petersen's theorem).
- Finally, we prove the Tutte-Berge formula.

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Proof.

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Proof. Fix a graph G. Clearly, the following are equivalent:

- (a) every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$;
- (b) $\min_{U \subseteq V(G)} (|V(G)| + |U| \operatorname{odd}(G \setminus U)) \ge |V(G)|$.

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Proof. Fix a graph G. Clearly, the following are equivalent:

- (a) every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$;
- (b) $\min_{U \subseteq V(G)} (|V(G)| + |U| \operatorname{odd}(G \setminus U)) \ge |V(G)|$.

By the Tutte-Berge formula, (b) is equivalent to

(c)
$$\nu(G) \geq \frac{|V(G)|}{2}$$
.

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Proof. Fix a graph G. Clearly, the following are equivalent:

- (a) every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$;
- (b) $\min_{U\subseteq V(G)} \left(|V(G)| + |U| \operatorname{odd}(G\setminus U) \right) \ge |V(G)|.$

By the Tutte-Berge formula, (b) is equivalent to

(c)
$$\nu(G) \ge \frac{|V(G)|}{2}$$
.

But clearly, (c) holds iff G has a perfect matching.

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Proof. Fix a graph G. Clearly, the following are equivalent:

- (a) every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$;
- (b) $\min_{U\subseteq V(G)} \left(|V(G)| + |U| \operatorname{odd}(G\setminus U) \right) \ge |V(G)|.$

By the Tutte-Berge formula, (b) is equivalent to

(c)
$$\nu(G) \ge \frac{|V(G)|}{2}$$
.

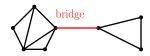
But clearly, (c) holds iff G has a perfect matching. So, (a) holds iff G has a perfect matching, which is what we needed to show.

For a nonnegative integer k, a graph G is k-regular if all vertices of G are of degree k. A graph is *cubic* if it is 3-regular.

For a nonnegative integer k, a graph G is k-regular if all vertices of G are of degree k. A graph is *cubic* if it is 3-regular.

Definition

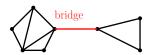
A *bridge* in a graph G is an edge $e \in E(G)$ s.t. G - e has more components than G. A graph is *bridgeless* if it has no bridge.



For a nonnegative integer k, a graph G is k-regular if all vertices of G are of degree k. A graph is *cubic* if it is 3-regular.

Definition

A *bridge* in a graph G is an edge $e \in E(G)$ s.t. G - e has more components than G. A graph is *bridgeless* if it has no bridge.



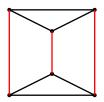
Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Every cubic, bridgeless graph has a perfect matching.

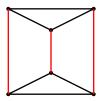
Proof.

Every cubic, bridgeless graph has a perfect matching.



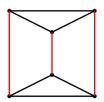
Proof. Fix a cubic, bridgeless graph G.

Every cubic, bridgeless graph has a perfect matching.



Proof. Fix a cubic, bridgeless graph G. We will apply Tutte's theorem.

Every cubic, bridgeless graph has a perfect matching.

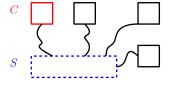


Proof. Fix a cubic, bridgeless graph G. We will apply Tutte's theorem. Fix $S \subseteq V(G)$; we must show that $|S| \ge \operatorname{odd}(G \setminus S)$.

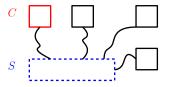
at least three edges between S and V(C) in G.

Proof of Claim 1.

Proof of Claim 1. Suppose that C is an odd component of $G \setminus S$, and let ℓ be the number of edges between S and V(C).

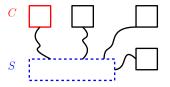


Proof of Claim 1. Suppose that C is an odd component of $G \setminus S$, and let ℓ be the number of edges between S and V(C).



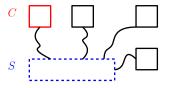
Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$.

Proof of Claim 1. Suppose that C is an odd component of $G \setminus S$, and let ℓ be the number of edges between S and V(C).



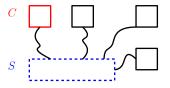
Since *G* is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since *C* is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd.

Proof of Claim 1. Suppose that C is an odd component of $G \setminus S$, and let ℓ be the number of edges between S and V(C).



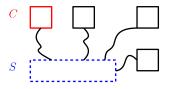
Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since C is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd. On the other hand, $\sum_{v \in V(C)} d_G(v) = 2|E(G[C])| + \ell$,

Proof of Claim 1. Suppose that C is an odd component of $G \setminus S$, and let ℓ be the number of edges between S and V(C).



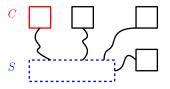
Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since C is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd. On the other hand, $\sum_{v \in V(C)} d_G(v) = 2|E(G[C])| + \ell$, and so ℓ is odd.

Proof of Claim 1. Suppose that C is an odd component of $G \setminus S$, and let ℓ be the number of edges between S and V(C).



Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since C is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd. On the other hand, $\sum_{v \in V(C)} d_G(v) = 2|E(G[C])| + \ell$, and so ℓ is odd. If $\ell = 1$, then the unique edge between S and V(C) is a bridge in G, contrary to the fact that G is bridgeless.

Proof of Claim 1. Suppose that C is an odd component of $G \setminus S$, and let ℓ be the number of edges between S and V(C).



Since G is cubic, $\sum_{v \in V(C)} d_G(v) = 3|V(C)|$. Since C is an odd, 3|V(C)| is odd, and consequently, $\sum_{v \in V(C)} d_G(v)$ is odd. On the other hand, $\sum_{v \in V(C)} d_G(v) = 2|E(G[C])| + \ell$, and so ℓ is odd. If $\ell = 1$, then the unique edge between S and V(C) is a bridge in G, contrary to the fact that G is bridgeless. So, $\ell \geq 3$. This proves Claim 1.

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: G is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \operatorname{odd}(G \setminus S)$.

Claim 1. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: G is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \operatorname{odd}(G \setminus S)$.

Claim 1. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \operatorname{odd}(G \setminus S)$.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: G is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \operatorname{odd}(G \setminus S)$.

Claim 1. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \operatorname{odd}(G \setminus S)$. By Claim 1, the number of edges between S and $V(G) \setminus S$ is at least 3t.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: G is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \operatorname{odd}(G \setminus S)$.

Claim 1. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \operatorname{odd}(G \setminus S)$. By Claim 1, the number of edges between S and $V(G) \setminus S$ is at least 3t. On the other hand, since G is cubic, the total number of edges incident with at least one vertex of S as at most 3|S|.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: G is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \operatorname{odd}(G \setminus S)$.

Claim 1. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \operatorname{odd}(G \setminus S)$. By Claim 1, the number of edges between S and $V(G) \setminus S$ is at least 3t. On the other hand, since G is cubic, the total number of edges incident with at least one vertex of S as at most 3|S|. Thus, $3t \le 3|S|$, i.e. $|S| \ge t = \operatorname{odd}(G \setminus S)$.

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Proof (continued). Reminder: G is cubic and bridgeless, and $S \subseteq V(G)$. WTS $|S| \ge \operatorname{odd}(G \setminus S)$.

Claim 1. For all odd components C of $G \setminus S$, there are at least three edges between S and V(C) in G.

Set $t := \operatorname{odd}(G \setminus S)$. By Claim 1, the number of edges between S and $V(G) \setminus S$ is at least 3t. On the other hand, since G is cubic, the total number of edges incident with at least one vertex of S as at most 3|S|. Thus, $3t \le 3|S|$, i.e. $|S| \ge t = \operatorname{odd}(G \setminus S)$. So, by Tutte's theorem, G has a perfect matching.

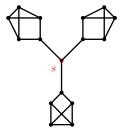
Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

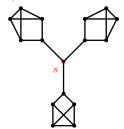
• The bridgelessness requirement from Petersen's theorem is necessary, as the example below shows.



Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

 The bridgelessness requirement from Petersen's theorem is necessary, as the example below shows.



- The graph above (call it G) is cubic, but not bridgeless. For $S := \{s\}$, we have odd $(G \setminus S) = 3$, and so $|S| < \text{odd}(G \setminus S)$.
- Thus, by Tutte's theorem, *G* does not have a perfect matching.

• It remains to prove the Tutte-Berge formula!

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

• It remains to prove the Tutte-Berge formula!

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Remark 3.1

Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

• It remains to prove the Tutte-Berge formula!

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Remark 3.1

Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

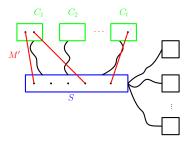
• Remark 3.1 guarantees that for every graph G, we have $\nu(G) \leq \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$

Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

Proof.

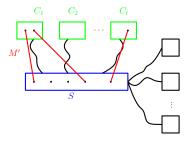
Let G be a graph. Then for all $S\subseteq V(G)$, we have that $\nu(G)\leq \frac{|V(G)|+|S|-\operatorname{odd}(G\setminus S)}{2}$.

Proof. Set $t := \operatorname{odd}(G \setminus S)$, and let C_1, \ldots, C_t be the odd components of $G \setminus S$. Fix any matching M in G. Let M' be the set of all edges of M that have one endpoint in S and the other one in $V(C_1) \cup \ldots V(C_t)$; obviously, $|M'| \leq |S|$.



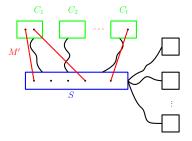
Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

Proof (continued).



Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

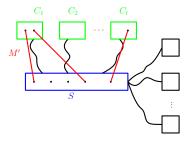
Proof (continued).



Since the components C_1, \ldots, C_t are all odd, at least $t - |M'| \ge t - |S|$ of them have a vertex that is unsaturated by M.

Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

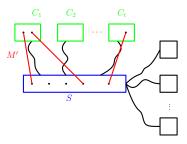
Proof (continued).



Since the components C_1,\ldots,C_t are all odd, at least $t-|M'|\geq t-|S|$ of them have a vertex that is unsaturated by M. So, the total number of vertices of G that are saturated by M is at most |V(G)|+|S|-t, and so $|M|\leq \frac{|V(G)|+|S|-t}{2}$.

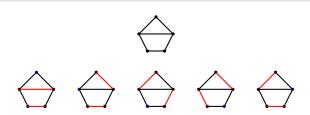
Let G be a graph. Then for all $S \subseteq V(G)$, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

Proof (continued).

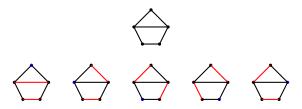


Since the components C_1,\ldots,C_t are all odd, at least $t-|M'|\geq t-|S|$ of them have a vertex that is unsaturated by M. So, the total number of vertices of G that are saturated by M is at most |V(G)|+|S|-t, and so $|M|\leq \frac{|V(G)|+|S|-t}{2}$. Thus, $\nu(G)\leq \frac{|V(G)|+|S|-t}{2}=\frac{|V(G)|+|S|-\operatorname{odd}(G\setminus S)}{2}$.

A graph G is *hypomatchable* if it does not have a perfect matching, but for all $v \in V(G)$, the graph $G \setminus v$ does have a perfect matching.



A graph G is *hypomatchable* if it does not have a perfect matching, but for all $v \in V(G)$, the graph $G \setminus v$ does have a perfect matching.



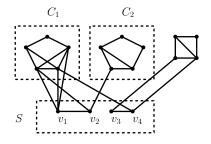
• A hypomatchable component of a graph G is a component of G that is a hypomatchable graph.

A graph G is *hypomatchable* if it does not have a perfect matching, but for all $v \in V(G)$, the graph $G \setminus v$ does have a perfect matching.

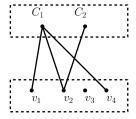


- A hypomatchable component of a graph G is a component of G that is a hypomatchable graph.
- Obviously, every hypomatchable component of G is odd.

• For a graph G and a set $S \subseteq V(G)$, let us denote by G_S the bipartite graph whose one side of the bipartition is S, and whose other side of the bipartition is the collection of all odd components of $G \setminus S$, and in which a vertex $v \in S$ and an odd component C of $G \setminus S$ are adjacent iff V has a neighbor in V(C) in G.



G



 G_S

A Gallai-Edmonds set in a graph G is a set $S \subseteq V(G)$ s.t.

- every component of $G \setminus S$ is hypomatchable;
- \bullet the bipartite graph G_S has an S-saturating matching.

A Gallai-Edmonds set in a graph G is a set $S \subseteq V(G)$ s.t.

- every component of $G \setminus S$ is hypomatchable;
- ullet the bipartite graph G_S has an S-saturating matching.

Lemma 3.2

If S is a Gallai-Edmonds set of a graph G, then $\nu(G)=\frac{|V(G)|+|S|-\operatorname{odd}(G\backslash S)}{2}.$

Lemma 3.3

Every graph has a Gallai-Edmonds set.

A Gallai-Edmonds set in a graph G is a set $S \subseteq V(G)$ s.t.

- every component of $G \setminus S$ is hypomatchable;
- ullet the bipartite graph G_S has an S-saturating matching.

Lemma 3.2

If S is a Gallai-Edmonds set of a graph G, then $\nu(G)=\frac{|V(G)|+|S|-\operatorname{odd}(G\backslash S)}{2}.$

Lemma 3.3

Every graph has a Gallai-Edmonds set.

• We will prove Lemmas 3.2 and 3.3.

A Gallai-Edmonds set in a graph G is a set $S \subseteq V(G)$ s.t.

- every component of $G \setminus S$ is hypomatchable;
- the bipartite graph G_S has an S-saturating matching.

Lemma 3.2

If S is a Gallai-Edmonds set of a graph G, then $\nu(G)=\frac{|V(G)|+|S|-\operatorname{odd}(G\backslash S)}{2}.$

Lemma 3.3

Every graph has a Gallai-Edmonds set.

- We will prove Lemmas 3.2 and 3.3.
- But first, let us show that they (together) imply the Tutte-Berge formula.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Proof (assuming Lemmas 3.2 and 3.3).

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Proof (assuming Lemmas 3.2 and 3.3). Fix a graph G. By Lemma 3.3, G contains a Gallai-Edmonds set, call it S. Then

$$\begin{array}{ccc} \nu(G) & \overset{\text{by Lemma } 3.2}{=} & \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2} \\ \\ & \geq & \frac{1}{2} \min_{U \subseteq V(G)} \Big(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \Big). \end{array}$$

The reverse inequality follows immediately from Remark 3.1.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Proof (assuming Lemmas 3.2 and 3.3). Fix a graph G. By Lemma 3.3, G contains a Gallai-Edmonds set, call it S. Then

$$\nu(G) \stackrel{\text{by Lemma } 3.2}{=} \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$$

$$\geq \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

The reverse inequality follows immediately from Remark 3.1.

It remains to prove Lemmas 3.2 and 3.3.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G)=\frac{|V(G)|+|S|-\mathrm{odd}(G\backslash S)}{2}.$

Proof.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

Proof. Let S be a Gallai-Edmonds set of a graph G.

If *S* is a Gallai-Edmonds set of a graph *G*, then $\nu(G) = \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \mathsf{odd}(G \setminus S)}{2}$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$. It remains to show that $\nu(G) \geq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \mathsf{odd}(G \setminus S)}{2}$

Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$. It remains to show that $\nu(G) \geq \frac{|V(G)| + |S| - \mathsf{odd}(G \setminus S)}{2}$ To simplify notation, set n := |V(G)|, s := |S|, and

 $t := \operatorname{odd}(G \setminus S)$. We must show that $\nu(G) \geq \frac{n+s-t}{2}$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$. It remains to show that $\nu(G) \geq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$. To simplify notation, set n := |V(G)|, s := |S|, and $t := \operatorname{odd}(G \setminus S)$. We must show that $\nu(G) \geq \frac{n+s-t}{2}$. We will

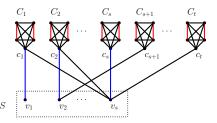
prove this by exhibiting a matching M in G of size $\frac{n+s-t}{2}$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

Proof. Let S be a Gallai-Edmonds set of a graph G. By Remark 3.1, we have that $\nu(G) \leq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$. It remains to show that $\nu(G) \geq \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$. To simplify notation, set n := |V(G)|, s := |S|, and $t := \operatorname{odd}(G \setminus S)$. We must show that $\nu(G) \geq \frac{n+s-t}{2}$. We will prove this by exhibiting a matching M in G of size $\frac{n+s-t}{2}$. Let C_1, \ldots, C_t be the odd components of $G \setminus S$ (since all components of $G \setminus S$ are hypomatchable and therefore odd, we see that C_1, \ldots, C_t are in fact all the components of $G \setminus S$), and set $S = \{v_1, \ldots, v_s\}.$

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \operatorname{odd}(G \setminus S)}{2}$.

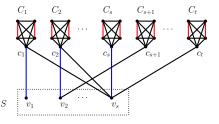
Proof (continued).



Since S is a Gallai-Edmonds set, G_S has an S-saturating matching, call it M_S . By symmetry, WMA $M_S = \{v_1 C_1, \ldots, v_s C_s\}$. For each $i \in \{1, \ldots, s\}$, choose a vertex $c_i \in V(C_i)$ s.t. $v_i c_i \in E(G)$. For all $i \in \{s+1, \ldots, t\}$, choose any vertex $c_i \in C_i$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \mathrm{odd}(G \setminus S)}{2}$.

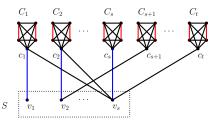
Proof (continued).



Further, since S is a Gallai-Edmonds set, for all $i \in \{1, ..., t\}$, C_i is hypomatchable, and in particular, $C_i \setminus c_i$ has a perfect matching, call it M_i . Now, set $M := \{v_1c_1, ..., v_sc_s\} \cup M_1 \cup \cdots \cup M_t$.

If S is a Gallai-Edmonds set of a graph G, then $\nu(G) = \frac{|V(G)| + |S| - \text{odd}(G \setminus S)}{2}$.

Proof (continued).



Further, since S is a Gallai-Edmonds set, for all $i \in \{1,\ldots,t\}$, C_i is hypomatchable, and in particular, $C_i \setminus c_i$ has a perfect matching, call it M_i . Now, set $M := \{v_1c_1,\ldots,v_sc_s\} \cup M_1 \cup \cdots \cup M_t$. Then M is a matching of size $\frac{n+s-t}{2}$ (details: Lecture Notes), and so $\nu(G) \geq \frac{n+s-t}{2}$.

Every graph has a Gallai-Edmonds set.

Proof.

Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer than |V(G)| vertices has a Gallai-Edmonds set.

Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer than |V(G)| vertices has a Gallai-Edmonds set. Choose a set $S \subseteq V(G)$ so that $\operatorname{odd}(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible. Our goal is to show that S is a Gallai-Edmonds set.

Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer than |V(G)| vertices has a Gallai-Edmonds set. Choose a set $S \subseteq V(G)$ so that $\operatorname{odd}(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible. Our goal is to show that S is a Gallai-Edmonds set.

Claim 1. All components of $G \setminus S$ are odd.

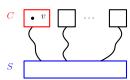
Proof of Claim 1 (outline).

Every graph has a Gallai-Edmonds set.

Proof. Let G be a graph, and assume inductively that every graph on fewer than |V(G)| vertices has a Gallai-Edmonds set. Choose a set $S \subseteq V(G)$ so that $\operatorname{odd}(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible. Our goal is to show that S is a Gallai-Edmonds set.

Claim 1. All components of $G \setminus S$ are odd.

Proof of Claim 1 (outline). Suppose otherwise, and fix a component C of $G \setminus S$ that has an even number of vertices.



Fix $v \in V(C)$, and set $S' := S \cup \{v\}$. Then S' contradicts the choice of S (details: Lecture Notes). This proves Claim 1.

Every graph has a Gallai-Edmonds set.

Proof. Reminder: odd($G \setminus S$) – |S| is as large as possible, and subject to that, |S| is as large as possible.

Claim 2. All components of $G \setminus S$ are hypomatchable.

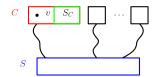
Proof of Claim 2 (outline).

Every graph has a Gallai-Edmonds set.

Proof. Reminder: odd($G \setminus S$) – |S| is as large as possible, and subject to that, |S| is as large as possible.

Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline). Suppose otherwise, and fix a component C of $G\setminus S$ and a vertex $v\in V(C)$ s.t. $C\setminus v$ does not have a perfect matching. By Claim 1, $C\setminus v$ has an even number of vertices; since $C\setminus v$ does not have a perfect matching, it follows that $\nu(C\setminus v)\leq \frac{|V(C)\setminus \{v\}|}{2}-1=\frac{|V(C)|-3}{2}$. By the induction hypothesis, $C\setminus v$ has a Gallai-Edmonds set, call it S_C .



Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued).

$$C$$
 v
 S_C
 $...$
 S

by Lemma 3.2

$$\frac{|V(C)|-3}{2} \geq \nu(C \setminus v)$$

$$= \frac{|V(C \setminus v)|+|S_C|-\operatorname{odd}((C \setminus v) \setminus S_C)}{2}$$

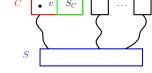
$$= \frac{|V(C)|-1+|S_C|-\operatorname{odd}((C \setminus v) \setminus S_C)}{2}$$

and so $\operatorname{odd}((C \setminus v) \setminus S_C) \ge |S_C| + 2$.

Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued). Reminder:

$$\operatorname{odd}((C \setminus v) \setminus S_C) \geq |S_C| + 2.$$



Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued). Reminder: $odd((C \setminus v) \setminus S_C) \ge |S_C| + 2$.

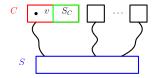
Now, set $S' := S \cup \{v\} \cup S_C$. Then

$$\begin{array}{lcl} \operatorname{odd}(G \setminus S') &=& \operatorname{odd}(G \setminus S) - 1 + \operatorname{odd}\left((C \setminus v) \setminus S_C\right) \\ &\geq & \operatorname{odd}(G \setminus S) - 1 + (|S_C| + 2) \\ &= & \operatorname{odd}(G \setminus S) + |S_C| + 1 \\ &= & \operatorname{odd}(G \setminus S) + (|S'| - |S|), \end{array}$$

and so odd($G \setminus S'$) $-|S'| \ge \text{odd}(G \setminus S) - |S|$.

Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued). Reminder: $odd(G \setminus S') - |S'| \ge odd(G \setminus S) - |S|$.



Claim 2. All components of $G \setminus S$ are hypomatchable.

Proof of Claim 2 (outline, continued). Reminder: $odd(G \setminus S') - |S'| \ge odd(G \setminus S) - |S|$.

Since we also have that |S'| > |S|, this contradicts the choice of S. This proves Claim 2.

Every graph has a Gallai-Edmonds set.

Proof of Lemma 3.3. Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible.

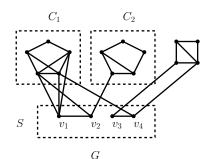
Claim 2. All components of $G \setminus S$ are hypomatchable.

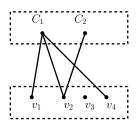
Every graph has a Gallai-Edmonds set.

Proof of Lemma 3.3. Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible.

Claim 2. All components of $G \setminus S$ are hypomatchable.

Claim 3. G_S has an S-saturating matching.



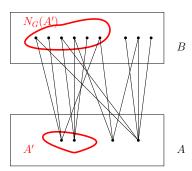


 G_S

Hall's theorem

Let G be a bipartite graph with bipartition (A, B). Then the following are equivalent:

- (a) all sets $A' \subseteq A$ satisfy $|A'| \le |N_G(A')|$;
- (b) G has an A-saturating matching.

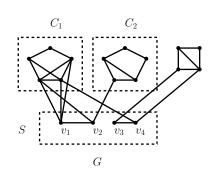


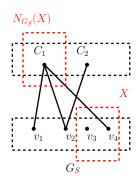
Claim 3. G_S has an S-saturating matching.

Proof of Claim 3.

Claim 3. G_S has an S-saturating matching.

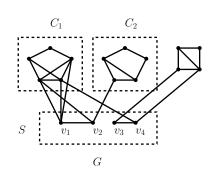
Proof of Claim 3. Suppose otherwise. Then by Hall's theorem, there exists a set $X \subseteq S$ s.t. $|N_{G_S}(X)| < |X|$.

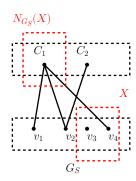




Claim 3. G_S has an S-saturating matching.

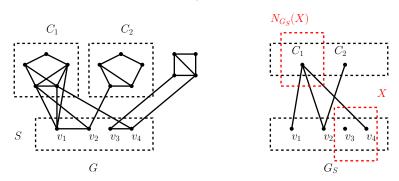
Proof of Claim 3. Suppose otherwise. Then by Hall's theorem, there exists a set $X \subseteq S$ s.t. $|N_{G_S}(X)| < |X|$. Set $S' := S \setminus X$.





Claim 3. G_S has an S-saturating matching.

Proof of Claim 3. Suppose otherwise. Then by Hall's theorem, there exists a set $X \subseteq S$ s.t. $|N_{G_S}(X)| < |X|$. Set $S' := S \setminus X$.



Then all odd components of $G \setminus S$ other than the ones in $N_{G_S}(X)$ are still odd components of $G \setminus S'$, and we compute:

Claim 3. G_S has an S-saturating matching.

Proof of Claim 3. Reminder: $|N_{G_s}(X)| < |X|$, $S' := S \setminus X$.

$$\begin{array}{ll} \operatorname{odd}(G\setminus S') & \geq & \operatorname{odd}(G\setminus S) - |N_{G_S}(X)| \\ > & \operatorname{odd}(G\setminus S) - |X| \\ & = & \operatorname{odd}(G\setminus S) - (|S| - |S'|) \\ & = & \operatorname{odd}(G\setminus S) - |S| + |S'|, \end{array}$$

Claim 3. G_S has an S-saturating matching.

Proof of Claim 3. Reminder: $|N_{G_S}(X)| < |X|$, $S' := S \setminus X$.

$$\begin{array}{ll} \operatorname{odd}(G \setminus S') & \geq & \operatorname{odd}(G \setminus S) - |N_{G_S}(X)| \\ & > & \operatorname{odd}(G \setminus S) - |X| \\ & = & \operatorname{odd}(G \setminus S) - (|S| - |S'|) \\ & = & \operatorname{odd}(G \setminus S) - |S| + |S'|, \end{array}$$

and it follows that

$$\operatorname{odd}(\mathit{G}\setminus \mathit{S'})-|\mathit{S'}| \ > \ \operatorname{odd}(\mathit{G}\setminus \mathit{S})-|\mathit{S}|,$$

contrary to the choice of *S*. This proves Claim 3.

Every graph has a Gallai-Edmonds set.

Proof (continued). Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible.

Claim 2. All components of $G \setminus S$ are hypomatchable.

Claim 3. G_S has an S-saturating matching.

Every graph has a Gallai-Edmonds set.

Proof (continued). Reminder: $odd(G \setminus S) - |S|$ is as large as possible, and subject to that, |S| is as large as possible.

Claim 2. All components of $G \setminus S$ are hypomatchable.

Claim 3. G_S has an S-saturating matching.

By Claims 2 and 3, we have that S is a Gallai-Edmonds set of G.

• We have proven the following three theorems.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subseteq V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

• We have proven the following three theorems.

The Tutte-Berge formula

Every graph G satisfies

$$\nu(G) = \frac{1}{2} \min_{U \subset V(G)} \left(|V(G)| + |U| - \operatorname{odd}(G \setminus U) \right).$$

Tutte's theorem

A graph G has a perfect matching iff every set $S \subseteq V(G)$ satisfies $|S| \ge \operatorname{odd}(G \setminus S)$.

Petersen's theorem

Every cubic, bridgeless graph has a perfect matching.

• A maximum matching can be found in polynomial time (Edmonds, 1961), but we omit the details.