NDMI012: Combinatorics and Graph Theory 2 HW#8

Irena Penev Winter 2020/2021

due Tuesday, May 18, 2021 before midnight (Prague time)

Remark: Please e-mail me (ipenev@iuuk.mff.cuni.cz) your HW as a **PDF** attachment (no other format will be accepted).

Problem 1 (40 points). Let p and ℓ be positive integers. Construct a family \mathscr{A} of $(p-1)^{\ell}$ non-empty sets such that there does **not** exist a sunflower $\mathscr{S} \subseteq \mathscr{A}$ with p petals.

Problem 2 (30 points). Prove that for all positive integers r and n, we have that

$$t_r(n) \leq \frac{r-1}{2r}n^2,$$

and that equality holds whenever r divides n.

Hint: Set $n = kr + \ell$, where k and ℓ are non-negative integers with $\ell \leq r - 1$. Treat the case $\ell = 0$ first, and then show for the general case that $t_r(n) = \frac{r-1}{2r}(n^2 - \ell^2) + {\ell \choose 2}$.

Problem 3 (30 points). Let r be a positive integer. Prove that

$$\lim_{n \to \infty} \frac{t_r(n)}{\binom{n}{2}} = \frac{r-1}{r}.$$

Hint: $r\lfloor \frac{n}{r} \rfloor \leq n \leq r\lceil \frac{n}{r} \rceil$, and consequently, $t_r\left(r\lfloor \frac{n}{r} \rfloor\right) \leq t_r(n) \leq t_r\left(r\lceil \frac{n}{r} \rceil\right)$. You may use Problem 2.